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1. Introduction

A solution for a BSDE whose generator is f (t,ω, y,z) and terminal value ξ is a pair of
adapted processes (Yt,Zt)t≤T which satisfies

Yt = ξ +
∫ T
t
f
(
s,ω,Ys,Zs

)
ds−

∫ T
t
ZsdBs, t ≤ T. (1.1)

The adaptation is related to the natural filtration of the Brownian motion (Bt)t≤T .
In 1990, Pardoux and Peng introduced the notion of nonlinear backward stochastic

differential equation (BSDE), namely (1.1), and gave existence and uniqueness result in
their founder paper [26]. Since then the interest in BSDEs has kept growing steadily and
there have been several works on that subject. The main reason is that BSDEs are en-
countered in many fields of mathematics such as finance [6, 7, 31], stochastic games and
optimal control [4, 10–12, 14, 15], partial differential equations and homogeneization
[25, 27–29].

Further, other settings of BSDEs have been introduced. In [5], El-Karoui et al. consider
one-barrier reflected BSDEs, that is, the situation where the process Y of (1.1) is forced
to stay above a given barrier (Lt)t≤T . In (1.1), they add a nondecreasing continuous pro-
cess (Kt)t≤T which allows us to have Y ≥ L. Their motivations are linked, on the one
hand, to the pricing of American options and, on the other hand, to viscosity solutions
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of PDEs with an obstacle. This work has been generalized by Cvitanić and Karatzas [3]
who consider the problem where the process Y is now forced to stay between two com-
parable given barriers L and U (L≤U) (see (1.2) below). In (1.1), they add a difference
of nondecreasing processes K+−K− which maintain Y between L and U . Mainly, in [3],
the authors show the existence and uniqueness of a solution when f is Lipschitz and the
barriers are either regular (they are semimartingales) or satisfy Mokobodski’s condition
which, roughly speaking, means that between L and U there exists a difference of non-
negative supermartingales.

Another direction of research which has attracted many works is the weakness of con-
ditions under which the standard equation (1.1) has a solution. Among others, we can
quote [8, 19, 22, 23]. However in all of those papers, just the one-dimensional case is
considered since the results are heavily based on comparison theorem which works only
in that case. In [19], Kobylanski shows the existence of a solution for (1.1) when f is con-
tinuous with quadratic growth with respect to z, that is, | f (t,ω, y,z)| ≤ C(1 + |y|+ |z|2).

So in this paper we are dealing with BSDEs with two reflecting barriers L ≤ U and a
quadratic growth generator f . A solution for that equation is a quadruple of adapted pro-
cesses (Y ,Z,K+,K−) := (Yt,Zt,K+

t ,K−t )t≤T with values in R1+d+1+1 which mainly satisfies
the following:

K+ and K− are continuous nondecreasing processes,

−dYt = f
(
t,Yt,Zt

)
dt+dK+

t −dK−t −ZtdBt ∀t ≤ T , YT = ξ,

Lt ≤ Yt ≤Ut ∀t ≤ T ,
(
Yt −Lt

)
dK+

t =
(
Ut −Yt

)
dK−t = 0 ∀t ≤ T.

(1.2)

Under Mokobodski’s condition on the barriers, this equation has been considered by
Bahlali et al. in [1]. They show the existence of a solution. However the trouble is that
Mokobodski’s condition is not easy to check in practice. Therefore the main goal of this
paper is to give conditions on the barriers L and U , as general as possible (we could say
minimal) which are easy to verify in practice under which the BSDE (1.2) has a solution
when f is of quadratic growth in z. We mainly show that it is enough to have the barriers
completely separated, that is, for any t ≤ T , Lt < Ut. In addition the solution we have
constructed is maximal.

BSDEs with quadratic growth coefficients and just one reflecting barrier have been
considered in [20].

This paper is organized as follows. In Section 2, we recall some results related to BSDEs
whose generators are continuous with linear growth. We give comparison results which
play a crucial role in the proof of the main theorem. Section 3 is devoted to the proof of
the main result. As in the nonreflected case, we use an exponential transform in order to
obtain a BDSE whose generator satisfies a structure condition. Afterwards we show that
this BSDE has a solution. Finally we obtain a solution for the initial equation by using a
logarithmic transform. In addition it is maximal. The main difficulty stems from the lack
of integrability of the processes. It is overcome by using a Cantor diagonal procedure.
In Section 4, we use the results of Section 3 in order to solve the risk-sensitive zero-sum
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mixed stochastic differential game. Briefly the game problem which we consider is as
follows.

Assume we have a system S on which two agents c1 and c2 intervene. The interven-
tions of the agents have two forms, control and stopping, that is, they control S up to
the time when one of them decides to stop controlling. Their actions are not free and
their advantages are antagonistic, that is, there exits a payoff J , which depends on the im-
plemented strategies, which is a reward for c2 and a cost for c1. On the other hand, the
expression of J integrates sensitiveness with respect to risk of the agents, either they are
risk-seeking or risk-averse, by the mean of an exponential utility function. Our objective
is to show existence of a fair strategy, to be precise a saddle-point, for the game and to
characterize it.

We show that with this zero-sum game problem, a BSDE with two reflecting barriers of
the type studied in Section 3 is associated. This BSDE gives the value function of the game
and allows us to construct a saddle-point. Finally, we deal with an example for which we
give a numerical result.

In Section 5, we deal with the yield of an American game or recallable option under
Knightian uncertainty and exponential utility function. We characterize the lower (resp.,
upper) yield by means of BSDEs with quadratic growth coefficient and we study an ex-
ample for which we give also a numerical result.

2. Preliminaries

Throughout this paper (Ω,�,P) is a fixed probability space in which is defined a standard
d-dimensional Brownian motion B = (Bt)t≤T whose natural filtration is (F0

t := σ{Bs, s≤
t})t≤T ; (Ft)t≤T is the completed filtration of (F0

t )t≤T with the P-null sets of �, hence
(Ft)t≤T satisfies the usual conditions, that is, it is right continuous and complete. On the
other hand, let

(i) � be the σ-algebra on [0,T]×Ω of Ft-progressively measurable sets;
(ii) � the set of stopping times;

(iii) �2,k the set of �-measurable and Rk-valued processes v = (vt)t≤T such that∫ T
0 |vs|2ds <∞, P- a.s.;

(iv) for any stopping time τ, �2,k
τ the set of �-measurable processes (wt)t≤T with

values in Rk and such that E[
∫ τ

0 |ws|2ds] <∞; �2,k
T will be simply denoted �2,k;

(v) �2 the set of �-measurable and continuous processes Y = (Yt)t≤T such that
E[supt≤T |Yt|2] is finite;

(vi) � the set of continuous �-measurable nondecreasing processes (Kt)t≤T such
that K0 = 0 and KT <∞, P- a.s.

Now we are given four objects:
(i) a function f : [0,T]×Ω×R1+d →R such that for any (y,z)∈R1+d, the process

( f (t, y,z))t≤T is �-measurable and ( f (t,ω,0,0))t≤T belongs to �2,1;
(ii) a terminal value ξ which is a random variable FT-measurable and E[|ξ|2] <∞;

(iii) two processes U := (Ut)t≤T and L := (Lt)t≤T which belong to �2 and satisfy Lt <
Ut, for all t ≤ T , and LT ≤ ξ ≤UT .

