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The aim of this work is to represent the solutions of one-dimensional fractional partial
differential equations (FPDEs) of order (α∈R+\N) in both quasi-probabilistic and prob-
abilistic ways. The canonical processes used are generalizations of stable Lévy processes.
The fundamental solutions of the fractional equations are given as functionals of sta-
ble subordinators. The functions used generalize the functions given by the Airy integral
of Sirovich (1971). As a consequence of this representation, an explicit form is given to
the density of the 3/2-stable law and to the density of escaping island vicinity in vortex
medium. Other connected FPDEs are also considered.

Copyright © 2006 Latifa Debbi. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The fractional differential equations describe physical phenomena in inhomogeneous
medium, such as diffusion in porous medium or with fractal geometry or with turbu-
lence, kinematics in viscoelastic medium, relaxation processes in complex systems (vis-
coelastic materials, glassy materials, synthetic polymers, biopolymer), propagation of
seismic waves, pollution and transport of data across the internet, for more informa-
tion on this topics see [1, 12, 17, 18, 32], and the references therein. The diffusion packet
width, in these mediums, grows proportional to tν, ν �= 1/2. When ν < 1/2, it is called
subdiffusion, it is the case, for example, of the porous medium, and when ν > 1/2, it is
called superdiffusion, it is the case of chaotic flows generated by vortices [1, 12, 32]. It is
known that the case t1/2 is the normal diffusion connected to Gaussian process. Two ap-
proaches are used to describe these diffusion processes, the first one is to consider them
as a superposition of ordinary diffusions, the second one is to consider the anomaly in
the microscopical scale and describe the diffusion in terms of certain random walks. This
last approach gives processes generalizing the Brownian motion (Lévy processes and their
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2 Explicit solutions of some FPDEs via subordinators

generalizations). Some properties of the anomaly are explained by the interplay of both
the diffusive and ballistic behavior.

The high-order fractional partial differential equations are generalizations of the in-
teger high-order partial differential equations. These ladders appear in the literature in
connection with many physical applications, for example, heat-type equations of order
three is used in the analysis of trimolecular reactions and that of order four is used in
the study of the grooves developed on surfaces when obstacles are met [10]. The aim of
several works on these equations is to make explicit the link between them and stochastic
processes [3, 9, 13, 14, 22, 23, 25–27] and the references therein. The major difficulty in
this study is that the fundamental solution is not everywhere positive, so the stochastic
representation of the solution is not always easily obtained, as it is the case for the heat
equation and the Brownian motion. Krylov [16] has introduced the initial value problem

∂u

∂t
= (−1)n+1 ∂

2nu

∂x2n
, t > 0, x ∈R,

u(0,x)= f (x),
(1.1)

for n > 1 with f ∈ L1(R).
By Fourier’s calculus, it is easy to see that the solution of (1.1) is given by

u2n(t,x)=
∫ +∞

−∞
f (x+ ξ)p2n(t,ξ)dξ, (1.2)

where p2n(t,x) is the fundamental solution; that means p2n(t,x) is the solution of (1.1)
when the initial condition is the Dirac distribution (u(0,x)= δ0(x)). p2n(t,x) can be ex-
pressed as

p2n(t,x)= 1
2π

∫ +∞

−∞
exp

(− ixλ− tλ2n)dλ. (1.3)

It is proven in [13, 16] that the function p2n(t,x) is not everywhere positive when n > 1.
As a consequence, two approaches are then created. The first one is a formal probabilistic
analogy with the Brownian case [9, 13, 14, 16, 22, 23, 25–27] and others. Krylov [16] has
used an additive signed measure to construct a “signed probability space.” The solution
is then represented as u(t,x)= E(x+Xt) where E is the expectation and {Xt, t ≥ 0} is the
canonical process on this space. This process is called Krylov motion or pseudoprocess
and it has p2n(t,x) as transition density [27]. After that, the question how to generalize the
stochastic calculus to pseudoprocesses gave rise to several papers [4, 13, 22, 25–27], and
so forth, where particular questions such as stochastic integral, Itô formula, first hitting
time and first hitting place, Girsanov formula, stochastic differential equations, have been
studied. Another formal way is to use the subordination analogy theory as in [9, 23].

The disadvantage of this approach is that the measure used is only finitely additive
so many standard probabilistic tools cannot be applied, further the “signed probability
measure” has no clear physical significance. But on the other hand, the formal stochastic
calculus elaborated by this approach is useful in physics and characterizes more or less the
particle and its trajectories. In [27], Nishioka represents the biharmonic pseudoprocess
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(n= 2 in (1.1)) as a composition, in certain sense, of two different particles, a monopole
and a dipole.

The second approach uses only probabilistic tools. In [4], Burdzy and Ma̧drecki gave
the process connected to the fourth-order equation as a “wide limit” of a sequence of
CN -valued random processes. In this construction, they used three independent Brown-
ian motions on a product of two probabilistic spaces, and they mentioned that they can
replace two of them by stable processes. Their calculus can be applied to the fractional
heat equations with differentiation order between 0 and 4: unfortunately at the end of
the paper, they pointed out that this calculus leads to a paradox, further, one cannot in-
terpret the process as the trajectories of a moving particle.

Benachour et al. [3] have used the iterated Brownian motion in the study of the fourth-
order heat equation. They associated to the operator (∂/∂x)4 the process {B|wt|, t ≥ 0},
where {Bt, t ≥ 0} and {wt, t ≥ 0} are two independent Brownian motions.