A solution for the two reflecting barriers BSDE associated with ( f ,ξ,L,U) is a quadru-
ple of �-measurable processes (Y ,Z,K+,K−) :=(Yt,Zt,K+

t ,K−t )t≤T with values inR1+d+1+1
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such that

Y ∈�2, Z ∈�2,d, K+,K− ∈�,

Yt = ξ +
∫ T
t
f
(
s,Ys,Zs

)
ds+

(
K+
T −K−t

)− (K−T −K−t )−
∫ T
t
ZsdBs ∀t ≤ T ,

Lt ≤ Yt ≤Ut ∀t ≤ T ,
∫ T

0

(
Ys−Ls

)
dK+

s =
∫ T

0

(
Us−Ys

)
dK−s = 0.

(2.1)

Let us point out that in our setting, contrary to those of some other works on the
same subject (see, e.g., [1, 3, 13]), we require neither that Z ∈�2,d nor K± ∈ �2. The
main reason is that in many applications where those equations rise up, such as stochastic
games or mathematical finance, we do not need such properties for Z and K±. Therefore
we have adopted our setting which is less narrow than the ones of the works quoted above.

Now let us recall some known results for BSDEs whose generators f are continuous
with respect to (y,z) and which grow sublinearly, that is,

(A1) f is continuous with respect to (y,z) and there exists a constant C such that

P- a.s.,
∣∣ f (t,w, y,z)

∣∣≤ C(1 + |y|+ |z|) for any (t, y,z)∈ [0,T]×R1+d. (2.2)

We have the following result.

Theorem 2.1 [9]. Assume that (A1) holds. Then the double-barrier reflected BSDE asso-
ciated with ( f ,ξ,L,U) has a maximal solution, that is, there exists a quadruple (Yt,Zt,K+

t ,
K−t )t≤T which satisfies (2.1). In addition if (Y ′t ,Z′t ,K ′t +,K ′t −) is another solution of (2.1),
then P-a.s. holds for all t ≤ T , Yt ≥ Y ′t .

Let f ′ be another function which satisfies (A1) and such that ( f ′(t, y,z))t≤T is �-
measurable for any (y,z)∈R1+d. If we can compare f and f ′, then we can compare the
maximal solutions of the double-barrier reflected BSDEs associated with ( f ,ξ,L,U) and
( f ′,ξ,L,U), respectively. Namely we have the following result.

Proposition 2.2 [1, 9]. Assume that P-a.s. f (t,w, y,z)≤ f ′(t,w, y,z), for any t, y, and z.
Let (Yt,Zt,K+

t ,K−t )t≤T (resp., (Y ′t ,Z′t ,K ′t +,K ′−t )t≤T) be the maximal solution of the double-
reflected barrier BSDE associated with ( f ,ξ,L,U) (resp., ( f ′,ξ′,L′,U ′)), then P- a.s., Y ≤
Y ′. In addition if L≡ L′ and U ≡U ′, then also K+ ≥ K ′+ and K− ≤ K ′−, P- a.s.

In Theorem 2.1 above we already have K±T <∞P- a.s., but we do not know whether
E[K±T ] is finite or not. However there is some kind of local integrability for K± and Z.
Actually we have the following.

Proposition 2.3 [9]. There exists an increasing sequence of stopping times (γk)k≥0 such
that

(i) P- a.s., the sequence is stationary and converges to T ;
(ii) the sequence depends only on L,U , and the constant C quoted in (A1);

(iii) for all k ≥ 0,

E
[
K+
γk

2 +K−γk
2 +
∫ γk

0

∣∣Zs2∣∣ds
]
<∞. (2.3)
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3. Double-barrier reflected BSDE with quadratic growth generator

From now on, we assume that U , L, and ξ are bounded, that is, there exists a constant
C′ ≥ 0 such that

P-a.s. ∀t ≤ T , |ξ|+ sup
t≤T

{∣∣Ut

∣∣+
∣∣Lt∣∣}≤ C′. (3.1)

On the other hand we assume that f is continuous and grows subquadratically with re-
spect to z, that is, it satisfies

(A2) f is continuous and there exists a constant C ≥ 0 such that

P-a.s.,
∣∣ f (t, y,z)

∣∣≤ C(1 + |z|2) for any (t, y,z)∈ [0,T]×R1+d. (3.2)

3.1. Existence of a solution. Our aim in this section is to prove the existence of a solution
for the double-barrier reflected BSDE associated with ( f ,ξ,L,U) under assumption (A2),
that is, there exists a quadruple (Yt,Zt,K+

t ,K−t )t≤T which satisfies

Y ∈�2, Z ∈�2,d, K+,K− ∈�,

Yt = ξ +
∫ T
t
f
(
s,Ys,Zs

)
ds+

(
K+
T −K+

t

)− (K−T −K−t )−
∫ T
t
ZsdBs ∀t ≤ T ,

Lt ≤ Yt ≤Ut ∀t ≤ T ,
∫ T

0

(
Ys−Ls

)
dK+

s =
∫ T

0

(
Us−Ys

)
dK−s = 0.

(3.3)

To do so we are going first to show the existence of a solution for the reflected BSDE as-
sociated with data obtained by an exponential transform of ( f ,ξ,L,U). More precisely let
us set m0 = essinf t,w Lt(w), M0 = esssupt,ωUt(ω), m = exp(2Cm0), and M = exp(2CM0)
where C is the constant of (A2). Now for (t, y,z)∈ [0,T]× [m,∞[×Rd, let us set

F(t,w, y,z)= 2Cy

[
f

(
t,w,

ln y
2C

,
z

2Cy

)
−
∣∣z2
∣∣

4Cy2

]
. (3.4)

Then from (A2), the function F satisfies the following structure condition:
(A3) there exists a positive constant α≥ C such that

P-a.s.− 2α2y−α|z|2 ≤ F(t,w, y,z)≤ 2C2y ∀(t, y,z)∈ [0,T]× [m,∞[×Rd. (3.5)

Now to begin with we will prove that the BSDE associated with (F, exp(2Cξ),exp(2CL),
exp(2CU)) has a solution. So let us set η = exp(2Cξ), L′ = exp(2CL), andU ′ = exp(2CU).
Then we have the following result.

Theorem 3.1. The double-barrier reflected BSDE associated with (F,η,L′,U ′)

Y ∈�2, Z ∈�2,d, K+,K− ∈�,

Yt = η+
∫ T
t
F
(
s,Ys,Zs

)
ds+

(
K+
T −K+

t

)− (K−T −K−t )−
∫ T
t
ZsdBs ∀t ≤ T ,

L′t ≤ Yt ≤U ′
t ∀t ≤ T ,

∫ T
0

(
Ys−L′s

)
dK+

s =
∫ T

0

(
U ′
s −Ys

)
dK−s = 0

(3.6)

has a maximal solution (Yt,Zt,K+
t ,K−t )t≤T .
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Proof. Let ρ be the function from R into R such that for any y ∈ R, ρ(y) =m1[y<m] +
y1[m≤y≤M] +M1[y>M], where m and M are the constants previously defined. On the other
hand, let kp be a smooth function from Rd into R+ such that

0≤ kp ≤ 1, kp(z)= 1 if |z| ≤ p, kp(z)= 0 if |z| ≥ p+ 1. (3.7)

Now let F̃ be the function defined by F̃(t,ω, y,z) = F(t,ω,ρ(y),z) for any (t, y,z) ∈ [0,
T]×R1+d. We are going to show that the following reflected BSDE:

Y ∈�2, Z ∈�2,d, K+,K− ∈�,

Yt = η+
∫ T
t
F̃
(
s,Ys,Zs

)
ds+

(
K+
T −K+

t

)− (K−T −K−t )−
∫ T
t
ZsdBs ∀t ≤ T ,

L′t ≤ Yt ≤U ′
t ∀t ≤ T ,

∫ T
0

(
Ys−L′s

)
dK+

s =
∫ T

0

(
U ′
s −Ys

)
dK−s = 0

(3.8)

has a maximal solution (Yt,Zt,K+
t ,K−t )t≤T . Therefore it holds true that m ≤ Y ≤M and

then (Yt,Zt,K+
t ,K−t )t≥T is obviously a maximal solution for (3.6).