In this work, we are interested in the two approaches for the initial value problem of
the fractional equations

∂u

∂t
= κ∂

αu

∂xα
+ c

∂u

∂x
, t > 0, x ∈R,

u(0,x)= f (x)∈ L1(R),
(1.4)

where α∈R+\N, ∂α/∂xα is a fractional differential operator, c is a real constant, and κ is
a real constant to be given later according to the differential operator taken. We note that,
by a simple change of the function u, we can extend the study to the equation

∂u

∂t
= κ∂

αu

∂xα
+ c

∂u

∂x
+ c1u. (1.5)

The paper is organized as follows: after giving some basic definitions and properties in
Section 2, we give in Section 3, the resolution of (1.4), the principal properties of the fun-
damental solution and the quasi-probabilistic approach. In Section 4, we give the proba-
bilistic representation of the solution. To this aim, we introduce a class of functions given
by Airy integral. Two subsections, at the end, are devoted to particular cases of mathe-
matical or physical interest and to fractional equations which generalize (1.4); fractional
equations in high dimension and fractional equations with more than one differential
operator.

2. Preliminaries

In the literature, various fractional differential operators are defined, see [21, 24, 28].
The results in this paper apply to several of them, such as Riemann-Liouville operator,
Nishimoto operator, and the non-selfadjoint fractional operator introduced in [5] and
used in [7] to the study of stochastic fractional differential equations.
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Definition 2.1. Let f be a real function. The fractional derivative of order α of the function
f in Riemann-Liouville sense, when it exists, is given by

Dα f (x)= 1
Γ(m−α)

dm

dxm

∫ x

−∞
(x− t)m−α−1 f (t)dt, m− 1≤ α <m, (2.1)

where m= [α] + 1, and [α] is the integer part of α and Γ is the Gamma function.

Definition 2.2. Let f be an analytic function and let z0 be a point of its domain of
definition. Draw the curve C+ along the cut joining the points z0 and +∞ + i�z0 as
{x + i�z0, �z0 + r ≤ x < +∞}∗ ∨ {z0 + reiθ , 0 < θ < 2π}∨ {x + i�z0, �z0 + r ≤ x < +∞}
where the symbol ∨means “followed by” and ∗means that the curve is taken in the op-
posite direction. By the same way we can introduce the curve C− along the cut joining the
points z0 and −∞+ i�z0. Suppose that the function f has nonbranch point inside and
on the curve C ∈ {C−,C+}. The α-fractional derivative of f in the point z0 in Nishimoto
sense, if it exists, is the complex number

Nα f
(
z0
)= Γ(α+ 1)

2πi

∫
C

f (ξ)(
z0− ξ

)α+1 dξ. (2.2)

In [5], the author introduced a fractional differential operator Dα
δ as a generalization

of the inverse of the generalized Riesz-Feller potential [8, 15] for α > 0.

Definition 2.3. The fractional differential Dα
δϕ(x) is given by

Dα
δϕ(x)=�−1{

δψα(λ)�
{
ϕ(x);λ

}
;x
}

, (2.3)

where

δψα(λ)=−|λ|αe−iδ(π/2)sgn(λ), (2.4)

|δ| ≤min{α− [α]2,2 + [α]2 − α}, [α]2 is the largest even integer less than or equal to α
(even part of α), and δ = 0 when α ∈ 2N+ 1, and � (resp., �−1) is the Fourier (resp.,
Fourier inverse) transform.

The Fourier transform and its inverse are given by

�
{
φ(x);λ

}= φ̂(λ)=
∫ +∞

−∞
exp(ixλ)φ(x)dx,

�−1{φ(λ);x
}= φ̆(λ)= 1

2π

∫ +∞

−∞
exp(−ixλ)φ(λ)dλ.

(2.5)

The operator Dα
δ is a non-selfadjoint, closed, densely defined operator on L2(R) and

it is the infinitesimal generator of, in general, a nonsymmetric and noncontraction semi-
group. This operator generalizes the differentiation of high order (so (1.4) generalizes
(1.1), when α is even [13, 16]) and it generalizes also the fractional differential operators
in [8, 11, 15, 20] for 0 < α≤ 2. It is selfadjoint only when δ = 0, in this case, it coincides
with the fractional power of the Laplacian. Evidently, when α= 2, it is the Laplacian itself.
Furthermore, it is proven in [5] that when |δ| = 2 + [α]2−α or |δ| = α− [α]2, it coincides
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with the Riemann-Liouville differential operator. From [15], Dα
δ can be represented for

1 < α < 2, by

Dα
δϕ(x)=

∫ +∞

−∞
ϕ(x+ y)−ϕ(x)− yϕ′(x)

|y|1+α

(
Mδ
−1(−∞,0) +Mδ

+1(0,+∞)
)
dy, (2.6)

and for 0 < α < 1, by

Dα
δϕ(x)=

∫ +∞

−∞
ϕ(x+ y)−ϕ(x)

|y|1+α

(
Mδ
−1(−∞,0) +Mδ

+1(0,+∞)
)
dy, (2.7)

where Mδ− and Mδ
+ are two nonnegative constants satisfying Mδ− +Mδ

+ > 0 and 1(−∞,0) and
1(0,+∞) are the indicator functions of the intervals (−∞,0), (0,+∞), respectively, and ϕ is
a smooth function for which the integrals exist, and ϕ′ is its derivative. For more details
about this operator see [5].