So for p ≥ 0 let us set F̃ p(t,ω, y,z)= 2C2ρ(y)(1− kp(z)) + kp(z)F̃(t,ω, y,z) for any t, y,

and z. Therefore it is easily seen that F̃ p is continuous and bounded. In addition through
(3.5) and the definition of kp, the sequence (F̃ p)p≥0 is decreasing and limp→∞ F̃ p = F̃.

Now for p ≥ 0 let (Y
p
t ,Z

p
t ,K

p
t

+,K
p
t
−)t≤T be the maximal solution of the double-barrier

reflected BSDE associated with (F̃ p,η,L′,U ′) which exists according to Theorem 2.1.
Then we have

Y p ∈�2, Zp ∈�2,d, Kp+,Kp− ∈�,

Y
p
t = η+

∫ T
t
F̃ p
(
s,Y

p
s ,Z

p
s
)
ds+

(
K
p+
T −Kp+

t

)− (Kp−
T −Kp−

t

)−
∫ T
t
Z
p
s dBs ∀t ≤ T ,

L′t ≤ Y p
t ≤U ′

t ∀t ≤ T ,
∫ T

0

(
Y
p
s −L′s

)
dK

p+
s =

∫ T
0

(
U ′
s −Y p

s
)
dK

p−
s = 0.

(3.9)

As F̃ p ≥ F̃ p+1, then according to the comparison result of Proposition 2.2 we have Y p ≥
Y p+1,Kp+ ≤ Kp+1+, andKp− ≥ Kp+1−. On the other hand since L′t ≤ Y p

t ≤U ′
t and through

the boundedness of L′,U ′, there exits an upper semicontinuous process (Yt)t≤T such that
P-a.s., for all t ≤ T , Yt = limp→∞Y

p
t . In addition the sequence (Y p)p≥0 converges in �2,1

to (Yt)t≤T .
Now let (Y 0

t ,Z0
t ,K0

t
+,K0

t
−)t≤T be the maximal solution of the reflected BSDE associ-

ated with (F̃0,η,L′,U ′), then we have Kp− ≤ K0−P-a.s. In addition, since F̃0 is contin-
uous and bounded, then there exists a nondecreasing stationary sequence of stopping
times (γk)k≥0, depending only on L′,U ′, and the constant C of boundedness of F̃0 and
converging to T , such that

E
[(
K0+
γk

)2
+
(
K0−
γk

)2
+
∫ γk

0

∣∣Z0
s

∣∣2
ds
]
<∞ ∀k ≥ 0. (3.10)

The rest of the proof will be divided into five steps.
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Step 1. For any p ≥ 0 and k ≥ 0, there exists a constant Ck which depends only on k such
that

E
[
K
p+
γk +K

p−
γk +

∫ γk
0

∣∣Zp
s
∣∣2
ds
]
< Ck. (3.11)

Actually the sequence (Kp−)p≥0 is decreasing then Kp− ≤ K0− and E[K
p−
γk ]≤ E[K0−

γk ].
Now let us prove that there exists a constant Kk which may depend on k such that

E
[∫ γk

0

∣∣Zp
s
∣∣2
ds
]
≤ Kk ∀p ≥ 0. (3.12)

For any t ≤ T , we have

Y
p
t∧γk = Y p

0 −
∫ t∧γk

0
F̃ p
(
s,Y

p
s ,Z

p
s
)
ds−Kp+

t∧γk +K
p−
t∧γk +

∫ t∧γk
0

Z
p
s dBs. (3.13)

Let ψ(x)= exp(−3αx) where α is the constant of (3.5). Using Itô’s formula with ψ(Y
p
t∧γk )

and taking t = T we obtain

ψ
(
Y
p
γk

)= ψ(Y p
0

)−
∫ γk

0
ψ′
(
Y
p
s
)
F̃ p
(
s,Y

p
s ,Zp

s
)
ds−

∫ γk
0
ψ′
(
Y
p
s
)
dK

p+
s

+
∫ γk

0
ψ′
(
Y
p
s
)
dK

p−
s +

∫ γk
0
ψ′
(
Ys

p)Zp
s dBs +

1
2

∫ γk
0
ψ′′
(
Y
p
s
)∣∣Zp

s
∣∣2
ds.

(3.14)

But ψ′ < 0 and then
∫ γk

0 ψ′(Ysp)dKs
p+ ≤ 0. In addition, we have −E[

∫ γk
0 ψ′(Ysp)dKs

p−]≤
M1E[K

p
γk
−

], where M1 = supm≤x≤M |ψ′(x)|. Now by taking expectations in both hand-
sides of (3.14) we obtain (at least after using a localization argument and Fatou’s lemma)

1
2
E
[∫ γk

0
ψ′′
(
Y
p
s
)∣∣Zp

s
∣∣2
ds
]
≤ E[ψ(Y p

γk

)]
+E
[∫ γk

0
ψ′
(
Y
p
s
)
F̃ p
(
s,Y

p
s ,Z

p
s
)
ds
]

+M1E
[
K
p−
γk

]
(3.15)

since ψ ≥ 0. Now let A= 2α2M. Using the facts that F̃ satisfies (A3), F̃ ≤ F̃ p for all p ≥ 0,
and that ψ′ ≤ 0 yields

1
2
E
[∫ γk

0
ψ′′
(
Y
p
s
)∣∣Zp

s
∣∣2
ds
]
≤ E[ψ(Y p

γk

)]−E
[∫ γk

0
ψ′
(
Y
p
s
){
A+α

∣∣Zp
s
∣∣2
}
ds
]

+M1E
[
K
p−
γk

]
.

(3.16)
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Therefore

E
[∫ γk

0

[
1
2
ψ′′
(
Y
p
s
)

+αψ′
(
Y
p
s
)]∣∣Zp

s
∣∣2
ds
]

≤ E[ψ(Y p
γk

)]−AE
[∫ γk

0
ψ′
(
Y
p
s
)
ds
]

+M1E
[
K
p−
γk

]
.

(3.17)

Now since ψ is decreasing, m≤ Y p ≤M, (1/2)ψ′′ + αψ′ = (3/2)α2ψ, and Kp− ≤ K0− for
all p ≥ 0, we get

3
2
α2ψ(M)E

[∫ γk
0

∣∣Zp
s
∣∣2
ds
]
≤ ψ(m) +M1

(
AE[γk

]
+E
[
K0−
γk

])
(3.18)

and then

3
2
α2 exp(−3αM)E

[∫ γk
0

∣∣Zp
s
∣∣2
ds
]
≤ exp(−3αm) +M1

(
AT +E

[
K0−
γk

])
. (3.19)

Henceforth there exists a constant Kk which depends on k such that

∀p ≥ 0, E
[∫ γk

0

∣∣Zp
s
∣∣2
ds
]
≤ Kk. (3.20)

Thus, it remains to show that E[K
p+
γk ] <∞. But using Itô’s formula with exp(Y

p
t∧γk ) and

taking t = T , we obtain that for all k, p ≥ 0,

exp
(
Y
p
γk

)= exp
(
Y
p
0

)−
∫ γk

0
exp

(
Y
p
s
)
F̃ p
(
s,Y

p
s ,Z

p
s
)
ds−

∫ γk
0

exp
(
Y
p
s
)
dK

p+
s

+
∫ γk

0
exp

(
Y
p
s
)
dK

p−
s +

∫ γk
0

exp
(
Y
p
s
)
Z
p
s dBs +

1
2

∫ γk
0

exp
(
Y
p
s
)∣∣Zp

s
∣∣2
ds.

(3.21)

Now taking expectations in both hand-sides, we obtain

E
[

exp
(
Y
p
γk

)]
+E
[∫ γk

0
exp

(
Y
p
s
)
dK

p+
s

]

= E[exp
(
Y
p
0

)]−E
[∫ γk

0
exp

(
Y
p
s
)
F̃ p
(
s,Y

p
s ,Z

p
s
)
ds
]

+E
[∫ γk

0
exp

(
Y
p
s
)
dK

p−
s

]
+

1
2
E
[∫ γk

0
exp

(
Y
p
s
)∣∣Zp

s
∣∣2
ds
]
.

(3.22)
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But since−F̃ p(s,Y
p
s ,Z

p
s )≤−F̃(s,Y

p
s ,Z

p
s )≤ 2α2ρ(Y

p
s ) +α|Zp

s |2 for all s≤ T ,m≤ Y p ≤M,
and γk ≤ T , we get

exp(m)E
[
K
p+
γk

]≤ exp(M)
{

1 + 2α2MT +E
[
K
p−
γk

]
+ (1 +α)E

[∫ γk
0

∣∣Zp
s
∣∣2
]
ds
}
. (3.23)

Finally taking into account (3.12), we obtain the desired result.

The following step is the main one in the proof of this theorem.

Step 2. There exists a subsequence of (Zp)p≥0 and a process Z ∈�2,d such that for any
k ≥ 0, (Zp1[0,γk])p≥0 converges strongly in �2,d to Z1[0,γk].

Indeed for any k ≥ 0, the sequence (Zp1[0,γk])p≥0 is bounded in �2,d then, through the
Cantor diagonal procedure, there exists a subsequence of (Zp)p≥0 which we still denote
(Zp)p≥0 such that for any k ≥ 0, the sequence (Zp1[0,γk])p≥0 converges weakly to a process
Z(k) which belongs to �2,d. So let us show that Z(k+1)1[0,γk] = Z(k)1[0,γk]. Actually we have

Zp1[0,γk+1] −→ Z(k+1) as p −→∞. (3.24)

But we have also

Zp1[0,γk] = Zp1[0,γk+1]1[0,γk] −→ Z(k+1)1[0,γk] as p −→∞. (3.25)

Then uniqueness of the weak limit implies that

Z(k+1)1[0,γk] = Z(k)1[0,γk]. (3.26)

Now for any t ≤ T , let us set

Zt = Z(0)
t 1[0,γ0] +

∑
k≥1

Z(k)
t 1]γk−1,γk]. (3.27)

Since the sequence (γk)k≥0 is of stationary type and for any k ≥ 0, E[
∫ γk

0 |Zs|2ds] <∞,

then
∫ T

0 |Zs|2ds <∞P- a.s. On the other hand for any k ≥ 0, Z1[0,γk] = Z(k)1[0,γk], then
(Zp1[0,γk])p≥0 converges weakly to Z1[0,γk] in �2,d.

Next let θ = 8(2(C2 + α2)M + α) and ψ(x) = (exp(4θx)− 1)/4θ− x. Let p < q be two
positive integers, then Y p ≥ Yq. Now by applying Itô’s formula and taking expectations
we obtain

E
[
ψ
(
Y
p
0 −Yq

0

)]
+

1
2
E
[∫ γk

0
ψ′′
(
Y
p
s −Yq

s
)∣∣Zp

s −Zqs
∣∣2
ds
]

= E[ψ(Y p
γk −Yq

γk

)
] + J1(p,q) + J2(p,q) + J3(p,q),

(3.28)
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where

J1(p,q)= E
[∫ γk

0
ψ′
(
Y
p
s −Yq

s
)(
F̃ p
(
s,Y

p
s ,Z

p
s
)− F̃q(s,Yq

s ,Z
q
s
))
ds
]

,

J2(p,q)= E
[∫ γk

0
ψ′
(
Y
p
s −Yq

s
)
d
(
K
p+
s −Kq+

s
)]

,

J3(p,q)=−E
[∫ γk

0
ψ′
(
Y
p
s −Yq

s
)
d
(
K
p−
s −Kq−

s
)]
.

(3.29)

Since Kp+ (resp., Kq+) moves only when Y p (resp., Yq) reaches the obstacle L′, then

J2(p,q)= E
[∫ γk

0
ψ′
(
Y
p
s −Yq

s
)
1{Y p

s =L′s}dK
p+
s

]
−E
[∫ γk

0
ψ′
(
Y
p
s −Yq

s
)
1{Yq

s =L′s}dK
q+
s

]
.

(3.30)

However Yq ≤ Y p implies that {Y p = L′} ⊂ {Yq = L′} and therefore, since ψ′(0)= 0,

J2 ≤−E
[∫ γk

0
ψ′
(
Y
p
s −Yq

s
)
1{Yq

s =L′s}dK
q+
s

]
. (3.31)

But ψ′(x)≥ 0 for any x ≥ 0, then J2(p,q)≤ 0. In the same way we can show that J3(p,q)≤
0. Finally let us deal with J1(p,q). First we have

F̃ p
(
s,Y

p
s ,Z

p
s
)− F̃q(s,Yq

s ,Z
q
s
)

≤ F̃ p(s,Y p
s ,Z

p
s
)− F̃(s,Yq

s ,Z
q
s
)

= 2C2ρ
(
Y p
)(

1− kp
(
Zp
))

+ kp
(
Zp
)
F̃
(
s,Y

p
s ,Z

p
s
)− F̃(s,Yq

s ,Z
q
s
)

≤ 2C2ρ
(
Y
p
s
)(

1− kp
(
Z
p
s
))

+ kp
(
Z
p
s
)
F̃
(
s,Y

p
s ,Z

p
s
)

+ 2α2ρ
(
Y
q
s
)

+α
∣∣Zqs ∣∣2

≤ 2C2ρ(Y
p
s ) + 2α2ρ(Y

q
s ) +α

∣∣Zqs ∣∣2

≤ θ

8

(
1 +
∣∣Zqs ∣∣2)≤ θ(1 +

∣∣Zqs −Zp
s
∣∣2

+
∣∣Zp

s −Zs
∣∣2

+
∣∣Zs∣∣2

)
.

(3.32)

The third inequality stems from (3.5). Now since ψ′(Y p
s −Yq

s )≥ 0 and ψ(Y
p
0 −Yq

0 )≥ 0,
then

E
[∫ γk

0

{(
1
2
ψ′′ − θψ′

)(
Y
p
s −Yq

s
)}∣∣Zp

s −Zqs
∣∣2
ds
]
≤ E[ψ(Y p

γk −Yq
γk

)]

+ θE
[∫ γk

0
ψ′
(
Y
p
s −Yq

s
)
ds
]

+ θE
[∫ γk

0
ψ′
(
Y
p
s −Yq

s
){∣∣Zp

s −Zs
∣∣2

+
∣∣Zs∣∣2

}
ds
]
.