It is proven that for Definitions 2.1 and 2.2 and for smooth functions, we have the
following relationship between the fractional differential operator and the Fourier trans-
form (see [28] for Riemann-Liouville operator and see [2, 24] for Nishimoto operator):

�
{
Dα f (x);λ

}= (−iλ)α�
{
f (x);λ

}
. (2.8)

For 0 < α < 2 and using the fractional operators above, we can represent the solution
of (1.4) by an α-stable process.

Definition 2.4 [30]. A real stochastic process {Xt, t ≥ 0} defined on a probability space
(Ω,�,P) is a Lévy process if the following conditions are satisfied:

(i) it has independent increments, that is, for any choice of n ≥ 1 and 0 ≤ t0 ≤ t1 ≤
··· ≤ tn, the random variables Xt0 ,Xt1 −Xt0 , . . . ,Xtn −Xtn−1 are independent,

(ii) it has stationary increments, that is, for all s, t ≥ 0 the distribution of Xt+s −Xt
does not depend on t,

(iii) X0 = 0 a.s.,
(iv) it is stochastically continuous; that is,∀t > 0 and ε > 0,

lim
s→t P

[∣∣Xt −Xs∣∣ > ε]= 0, (2.9)

(v) it is càdlàg, that is, there is Ω0 ∈� with P[Ω0] = 1 such that for every ω ∈ Ω0,
Xt(ω) is right continuous in t ≥ 0 and has left limits in t > 0.

The Lévy process {Xt, t ≥ 0} is called stable if the distribution of X1 is stable, that is,
if there are parameters 0 < α ≤ 2, σ > 0, −1 ≤ β ≤ 1, μ ∈ R such that the characteristic
function of X1 is given by

E
[

exp iX1λ
]=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
{
− σα|λ|α

(
1− iβ(sgnλ)tan

απ

2

)
+ iμλ

}
, α �= 1,

exp
{
− σ|λ|

(
1 + iβ(sgnλ)tan

2
π

ln|λ|
)

+ iμλ
}

, α= 1.

(2.10)

The parameters α, σ , β, μ are called, respectively, stable, scale, skewness, shift parameter.
When 0 < α < 1, β = 1, and μ≥ 0, the stable Lévy process is called subordinator.
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Other representations of the characteristic function are also given in [19, 32], in par-
ticular for α �= 1, we have

E
[

exp iX1λ
]= exp

{
− σ∗|λ|α exp

(
− i δπ

2
sgnλ

)
+ iμ∗λ

}
, (2.11)

where |δ| ≤min{α,2−α}, σ∗ > 0, and μ∗ ∈R. We give now the extension of this defini-
tion for signed probability spaces.

Definition 2.5. Let (Ω,�−,P−) be a signed probability space; that means P− is a signed
measure which could be only additive and �− could be only an algebra but P−(Ω)= 1, a
real pseudoprocess {X−(t), t ≥ 0} is a family of �−-measurable functions.

It is clear that a pseudoprocess is a process in the classical sense when P− is a probability
measure. We use the same notations as in probability: E denotes the “expectation” E( f )=∫
f dP−α and the characteristic function is given by the formula E[exp(i f λ)].

Definition 2.6. A pseudoprocess {X−(t), t ≥ 0} defined on the signed probability space
(Ω,�−,P−) is called stable Lévy pseudoprocess if it satisfies conditions (i)–(v) in
Definition 2.4 with respect to the signed probability P− and its characteristic function is
given by the formula (2.11) where α∈R/2N+ 1, |δ| ≤min{α− [α]2,2 + [α]2−α}, σ∗ > 0,
and μ∗ ∈R.

The notation X−α (1) ∼ Sα(σ ,β,μ) means that the characteristic function of X−α (1) is
given by (2.10) where α∈R/2N+ 1 and−1 < β < 1. The notation ∂α/∂xα is used to desig-
nate any of the fractional differential operators introduced in Definitions 2.1, 2.2, and 2.3.
We take κ equal to−(cos(απ/2))−1 for Definitions 2.1 and 2.2 and equal to (cos(δπ/2))−1

for Definition 2.3.

3. Resolution of the fractional equation, some properties, and
quasi-probabilistic approach

First, we assume that the fractional differential operator in (1.4) is the Riemann-Liouville
operator (∂α/∂xα = Dα) and applying the Fourier transform, we find the differential
equation

∂û

∂t
(t,λ)= (

κ(−iλ)α + ciλ
)
û(t,λ), (3.1)

where (−iλ)α = |λ|α exp(−isgn(λ)(απ/2)). The solution of this differential equation tak-

ing into account the initial condition f̂ is

ûα(t,λ)= f̂ (λ)exp
((
κ(−iλ)α + icλ

)
t
)
. (3.2)

By an identical way and across the complex analysis, we obtain the same result with the
Nishimoto fractional differential operator. However, for (1.4) with the fractional operator
Dα
δ given in Definition 2.3, we find

ûα(t,λ)= f̂ (λ)exp
((
κ δψα(λ) + icλ

)
t
)
. (3.3)
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It is clear that the function hα(t,λ) = exp((κ δψα(λ) + icλ)t) is equal to exp((κ(−iλ)α +
icλ)t) when δ = α − 2 − [α]2 or δ = α − [α]2 conformal to Definition 2.3. Further
hα(t,λ) is absolutely integrable, let pα(t,x) be its inverse Fourier transform. From the

relationship ûα(t,λ)= f̂ (λ) p̂α(t,λ), we get

uα(t,x)=
∫ +∞

−∞
f (ξ)pα(t,x− ξ)dξ. (3.4)

The function pα(t,x) is the fundamental solution of (1.4). In the sequel of this section,
we take the fractional differential operator in (1.4) equal toDα

δ with general δ and we take
κ > 0. Let us denote the fundamental solution, in this case by δ pα,c,κ(t,x), then

δ pα,c,κ(t,x)= 1
2π

∫ +∞

−∞
exp

[− iλ(x− ct)− κ|λ|αte−isgn(λ)(δπ/2)]dλ. (3.5)

In the following lemma, we give some properties of the function δ pα,c,κ(t,x).