(3.33)

But we have

1
2
ψ′′(x)− θψ′(x)= θ exp(4θx) + θ. (3.34)
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Then the bounded process ((1/2)ψ′′−θψ′)1/2(Y p−Yq)1[0,γk] converges, as q→∞, strongly
in �2,1 to the process {((1/2)ψ′′ − θψ′)1/2(Y p−Y)}1[0,γk]. Hence {((1/2)ψ′′ − θψ′)1/2 ×
(Y p − Yq)}(Zp − Zq)1[0,γk] converges weakly, as q → ∞, to {((1/2)ψ′′ − θψ′)1/2(Y p

−Y)}(Zp−Z)1[0,γk]. Now since for any sequence (un)n≥0 of �2,1 which converges weakly
to u we have ‖u‖2 ≤ liminfn→∞‖un‖2, then we obtain

E
[∫ γk

0

{(
1
2
ψ′′ − θψ′

)(
Y
p
s −Ys

)}∣∣Zp
s −Zs

∣∣2
ds
]

≤ liminf
q→∞ E

[∫ γk
0

{(
1
2
ψ′′ − θψ′

)(
Y
p
s −Yq

s
)}∣∣Zp

s −Zqs
∣∣2
ds
]

≤ E[ψ(Y p
γk −Yγk

)]
+ θE

[∫ γk
0
ψ′
(
Y
p
s −Ys

)
ds
]

+ θE
[∫ γk

0

{
ψ′
(
Y
p
s −Ys

)}{∣∣Zp
s −Zs

∣∣2
+
∣∣Zs∣∣2

}
ds
]
.

(3.35)

Therefore

E
[∫ γk

0

{(
1
2
ψ′′ − 2θψ′

)(
Y
p
s −Ys

)}∣∣Zp
s −Zs

∣∣2
ds
]

≤ E[ψ(Y p
γk −Yγk

)]
+ θE

[∫ γk
0
ψ′
(
Y
p
s −Ys

)(
1 +
∣∣Zs∣∣2

)
ds
]
.

(3.36)

Finally using the Lebesgue-dominated convergence theorem and the equality (1/2)ψ′′ −
2θψ′ = 2θ we deduce that

lim
p→∞E

[∫ γk
0

∣∣Zp
s −Zs

∣∣2
ds
]
= 0. (3.37)

Step 3. The process Y is continuous.
Let k be fixed and let p,q ∈N such that p < q. For any t ≤ T we have

Y
p
t∧γk −Yq

t∧γk = Y p
γk −Yq

γk +
∫ γk
t∧γk

[
F̃ p
(
s,Y

p
s ,Z

p
s
)− F̃q(s,Yq

s ,Z
q
s
)]
ds+

∫ γk
t∧γk

(
dK

p+
s −dKq+

s
)

−
∫ γk
t∧γk

(
dK

p−
s −dKq−

s
)−
∫ γk
t∧γk

(
Z
p
s −Zqs )dBs.

(3.38)

Using Itô’s formula with (Y p−Yq)2 yields that for any t ≤ T ,

(
Y
p
t∧γk −Yq

t∧γk
)2 = (Y p

γk −Yq
γk

)2
+ 2
∫ γk
t∧γk

(
Y
p
s −Yq

s
)[
F̃ p
(
s,Y

p
s ,Z

p
s
)− F̃q(s,Yq

s ,Z
q
s
)]
ds

+ 2
∫ γk
t∧γk

(
Y
p
s −Yq

s
)(
dK

p+
s −dKq+

s
)− 2

∫ γk
t∧γk

(
Y
p
s −Yq

s
)(
dK

p−
s −dKq−

s
)

−
∫ γk
t∧γk

(
Y
p
s −Yq

s
)(
Z
p
s −Zqs )dBs−

∫ γk
t∧γk

∣∣Zp
s −Zqs

∣∣2
ds.

(3.39)
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But
∫ γk
t∧γk

(
Y
p
s −Yq

s
)(
dK

p+
s −dKq+

s
)−
∫ γk
t∧γk

(
Y
p
s −Yq

s
)(
dK

p−
s −dKq−

s
)

=−
∫ γk
t∧γk

(
Y
p
s −L′s

)
dK

q+
s +

∫ γk
t∧γk

(
L′s −Yq

s
)
dK

p+
s

−
∫ γk
t∧γk

(
U ′
s −Yq

s
)
dK

p−
s +

∫ γk
t∧γk

(
Y
p
s −U ′

s

)
dK

q−
s ≤ 0.

(3.40)

Then

(
Y
p
t∧γk −Yq

t∧γk
)2

+
∫ γk
t∧γk

∣∣Zp
s −Zqs

∣∣2
ds

≤ (Y p
γk −Yq

γk

)2−
∫ γk
t∧γk

(
Y
p
s −Yq

s
)(
Z
p
s −Zqs )dBs

+ 2
∫ γk
t∧γk

(
Y
p
s −Yq

s
)∣∣F̃ p(s,Y p

s ,Z
p
s
)− F̃q(s,Yq

s ,Z
q
s
)∣∣ds.

(3.41)

Now by taking the supremum, then expectations in both hand-sides finally using the
Burkholder-Davis-Gundy inequality, we obtain

E

[
sup
t≤γk

(
Y
p
t −Yq

t

)2
]
≤ δ
{
E
[(
Y
p
γk −Yq

γk

)2]
+E
[∫ γk

0

∣∣Zp
s −Zqs

∣∣2
ds
]

+E
[∫ γk

0

(
Y
p
s −Yq

s
)∣∣F̃ p(s,Y p

s ,Z
p
s
)− F̃q(s,Yq

s ,Z
q
s
)∣∣ds

]}
,

(3.42)

where δ is an appropriate real constant. Now the sequence (Zp1[0,γk])p≥0 converges to
Z1[0,γk] in �2,d, then there exists a subsequence of (Zp1[0,γk])p≥0 which we still denote
(Zp1[0,γk])p≥0 such that

dt⊗dP− a.s., Zp1[0,γk] −→p→∞ Z1[0,γk], Z̃(k)
t = sup

p≥0

∣∣Zp1[0,γk]
∣∣2 ∈�2,1.

(3.43)

The subsequence could depend on k but this fact is irrelevant since we work at fixed k.
On the other hand, there exists a constant λ̄ > 0 such that

∣∣F̃ p(t,Y p
t ,Z

p
t

)∣∣1[0,γk] ≤ λ̄
(

1 + 1[0,γk]
∣∣Zp

t

∣∣2
)
≤ λ̄
(

1 + sup
p≥0

∣∣Zp
t 1[0,γk]

∣∣2
)
= λ̄(1 +

∣∣Z̃(k)
t

∣∣).
(3.44)

Therefore

E

[
sup
t≤γk

(
Y
p
t −Yq

t

)2
]
≤ δ
{
E
[(
Y
p
γk −Yq

γk

)2]
+E
[∫ γk

0

∣∣Zp
s −Zqs

∣∣2
ds
]

+ 2E
[∫ γk

0
λ̄
∣∣Y p

s −Yq
s
∣∣(1 +

∣∣Z̃(k)
s

∣∣)ds
]}
.

(3.45)
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Then E[supt≤γk (Y
p
t −Yq

t )
2
] → 0 as p,q→∞. It follows that, for any k ≥ 0 the process

(Yt∧γk )t≤T is continuous. Now since (γk)k≥0 is of stationary type, then the process Y is
continuous.

Step 4. Construction of the processes K+ and K−.
The sequence of processes (Kp+)p≥0 (resp., (Kp−)p≥0) is nondecreasing (resp., nonin-

creasing). So let us set, for t ≤ T , K+
t = liminf p→∞K

p+
t and K−t = limp→∞K

p−
t . Since for

any p ≥ 0 and k ≥ 0, K
p−
t∧γk ≤ K0−

t∧γk , then E[K−γk ] <∞. In addition the process (K−t )t≤T is
nondecreasing and upper semicontinuous.

Next for any k ≥ 0 we have supp≥0E[K
p+
γk ] <∞, then through Fatou’s lemma E[K+

γk ] <

∞. Therefore for any t ≤ T , K+
t∧γk = limp→∞K

p+
t∧γk . In addition the process (K+

t )t≤T is non-
decreasing and lower semicontinuous.