Lemma 3.1. For all α∈R+\N, |δ| ≤min{α− [α]2,2 + [α]2−α}, κ > 0, and c ∈R,
(i)

∫ +∞
−∞ δ pα,c,κ(t,x)dx = 1,

(ii) δ pα,c,κ(t,x) is real and it is not symmetric relatively to x when δ �= 0 and it is not
everywhere positive,

(iii) δ pα,c,κ(t,x)= κ−1/α
δ pα,κ−1/αc,1(t,κ−1/αx),

(iv) δ pα,c,κ(t,x)= δ pα,0,κ(t,x− ct),
(v) −δ pα,c,κ(t,x)= −δ pα,−c,κ(t,−x),

(vi) δ pα,0,κ(t,x)= t−1/α
δ pα,0,κ(1, t−1/αx), (scaling property),

(vii) δ pα,c,κ(t,x) satisfies the semigroup property, or the Chapman Kolmogorov equation,
that is, for 0 < s < t,

δ pα,c,κ(t+ s,x)=
∫ +∞

−∞
δ pα,c,κ(t,ξ)δ pα,c,κ(s,x− ξ)dξ, (3.6)

(viii) δ pα,c,κ(t,·)∈ S∞ = { f ∈ C∞ and (∂γ/∂xγ) f are bounded and tend to zero when |x|
tends to∞,∀γ ∈R+},

(ix) when 0 < α≤ 2 and α �= 1, δ pα,c,κ(1,x) is the density of a stable law given by (2.11),

(x) δ p
(l)
α,c,κ(1,x) = (1/π)

∑n
j=1 κ

(αj+l)/α|x− c|−αj−(l+1)((−1) j+l/ j!)Γ(αj + l + 1)sin j((α+

δ)/2)π + κ(α(n+1)+l)/αO(|x− c|−α(n+1)−(l+1)), when |x| is large, where δ p
(l)
α,c,κ(1,·) is

the derivative of order l of δ pα,c,κ(1,·),
(xi) limt→0 δ pα,c,κ(t,x)= δc(x).

Proof. It is easy to see (i)–(ix).
(x) It is sufficient to prove this property for the function δ pα,0,1(1,x) when x > 0. In

fact, using properties (iii), (iv), and (v), we get (x) for δ pα,c,κ(1,x), and using the repre-
sentation

δ p
(l)
α,c,κ(1,x)= 1

2π

∫ +∞

−∞
(−iλ)l exp

[− iλ(x− c)− κ|λ|αe−i(δπ/2)sgn(λ)]dλ, (3.7)

to which the same calculus also applies, we obtain the result for the derivatives. We are
interested in the case α > 2, for the case 0 < α≤ 2 this result can be deduced from [19, 32].
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The function δ pα,0,1(1,x) can be written as

δ pα,0,1(1,x)= 1
π
�
{∫ +∞

0
exp

[− iλx− λαe−i(δπ/2)]dλ
}
. (3.8)

Let 0 < r, R <∞, and let the curve Cδ : [r,R]∨{Reiδθ , 0≤ θ ≤ π/2α}∨{λei(δπ/2α), r ≤ λ≤
R}∗ ∨{reiδθ , 0≤ θ ≤ π/2α}∗, where [r,R] design the segment in the real axis between r
and R, the symbol∨means followed by and∗means that the curve is taken in the oppo-
site direction. By the Cauchy theorem, the integral of the function exp[−izx− zαe−i(δπ/2)]
over Cδ vanishes, further the integrals over the two arcs tend to zero when R tends to
infinity and r tends to zero, so

∫ +∞

0
exp

[− iλx− λαe−i(δπ/2)]dλ= ei(πδ/2α)
∫ +∞

0
exp

[− iλxei(πδ/2α)− λα]dλ. (3.9)

By integrating the function ei(πδ/2α) exp[−izxei(πδ/2α) − zα] over the curve C−1 when δ is
positive and over C1 when δ is negative, we get

δ pα,0,1(1,x)= 1
π
�
{∫ +∞

0
ei(π(δ−1)/2α) exp

[− λxei(π(α+δ−1)/2α)− λαe−i(π/2)]dλ
}
. (3.10)

Making the change of variable ξ = xλ, and then expending the exponential containing x
in Taylor series, we find

δ pα,0,1(1,x)= 1
πx
�
{
ei(π(δ−1)/2α)

∫ +∞

0
exp

[− ξei(π(α+δ−1)/2α)− x−αξαe−i(π/2)]dξ
}

= 1
πx
�
{
ei(π(δ−1)/2α)

n∑
j=0

(−1) j

j!
x−αjei( jπ/2)Eα,δ( j)

}

+
1
πx
�
{
ei(π(δ−1)/2α)θ

(−1)n+1

(n+ 1)!
x−α(n+1)ei((n+1)π/2)Eα,δ(n+ 1)

}
,

(3.11)

where Eα,δ( j) = ∫ +∞
0 exp[−ξei(π(α+δ−1)/2α)]ξαjdξ and |θ| < 1. By the same technique we

find Eα,δ( j) = exp[−i(π(α+ δ − 1) j/2)− i(π(α+ δ − 1)/2α)]Γ(αj + 1), j ∈ 1(n+ 1). Re-
placing in the formula above, we find the series in (x) for l = 0.