Step 5. The quadruple (Yt,Zt,K+
t ,K−t )t≤T is a solution for the double-barrier reflected

BSDE associated with (F̃,η,L′,U ′).
Let k be fixed and let t ≤ T . Then

Y
p
t∧γk = Y p

γk +
∫ γk
t∧γk

F̃ p
(
s,Y

p
s ,Z

p
s
)
ds+

(
K
p+
γk −Kp+

t∧γk
)− (Kp−

γk −Kp−
t∧γk
)−
∫ γk
t∧γk

Z
p
s dBs.

(3.46)

Now according to Dini’s theorem, F̃ p(s, y,z) converges uniformly to F̃(s, y,z) on com-
pact subsets, then F̃ p(s,Y

p
s ,Z

p
s )1[0,γk] →p→∞ F̃(s,Ys,Zs)1[0,γk], dt⊗dP− a.s. But |F̃ p(s,Y

p
s ,

Z
p
s )|1[0,γk] ≤ λ̄(1 + |Z̃(k)

s |)∈�2,1. This implies that

E
[∫ γk

0

∣∣F̃ p(s,Y p
s ,Z

p
s
)− F̃(s,Ys,Zs)ds∣∣

]
−→p→∞ 0. (3.47)

Then, by taking the limit in (3.46) as p→∞ we obtain

Yt∧γk = Yγk +
∫ γk
t∧γk

F̃
(
s,Ys,Zs

)
ds+

(
K+
γk −K+

t∧γk
)− (K−γk −K−t∧γk

)

−
∫ γk
t∧γk

ZsdBs.
(3.48)

Now writing

Yt∧γk = Y0−
∫ t∧γk

0
F̃
(
s,Ys,Zs

)
ds−K+

t∧γk +K−t∧γk +
∫ t∧γk

0
ZsdBs (3.49)

implies that (K+
t∧γk )t≤T and (K−t∧γk )t≤T are lower and upper semicontinuous in the same

time then they are continuous. Since (γk)k≥0 is of stationary type, then K+ and K− are
continuous on the whole interval [0,T]. Now P-a.s., for ω fixed there exists k0(ω) such
that for k ≥ k0 we have γk(ω)= T , therefore for k great enough we have

Yt = η+
∫ T
t
F̃
(
s,Ys,Zs

)
ds+

(
K+
T −K+

t

)− (K−T −K−t )−
∫ T
t
ZsdBs. (3.50)
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It remains to show that

∫ T
0

(
Ys−L′s

)
dK+

s =
∫ T

0

(
U ′
s −Ys

)
dK−s = 0. (3.51)

We already have

∫ T
0

(
Y
p
s −L′s

)
dK

p+
s =

∫ T
0

(
U ′
s −Y p

s
)
dK

p−
s = 0. (3.52)

But according to Dini’s theorem, P-a.s., Kp+ (resp., Kp−) converges uniformly to K+

(resp., K−) in the interval [0,T]. Then (3.51) is obtained from Helly’s theorem (see [21,
page 362]) since (Y p)p≥0 converges uniformly to Y and taking into account (3.52). The
proof of this fact can also be seen in [16].

Therefore the quadruple (Yt,Zt,K+
t ,K−t )t≤T is a solution for (3.8). Now as ρ(Y) = Y ,

then (Yt,Zt,K+
t ,K−t )t≤T is also a solution for (3.6).

Finally let us show that this solution is maximal. Let (Ȳ , Z̄, K̄+, K̄−) be another so-
lution for (3.6) and then also for (3.8). We have for any p ≥ 0, F̃ p ≥ F̃ then, according
to Proposition 2.2 we have Y p ≥ Ȳ . By taking the limit as p→∞, we obtain the desired
result. �

We are now ready to give the main result of this section.

Theorem 3.2. There exists a �-measurable process (	,
,�+,�−) := (	t,
t,�+
t ,�−

t )t≤T
solution for the reflected BSDE associated with ( f ,ξ,L,U), that is, which satisfies

	∈�2, 
∈�2,d, �+,�− ∈�,

	t = ξ +
∫ T
t
f
(
s,	s,
s

)
ds+

(
�+
T −�−

t

)− (�−
T −�−

t

)−
∫ T
t


sdBs ∀t ≤ T ,

Lt ≤	t ≤Ut ∀t ≤ T ,
∫ T

0

(
	s−Ls

)
d�+

s =
∫ T

0

(
Us−	s

)
d�−

s = 0.

(3.53)

Moreover it is maximal.

Proof. Let (Yt,Zt,K+
t ,K−t )t≤T be the maximal solution of (3.6) then, for any t ≤ T we have

Yt = η+
∫ T
t
F̃
(
s,Ys,Zs

)
ds+

(
K+
T −K+

t

)− (K−T −K−t )−
∫ T
t
ZsdBs. (3.54)

Now for t ≤ T let us set

	t = LnYt
2C

, 
t = Zt
2CYt

, d�±
t =

dK±t
2CYt

. (3.55)

These processes are well defined sinceY ≥ exp(2Cm). By using Itô’s formula with LnY/2C
we obtain

	t = ξ +
∫ T
t
f
(
s,	s,
s

)
ds+

(
�+
T −�+

t

)− (�−
T −�−

t

)−
∫ T
t


sdBs. (3.56)
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On the other hand, we have Y ≥ exp(2Cm) then 
 ∈ �2,d since Z is so, and �± ∈�
since K± belong also to �. In addition we obviously have

∫ T
0 (	s − Ls)d�+

s =
∫ T

0 (Us −
	s)d�−

s = 0 since
∫ T

0 (Ys−L′s)dK+
s =

∫ T
0 (U ′

s −Ys)dK−s = 0. Then the quadruple (	,
,�+,
�−) satisfies (2.1).

It remains to show that this solution is maximal. Let (	̄t,
̄t,�̄+
t ,�̄−

t )t≤T be another
solution for (3.53), then

(
exp

(
2C	̄t

)
, 2C exp

(
2C	̄t

)

t,

∫ t
0

2C exp
(
2C	̄s

)
d�̄+

s ,
∫ t

0
2C exp

(
2C	̄s

)
d�̄−

s

)
t≤T
(3.57)

is a solution for the reflected BSDE associated with (F,η,L′,U ′). Therefore we have
exp(2C	̄)≤ Y since Y is a maximal solution and then P- a.s., 	̄≤	. �

Remark 3.3. A comparison result. Let f and f ′ be two coefficients which satisfy (A2) and
such that P- a.s., f (t,ω, y,z) ≤ f ′(t,ω, y,z), for any t, y, and z. Let (	t,
t,�+

t ,�−
t )t≤T

(resp., (	′
t ,


′
t ,�

′+
t ,�′−

t )t≤T) be the maximal solution of the double-barrier reflected
BSDE associated with ( f ,ξ,L,U) (resp., ( f ′,ξ,L,U)), then P- a.s , 	≤	′.

Actually the functions f and f ′ satisfy (A2) with C =max{Cf ,Cf ′ }. So let F and F′

be the functions defined as in (3.4) and associated with f and f ′, respectively. There-
fore we have F ≤ F′. Now let (Yt,Zt,K+

t ,K−t )t≤T (resp., (Y ′t ,Z′t ,K ′+t ,K ′−t )t≤T) be the max-
imal solution of the double-barrier reflected BSDE associated with (F,η,L′,U ′) (resp.,
(F′,η,L′,U ′)), then we have P- a.s., Y ≤ Y ′. Henceforth from the definition we straight-
forwardly have P- a.s., 	≤	′.