(xi) Let c = 0, using the properties (vi) and (x), we prove that δ pα,0,κ(t,x) tends to zero
when x �= 0 and tends to infinity when x = 0. The case c �= 0 is easily obtained thanks to
the property (iv). �

Proposition 3.2. For 0 < α < 2 and α �= 1, there exists a probability space (Ω,�,Pα) such
that the solution of (1.4) is represented by

uα(t,x)= E[ f (x+Xα(t) + ct
)]

, (3.12)
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where Xα = {Xα(t), t ≥ 0} is the canonical process on this space and which is α-stable Lévy
process totally skewed to the right (i.e., β = 1).

For α ∈ (2,+∞) | N, there exists a signed probability space (Ω,�−,P−α ) such that the
solution of (1.4) is represented by

uα(t,x)= E[ f (x+X−α (t) + ct
)]

, (3.13)

where X−α = {X−α (t), t ≥ 0} is the canonical pseudo stable Lévy process on this space.

Proof. We will use the same notation in the two cases.
Let Ω be the set {x : [0,+∞[→ R, x(t) is càdlàg and x(0)= 0} and � the algebra gen-

erated by the cylinder sets C = {x : ai ≤ x(ti) ≤ bi, i = 1,2, . . . ,n}, where t1 < ··· < tn are
fixed, and let the additive measure Pα be defined over C by

Pα(C)=
∫ b1

a1

∫ b2

a2

···
∫ bn

an

i=n∏
i=1

δ pα,0,κ
(
ti− ti−1,xi− xi−1

)
dxi, (3.14)

where t0 = 0 and x0 = 0.
For 0 < α < 2 and α �= 1, Pα can be extended to a positive measure denoted also by Pα,

over a σ-algebra �, further hα(t,λ) is definite positive, hα(t,0) = 1 and it is continuous,
so by Bochner theorem, Pα is a probability measure. We take {Xα(t), t ≥ 0} to be the
canonical process on probability space (Ω,�,Pα).

For α ∈ (2,+∞) | N, the function pα(t,x) is not everywhere positive; Lemma 3.1. In
this case, we consider the signed space (Ω,�,Pα), and the canonical pseudoprocess {Xα(t),
t ≥ 0} as it is defined in [13]. It is easy to see that

Pα
(
Xt1 < x1,Xt2 < x2, . . . ,Xtn < xn

)=
∫ x1

−∞

∫ x2

−∞
···

∫ xn

−∞

i=n∏
i=1

δ pα,0,κ
(
ti− ti−1,xi− xi−1

)
dxi,

(3.15)

and for 0≤ t0 < t1 < ··· < tn,

E

[
exp i

n∑
j=1

λj
(
Xα
(
t j
)−Xα(t j−1

))]=
n∏
j=1

E
[

exp iλj
(
Xα
(
t j
)−Xα(t j−1

))]
, (3.16)

hence Xα has independent stationary increments. To prove that Xα is stochastically con-
tinuous, it is sufficient to prove that Pα[|Xα| > ε]→ 0. This follows from property (xi) in
Lemma 3.1. The representations (3.12) and (3.13) rise from (3.4) and the property (iv)
of Lemma 3.1. �

The signed probability Pα and the pseudo stable Lévy process Xα have also the follow-
ing properties.

Corollary 3.3. (i) Pα has unbounded total variation on paths x(t),
(ii) Xα is a selfsimilar pseudoprocess,
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(iii) Xα is an infinitely divisible pseudoprocess and its spectral representation (generalized
Lévy Khinchine canonical formula) when δ = α− [α]2 or δ = α− [α]2− 2 is

hα(t,λ)= exp

[
Q
∫ +∞

0
exp

(
ixλ|λ|[α]2/(α−[α]2)− 1− ixλ|λ|[α]2/(α−[α]2)

1 + x2

)
1

|x|1+α−[α]2
dx

]
,

(3.17)

where Q is a real nonnegative number,
(iv) let f be a deterministic function, a formal integral of f with respect to the pseu-

doprocess Yα = {Yα(t) = Xα(t) + ct, t ≥ 0} is the pseudo stable Lévy process
∫ t

0 f (s)dYα ∼
Sα((

∫ t
0 | f (s)|αds)1/α,

∫ t
0 | f (s)|〈α〉ds/ ∫ t0 | f (s)|αds,c ∫ t0 f (sds)), where x〈α〉 = sgn(x)|x|α. This

definition is a formal extension of that given in [29] for stable processes.

4. Representation of the solution using probabilistic tools

In this section we take δ = α− [α]2 or δ = 2−α+ [α]2. First, we introduce certain func-
tions that generalize Airy function. These functions are more general than those given
in [6], and simpler and more general than those given in [31]. The functions in [31]
are given for integral exponents, k ∈N, and they are represented by integrals over k + 1
curves.

Lemma 4.1. Let β > 1 and n∈N be fixed. The function ψβ,n defined on R by

ψβ,n(x)= 1
π

∫ +∞

0
exp

(− i(xλ+ (−1)nλβ
))
dλ (4.1)

is well defined and it is infinitely differentiable. Further when β = 2m+ 1 and n=m+ 1, the
real part of this function,�{ψ2m+1,m+1(x)}, is solution of the equation

(2m+ 1)v(2m)− xv = 0, (4.2)

where v(2m) is the derivative of order 2m of the function v.

Proof. For fixed x, consider the analytic function

fβ,n(x,z)= exp
(− i(xz+ (−1)nzβ

))
, z ∈ C, (4.3)

with zβ is a branch of the multiform exponent function. Let the curve Cβ,n given by Cβ,n =
[r,R] ∨ {Rexp(i(−1)n+1θ), θ ∈ (0,π/2β)} ∨ {λexp(i((−1)n+1π/2β)), λ ∈ (r,R)}∗ ∨
{r exp(i(−1)n+1θ), θ ∈ (0,π/2β)}∗. By Cauchy theorem, we have

∮
Cβ,n

fβ,n(x,z)dz = 0. (4.4)
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On the other hand,

∮
Cβ,n

fβ,n(x,z)dz

=
∫ R

r
exp

(
i
(− xλ+ (−1)n+1λβ

))
dλ

+ i(−1)n+1
∫ π/2β

0
exp

(
− iRei(−1)n+1θx+ i(−1)n+1Rβei(−1)n+1βθ

)
Rei(−1)n+1θdθ

−
∫ R

r
exp

(
− ixλei(−1)n+1(π/2β)− λβ

)
ei(−1)n+1(π/2β)dλ

− i(−1)n+1
∫ π/2β

0
exp

(
− irei(−1)n+1θx+ i(−1)n+1rβei(−1)n+1βθ

)
rei(−1)n+1θdθ.

(4.5)

It is easy to see that the last integral tends to zero. Further,

∣∣IR∣∣=
∣∣∣∣
∫ π/2β

0
exp

(
i
(
− xRei(−1)n+1θ + (−1)n+1Rβei(−1)n+1βθ

))
iRe(i(−1)n+1θ)dθ

∣∣∣∣

≤ R
∫ π/2β

0
exp(−1)n+1xRsinθ−Rβ sinβθ

)
dθ.

(4.6)

For R > (2|x|)(β−1)−1
, we have

∣∣IR∣∣≤ R
∫ π/2

0
exp

[
− Rβ sinθ

2

]
dθ, (4.7)

hence IR −−−−→
R→+∞

0, consequently

∫ +∞

0
exp

(− i(xλ+ (−1)nλβ
))
dλ= ei(−1)n+1(π/2β)

∫∞
0

exp
(
− ixλei(−1)n+1(π/2β)− λβ

)
dλ.

(4.8)

The function kβ,n(x,λ) = ei(−1)n+1(π/2β) exp(−ixλei(−1)n+1(π/2β) − λβ) is absolutely inte-
grable with respect to λ because it is locally integrable and for λ > (2|x|)(β−1)−1

, |kβ,n ×
(x,λ)| = exp[(−1)n+1xλsin(π/2β)− λβ]≤ exp[−λβ/2].

Here and in the sequel, we consider the integral on the right-hand side of (4.8) in the
Lebesgue sense.

The function ψβ,n(x) is infinitely differentiable because, for all l ∈N,

∫ +∞

0
λl exp

[
(−1)n+1xλsin

π

2β
− λβ

]
dλ <∞, (4.9)
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and for a point x, let D > |x|, the function |(−iλei(−1)n+1(π/2β))lkβ,n(x,λ)| is lower bounded
by the integrable function g(λ) given by

g(λ)=

⎧⎪⎪⎨
⎪⎪⎩
λl exp

(
− λβ

2

)
, λ > (2D)(β−1)−1

,

λl supx∈]−D,D[

∣∣kβ,n(x,λ)
∣∣, λ≤ (2D)(β−1)−1

.
(4.10)

Furthermore

ψ(l)
β,n(x)= 1

π
e(iπ/2)((−1)n+1(l+1)/β−l)

∫ +∞

0
λl exp

[
− ixλexp

(
i
(−1)n+1π

2β

)
− λβ

]
dλ.

(4.11)

When β = 2m+ 1 and n=m+ 1, we have from (4.11)

�
{
ψ(2m)

2m+1,m+1(x)
}
= 1
π
�
{
i
∫ +∞

0
λ2m exp

[
− ixλexp

(
i

(−1)mπ
2(2m+ 1)

)
− λ2m+1

]
dλ

}
.

(4.12)

On the other hand, we have

x�{ψ2m+1,m+1(x)
}

= 1
π
�
{
ei((−1)mπ/2(2m+1))

∫ +∞

0
xexp

[
− ixλei((−1)mπ/2(2m+1))

]
exp

(− λ2m+1)dλ
}

= 1
π
�
{
i
∫ +∞

0
d
(

exp
[
− ixλei((−1)mπ/2(2m+1))

])
exp

(− λ2m+1)}.
(4.13)

Integrating by parts, we obtain

x�{ψ2m+1,m+1(x)
}

= 1
π
�
{
i+ i(2m+ 1)

∫ +∞

0
λ2m exp

[
− ixλei((−1)mπ/2(2m+1))

]
exp

(− λ2m+1)dλ
}

= (2m+ 1)�
{
ψ(2m)

2m+1,m+1(x)
}
.

(4.14)
�

Remark 4.2. For β = 3 and n = 2, ψ3,2(x) = (1/π)�∫ +∞
0 exp(−i(xλ + λ3))dλ is the Airy

function.

Remark 4.3. The particular case β = 2m+ 1 and n=m+ 1 has special interest in this work
as we will see below.