4. Connection with risk-sensitive mixed zero-sum game problem

We now deal with an application of the double-barrier reflected BSDE to solve the mixed
risk-sensitive zero-sum game problem. This problem consists in a system S on which
two agents c1 and c2 intervene. The interventions of the agents have two forms, control
and stopping, that is, they control S up to the time when one of them decides to stop
controlling. Their actions are not free and their advantages are antagonistic, that is, there
exits a payoff J , which depends on the implemented strategies, which is a reward for c2 and
a cost for c1. On the other hand, the expression of J integrates sensitiveness with respect
to risk of the agents, either they are risk-seeking or risk-averse. Therefore the problem is
to find two pairs of strategies for the agents which in a way are fair when implemented.

Let us describe precisely the setting of the problem. Let � be the set of continuous
functions w̄ from [0,T] into Rd endowed with the uniform norm and let σ be a function
from [0,T]×� into Rd×d such that

(C1) σ is �-measurable, that is, for any continuous �-measurable process p = (pt)t≤T ,
the process (σ(t, pt))t≤T is �-measurable;

(C2) there exists a constant k such that
(i) for all t ∈ [0,T], w̄,w̄′ ∈ �, |σ(t,w̄)− σ(t,w̄′)| ≤ k‖w̄− w̄′‖t where ‖w̄‖t =

sups≤t |w̄s|, t ≤ T ;
(ii) for any t ≤ T , |σ(t,0)| ≤ k, σ is invertible and its inverse σ−1 is bounded.
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These assumptions on σ imply that the stochastic functional differential equation

dxt = σ(t,x,·)dBt, t ≤ T , x0 = x̄0 ∈Rd (4.1)

has a unique solution (xt)t≤T (see, e.g., [17, 30]). The process x stands for the dynamic of
the evolution of S when it is not controlled.

Let us now consider U (resp., V) a compact metric space and  (resp., �) the set of
�-measurable processes u = (ut)t≤T (resp., v = (vt)t≤T) with values in U (resp., V); 
(resp., �) represents the set of admissible controls for c1 (resp., c2). On the other hand,
hereafter ×� is called the set of admissible controls for the agents.

Next let f and h be two measurable functions from [0,T]×�×U ×V into Rd and
R+, respectively, such that

(C3) f and h are uniformly bounded and �-measurable, that is, for any u ∈ and
v ∈�, the processes f (t,x,ut,vt)t≤T and h(t,x,ut,vt)t≤T are �-measurable;

(C4) for all t ∈ [0,T] the mapping f (t,x,·,·) (resp., h(t,x,·,·)) which with (u,v) in
U ×V associates f (t,x,u,v) (resp., h(t,x,u,v)) is continuous.

Now let (u,v)∈×� and Pu,v be the probability on (Ω,�) defined by

dPu,v

dP
= exp

{∫ T
0
σ−1(s,x) f

(
s,x,us,vs

)
dBs− 1

2

∫ T
0

∣∣σ−1(s,x) f
(
s,x,us,vs

)∣∣2
ds
}
. (4.2)

So according to Girsanov’s theorem (see, e.g., [17, 30]), for any (u,v)∈×�, the pro-
cess Bu,v := (Bt −

∫ t
0 σ

−1(s,x) f (s,x,us,vs)ds)t≤T is a Brownian motion on (Ω,�,Pu,v) and
x is a weak solution of the following functional differential equation:

dxt = f
(
t,x,ut,vt

)
dt+ σ(t,x)dBu,v

t , t ≤ T , x0 = x̄. (4.3)

When the agent c1 (resp., c2) acts on S with a control u (resp., v), its dynamic of evolution
has the same law as the one of x under Pu,v. In a way, this means that the interventions of
the agents generate a drift.

Assume now that c1 (resp., c2) decides, on the one hand, to use the control u (resp., v)
and, on the other hand, to stop controlling at a stopping time τ (resp., ν). The payment
between the two agents, which is a cost for c1 and a reward for c2, is given by

J(u,τ;v,ν)= Eu,v
[

expθ
{∫ ν∧τ

0
h
(
s,x,us,vs

)
ds+Lν1[ν≤τ<T] +Uτ1[τ<ν] + ξ1[τ=ν=T]

}]
,

(4.4)

where L,U , and ξ are those of the previous section. The constant θ is related to sensitive-
ness of the controllers with respect to risk. In the case when they are risk-seeking (resp.,
risk-averse), θ > 0 (resp., < 0). Hereafter without loss of generality, we assume θ = 1. The
objective of c1 (resp., c2) is to minimize (resp., maximize) the payoff J(u,τ;v,ν). Therefore
the problem is to find a strategy (u∗,τ∗;v∗,ν∗)∈×�×�×� such that for any (u,τ)
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and (v,ν) we have

J
(
u∗,τ∗;v,ν

)≤ J(u∗,τ∗;v∗,ν∗
)≤ J(u,τ;v∗,ν∗

)
. (4.5)

This strategy is called a saddle-point for the controllers. The inequalities (4.5) show that
(u∗,τ∗;v∗,ν∗) is actually fair since when c1 (resp., c2) decides to act on S with (u∗,τ∗)
(resp., (v∗,ν∗)), then the best that c2 (resp., c1) has to do is to act with (v∗,ν∗) (resp.,
(u∗,τ∗)), otherwise he will earn (resp., pay) less (resp., more).

The expression of J(u,τ;v,ν) can be understood in the following way:
(i) h(t,x,ut,vt) is the instantaneous cost (resp., reward) for c1 (resp., c2);

(ii) Lν is the reward (resp., cost) for c2 (resp., c1) if c2 decides first to stop controlling
at ν;

(iii) Uτ is the cost (resp., reward) for c1 (resp., c2) if c1 decides first to stop controlling
at τ.

Now letH be the Hamiltonian function associated with this game problem, that is, the
function which with (t,x, p,u,v)∈ [0,T]×�×Rd ×U ×V associates

H(t,x, p,u,v) := pσ−1(t,x) f (t,x,u,v) +h(t,x,u,v). (4.6)

Hereafter we suppose Isaacs condition fulfilled, that is,

[H1] : inf
u∈U

sup
v∈V

H(t,x, p,u,v)= sup
v∈V

inf
u∈U

H(t,x, p,u,v), P-a.s. (4.7)

Under [H1], through Benes’selection theorem [2], there exists a couple of �×�(Rd)-
measurable functions u∗(t,x, p) and v∗(t,x, p) with values respectively in U and V such
that P- a.s., for any (t,u, p)∈ [0,T]×�×Rd, u∈U , and v ∈V ,

H
(
t,x, p,u∗(t,x, p),v∗(t,x, p)

)= inf
u∈U

sup
v∈V

H(t,x, p,u,v)= sup
v∈V

inf
u∈U

H(t,x, p,u,v). (4.8)

In addition (see, e.g., [4] for that fact) we have

H
(
t,x, p,u∗(t,x, p),v

)≤H(t,x, p,u∗(t,x, p),v∗(t,x, p)
)≤H(t,x, p,u,v∗(t,x, p)

)
.
(4.9)

Let us now consider the function H∗ which with (t,x, p)∈ [0,T]×�×Rd associates:

H∗(t,x, p)=H∗(t,x, p,u∗(t,x, p),v∗(t,x, p)
)
. (4.10)

The function p �→H∗(t,x, p) + (1/2)|p|2 is continuous and at most with quadratic growth
with respect to p since f , h, and σ−1 are bounded. The following theorem is the main re-
sult of this section.
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Theorem 4.1. Assume that [H1] holds true and let (Y∗,Z∗,K∗,+,K∗,−) be the maximal
solution of the following double barrier reflected BSDE:

Y∗ ∈�2, Z∗ ∈�2,d, K∗,+,K∗,− ∈�

Y∗t = ξ +
∫ T
t

{
H∗(s,x,Z∗s

)
+

1
2

∣∣Z∗s
∣∣2
}
ds+

(
K∗,+
T −K∗,+

t

)− (K∗,−
T −K∗,−

t

)−
∫ T
t
Z∗s dBs,

Lt ≤ Yt ≤Ut, ∀t ≤ T ,
∫ T
t

(
Y∗s −Ls

)
dK∗,+

s =
∫ T
t

(
Us−Y∗s

)
dK∗,−

s = 0.