Theorem 4.4. Let α ∈ (2,+∞) | N such that its integer part is even ([α] = [α]2), then
there exists a probability space (Ω,�,P) and a stable subordinator {Xα−[α]2 (t), t ≥ 0} with
Xα−[α]2 (1)∼ Sα−[α]2 (1,1,0) such that the solution of (1.4) is represented by

uα(t,x)=
∫ +∞

−∞
f (ξ)pα(t,x− ξ)dξ, (4.15)
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where

pα(t,x)= E[Φ1
α

(
x− ct,Xα−[α]2 (t)

)]
, t > 0,

Φ1
α(x, y)= y−(α−[α]2)/αψα/(α−[α]2),1

(
xy−(α−[α]2)/α), y > 0,

(4.16)

with ψα/(α−[α]2),1 is given by (4.1).

Proof. First we consider the case c = 0. From (3.5), we have

pα(t,x)= 1
2π

∫ +∞

−∞
exp

[
− iλx−|λ|αt

(
1− isgn(λ)tan

(
α− [α]2

)
π

2

)]
dλ, (4.17)

then we can write

hα(t,λ)= hα−[α]2

(
t,λ|λ|[α]2/(α−[α]2)

)
= E

(
exp iλ|λ|[α]2/(α−[α]2)Xα−[α]2 (t)

)
, (4.18)

where hα−[α]2 (t,x) is the characteristic function of the (α− [α]2)-stable subordinator
Xα−[α]2 in time t; Proposition 3.2. The fundamental solution pα(t,x) can be given by

pα(t,x)= 1
2π

∫ +∞

−∞
e−ixλhα−[α]2

(
t,λ|λ|[α]2/(α−[α]2)

)
dλ

= 1
2π

∫ +∞

−∞
e−ixλ

(∫ +∞

0
exp

[
iλ|λ|[α]2/(α−[α]2)y

]
pα−[α]2 (t, y)dy

)
dλ

= 1
π
�
{∫ +∞

0
e−ixλ

(∫ +∞

0
exp

[
iλα/(α−[α]2)y

]
pα−[α]2 (t, y)dy

)
dλ
}

= lim
M→+∞

�
{∫ +∞

0

(
1
π

∫M

0
exp

[
− i

(
xλ− λα/(α−[α]2)y

)]
dλ
)
pα−[α]2 (t, y)dy

}

= lim
M→+∞

�
{∫ +∞

0
Φα,M(x, y)pα−[α]2 (t, y)dy

}
,

(4.19)

where M ∈ N and Φα,M(x, y) = (1/π)
∫M

0 exp[−i(xλ− λα/(α−[α]2)y)]dλ. It is clear that for
fixed y and x, the sequence of functions Φα,M(x, y) tends to the function Φ1

α(x, y) =
y−(α−[α]2)/αψα/(α−[α]2),1(xy−(α−[α]2)/α) when M tends to infinity, where the function
ψα/(α−[α]2),1 is given in Lemma 4.1. Further, we can apply Lebesgue theorem. In fact, using
(4.8), we obtain |Φα,M(x, y)| ≤ (1/π)

∫ +∞
0 exp[xλsin((α − [α]2)π/2α) − λα/(α−[α]2)y]dλ,

and by Fubini’s theorem, we get

1
π

∫ +∞

0
pα−[α]2 (t, y)

(∫ +∞

0
exp

[
xλsin

(
α− [α]2

)
π

2α
− λα/(α−[α]2)y

]
dλ

)
dy

≤ 1
π

∫ +∞

0

[
exp

(
xλsin

(
α− [α]2

)
π

2α

)(∫ +∞

0
exp

(
− yλα/(α−[α]2)

)
pα−[α]2 (t, y)dy

)]
dλ.

(4.20)
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But the second integral on the right-hand side of the above inequality is the Laplace trans-
form of the subordinatorXα−[α]2 (t) in time t, so it is equal to exp(−(cos((α− [α]2)π/2))−1

tλα) [29]. Hence
∫ +∞

0

∣∣Φα,M(x, y)
∣∣pα−[α]2 (t, y)dy

≤ 1
π

∫ +∞

0
exp

[
xλsin

(
α− [α]2

)
π

2α
−
(

cos

(
α− [α]2

)
π

2

)−1

tλα
]
dλ,

(4.21)

by the same technique as above, we can see that the integral on the right-hand side in this
last inequality is finite. Therefore

pα(t,x)=
∫ +∞

0
pα−[α]2 (t, y)�

{
1
π

∫ +∞

0
exp

[
− i

(
xλ− λα/(α−[α]2)y

)]
dλ
}
dy

=
∫ +∞

0
pα−[α]2 (t, y)

[
y−(α−[α]2)/αψα/(α−[α]2),1

(
xy−(α−[α]2)/α

)]
dy

= E[Φ1
α

(
x,Xα−[α]2 (t)

)]
.

(4.22)

When c �= 0, we use the property (iv), we find (4.16). �

Theorem 4.5. Let α = n+ 1/2 with n ∈N, then there exist a probability space (Ω,�,Pα)
and a stable Lévy motion {X1/2(t), t ≥ 0} with X1/2(1)∼ S1/2(1,1,0) defined on it such that
the solution of (1.4) is represented by

un+1/2(t,x)=
∫ +∞

−∞
f (ξ)pn+1/2(t,x− ξ)dξ, (4.23)

where

pn+1/2(t,x)= E[Φn+1/2
(
x− ct,X1/2(t)

)]
, t > 0,

Φn+1/2(x, y)= y−1/(2n+1)ψ2n+1,n+1
(
xy−1/(2n+1)), y > 0,

(4.24)

with ψ2n+1,n+1 is given by (4.1).

Proof. Thanks to property (iv) in Lemma 3.1, we can take without restriction c = 0.
When n= 0, we have

∂u

∂t
=−√2

∂1/2u

∂x1/2
, u(0,x)= f (x). (4.25)

By Proposition 3.2, there exist a probability space (Ω,�,Pα) and a Lévy motion X1/2 =
{X1/2(t), t ≥ 0} (X1/2(1)∼ S1/2(1,1,0)) such that

h1/2(t,λ)= Eexp
(
iλX1/2(t)

)
. (4.26)

It is known that the density of X1/2(t) is given by

p1/2(t,x)=
⎧⎪⎨
⎪⎩

t

2
√
π
x−3/2e−t2/4x, x > 0,

0, x ≤ 0.
(4.27)
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For n > 0 and similarly in the proof of Theorem 4.4, we regard hn+1/2(t,λ) as

hn+1/2(t,λ)= h1/2
(
t, (−1)nλ2n+1)= E(exp i(−1)nλ2n+1X1/2(t)

)
, (4.28)

where h1/2(t,x) is the characteristic function of the Lévy motion X1/2 = {X1/2(t), t ≥ 0}
in time t. The fundamental solution pα(t,x) is given by

pn+1/2(t,x)= 1
π
�
{∫ +∞

0
e−ixλ

(∫ +∞

0
exp

[
i(−1)nλ2n+1y

]
p1/2(t, y)dy

)
dλ
}

= lim
M→+∞

�
{∫ +∞

0

(
1
π

∫M

0
exp

[− i(xλ+ (−1)n+1λ2n+1y
)]
dλ
)
p1/2(t, y)dy

}

= lim
M→+∞

�
{∫ +∞

0
Φn,M(x, y)p1/2(t, y)dy

}
,

(4.29)

where Φn,M(x, y) = (1/π)
∫M

0 exp[−i(xλ + (−1)n+1λ2n+1y)]dλ. It is easy to see that, for
fixed x and y,Φn,M(x, y) tends toΦn(x, y)= y−1/(2n+1)ψ2n+1,n+1(xy−1/(2n+1)) whenM tends
to infinity, where ψ2n+1,n+1 is given in Lemma 4.1. Using the following estimation:

1
π

∫ +∞

0

[
exp

(
(−1)nxλsin

π

2(2n+ 1)

)(∫ +∞

0
exp

(− yλ2n+1)p1/2(t, y)dy
)]

dλ

≤ 1
π

∫ +∞

0
exp

[
(−1)nxλsin

π

2(2n+ 1)
−√2tλ(2n+1)/2

]
dλ,

(4.30)

and the same technique in Theorem 4.4, we get

pn+1/2(t,x)=
∫ +∞

0
p1/2(t, y)�

{
1
π

∫ +∞

0
exp

[− i(xλ+ (−1)n+1λ2n+1y
)]
dλ
}
dy

=
∫ +∞

0
p1/2(t, y)y−1/(2n+1)ψ2n+1,n+1

(
xy−1/(2n+1))dy

= E[Φn+1/2
(
x,X1/2(t)

)]
.

(4.31)

�

4.1. Some special cases. (i) For α= 3/2, we have

p3/2(t,x)= E
[(
X1/2(t)

)−1/3
Ai
(

(x− ct)(X1/2(t)
)−1/3

)]
. (4.32)

The function p3/2(1,x) is the density of the 3/2-stable law,
(ii) α= 5/2 and c = 0, we have

h5/2(t,λ)= exp
(− t|λ|5/2(1− isgnλ)

)= Eexp
(
iλ5X1/2(t)

)
,

p5/2(t,x)= E
[(
X1/2(t)

)−1/5
Φ5/2

(
x
(
X1/2(t)

)−1/5
)]
.

(4.33)

The function p5/2(t,x) can represent the probability density of escaping the island vicinity
after being in its neighborhood for a time t, in vortex medium [18].
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4.2. Some other PDEs connected with (1.4). In this subsection, we consider two equa-
tions connected with (1.4). The first one corresponds to the vectorial case (x ∈ Rm). In
the second one the variable x is real and we use a sum of fractional differential operators.

(1) Let us consider the equation

∂u

∂t
= κΔαu, t ≥ 0, x ∈ Rm,

u(0,x)= f (x),
(4.34)

where Δα = ∂α/∂xα1 + ∂α/∂xα2 + ···+ ∂α/∂xαm, and ∂α/∂xαi is given above. The solu-
tion is

uα(t,x)=
∫ +∞

−∞
···

∫ +∞

−∞
f (x+ ξ)Pα(t,ξ)dξ, (4.35)

where Pα(t,x) =∏m
j=1 pα(t,xj) and pα(t,xj) are given by (4.16) or (4.24) taking

c = 0.
(2) The second one is

∂u

∂t
=

r∑
k=0

κk
∂αku

∂xαk
, u(0,x)= f (x), (4.36)

where r ∈N , α= (α1,α2, . . . ,αr)∈ (R+/N)r , and κk depends on αk and it is given
as above. Then the solution uα1,α2,...,αr (t,x) is equal to f ∗ pα1 (t,x)∗ pα2 (t,x)∗
···∗ pαr (t,x), where pαi(t,x) are given by (4.16) or (4.24) taking c = 0.

Open question. The case [α] is odd and α− [α] �= 1/2 is still open. In this case, it is easy to
see that we can represent the characteristic function hα(t,λ) by the characteristic function
of a γ-stable law with 1 < γ < 2, however if we try to represent the density pα(t,x) by this
technique of subordination or by replacing pγ(t,x) by p1/γ(t,x) we encounter divergent
integrals.
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