(4.11)

Set u∗ := (u∗(t,x,Z∗t ))t≤T , v∗ := (v∗(t,x,Z∗t ))t≤T , ν∗ := inf{t ∈ [0,T], Y∗t = Lt} ∧ T ,
and finally τ∗ := inf{t ∈ [0,T], Y∗t = Ut} ∧T , then exp(Y∗0 ) = J(u∗,τ∗;v∗,ν∗). In ad-
dition (u∗,τ∗;v∗,ν∗) is a saddle-point strategy for the risk-sensitive mixed zero-sum differ-
ential game.

Proof. According to Theorem 3.2, the double-barrier reflected BSDE associated with
(H∗(t,x,z) + (1/2)|z|2,ξ,L,U) has a maximal solution (Y∗t ,Z∗t ,K∗,+

t ,K∗,−
t )t≤T . Then for

any t ≤ T we have

Y∗t = ξ +
∫ T
t

[
H∗(s,x,Z∗s

)
+

1
2

∣∣Z∗s
∣∣2
]
ds+K∗,+

T −K∗,+
t − (K∗,−

T −K∗,−
t

)−
∫ T
t
Z∗s dBs.

(4.12)

For t ≤ T let us set Ȳ∗t = exp(Y∗t ). Using Itô’s formula we obtain

Ȳ∗t = exp(ξ) +
∫ T
t
Ȳ∗s H

∗(s,x,Z∗s
)
ds+

∫ T
t
Ȳ∗s dK

∗,+
s −

∫ T
t
Ȳ∗s dK

∗,−
s −

∫ T
t
Ȳ∗s Z

∗
s dBs.

(4.13)

Then

Ȳ∗t = exp(ξ) +
∫ T
t
Ȳ∗s h

∗(s,x,Z∗s
)
ds+

∫ T
t
Ȳ∗s dK

∗,+
s −

∫ T
t
Ȳ∗s dK

∗,−
s −

∫ T
t
Ȳ∗s Z

∗
s dB

u∗,v∗
s ,

(4.14)

where h∗(s,x,Z∗s ) = h(s,x, (u∗,v∗)(s,x,Z∗s )). Now let us set Ỹ∗t = Ȳ∗t exp{∫ to h∗(s,x,
Z∗s )ds}, t ≤ T , then Ỹ is bounded since Ȳ∗ and h are so. On the other hand Itô’s for-
mula implies

−dỸ∗t = Ỹ∗t dK∗,+
t − Ỹ∗t dK∗,−

t − Ỹ∗t Z∗t dBu
∗,v∗
t , t ≤ T. (4.15)
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Now for k ≥ 0 let τk = inf{t ≥ 0,
∫ t

0 |Z∗s |2ds ≥ k} ∧ T , therefore τk is a stopping time
such that τk ↑ T as k→∞. On the other hand Ỹ∗0 is F0-measurable, then it is equal to a
constant, therefore Ỹ∗0 = Eu∗,v∗[Ỹ∗0 ]. In addition we have,

Ỹ∗0 = Eu
∗,v∗
[
Ỹ∗τ∗∧ν∗∧τk +

∫ τ∗∧ν∗∧τk

0
Ỹ∗s dK

∗,+
s −

∫ τ∗∧ν∗∧τk

t
Ỹ∗s dK

∗,−
s

−
∫ τ∗∧ν∗∧τk

0
Ỹ∗s Z

∗
s dB

u∗,v∗
s

]
.

(4.16)

The process K∗,+ (resp., K∗,−) is increasing only when Y∗ = L (resp., Y∗ =U), then it

does not increase between 0 and τ∗ ∧ ν∗. It follows that
∫ τ∗∧ν∗

0 (Ỹ∗s −Ls)dK∗,+
s = 0 (resp.,∫ τ∗∧ν∗

0 (Ỹ∗s −Us)dK∗,−
s = 0).

On the other hand, the process (
∫ t∧τk

0 Ỹ∗s Z∗s dBu
∗,v∗
s )t≤T is a Pu

∗,v∗-martingale. Indeed
by the Burkholder-Davis-Gundy inequality we obtain

Eu
∗,v∗
[

sup
t≤τk

∣∣∣∣
∫ t

0
Ỹ∗s Z

∗
s dB

u∗,v∗
s

∣∣∣∣
]
≤ CEu∗,v∗

[√∫ τk
0

∣∣Ỹ∗s
∣∣2∣∣Z∗s

∣∣2
ds

]

≤ C′
√√√
E
[(

dPu∗,v∗

dP

)2]√
E
[∫ τk

0

∣∣Z∗s
∣∣2
ds
]
<∞

(4.17)

since Ỹ∗, σ−1, and f are bounded. Then for any k ≥ 0, we have Ỹ∗0 = Eu
∗,v∗[Ỹ∗τ∗∧ν∗∧τk ].

But the process Ỹ∗ is bounded, then from Lebesgue’s dominated convergence theorem
we obtain

Ỹ∗0 = Eu
∗,v∗
[
Ỹ∗τ∗∧ν∗

]
= Eu∗,v∗

[
exp

(∫ τ∗∧ν∗

0
h∗
(
s,x,Z∗s

)
ds+Y∗τ∗∧ν∗

)]

= Eu∗,v∗
[

exp
{∫ τ∗∧ν∗

0
h∗
(
s,x,Z∗s

)
ds+ ξ1[τ∗=ν∗=T] +Lν∗1[ν∗≤τ∗<T] +Uτ∗1[τ∗<ν∗]

}]
.

(4.18)

Henceforth

exp
(
Y∗0
)= J(u∗,τ∗;v∗,ν∗

)
. (4.19)

Now, let us consider u ∈ and ν ∈�. Let (Yu
t ,Zut )t≤T be the solution of the following

BSDE: for all t ≤ T ,

Yu
t∧τ∧ν∗ =

∫ τ∧ν∗

t∧τ∧ν∗

{
H
(
s,x,Zus ,us,v∗

(
s,x,Z∗s

))
+

1
2

∣∣Zus
∣∣2
}
ds−

∫ τ∧ν∗

t∧τ∧ν∗
Zus dBs

+ ξ1[τ=ν∗=T] +Uτ1[τ<ν∗] +Lν∗1[ν∗≤τ<T].

(4.20)
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There is no problem of existence of (Yu
t ,Zut )t≤T since ξ1[τ=ν∗=T] +Uτ1[τ<ν∗] +Lν∗1[ν∗≤τ<T]

is FT-measurable, bounded and H(t,x,z,ut ,v∗(t,x,Z∗t )) + (1/2)|z|2 is continuous with
quadratic growth with respect to z (see, e.g., [19, 23]). On the other hand we have

Y∗t∧τ∧ν∗ = Y∗τ∧ν∗ +
∫ τ∧ν∗

t∧τ∧ν∗

{
H∗(s,x,Z∗s

)
+

1
2

∣∣Z∗s
∣∣2
}
ds−

∫ τ∧ν∗

t∧τ∧ν∗
dK∗,−

s −
∫ τ∧ν∗

t∧τ∧ν∗
Z∗s dBs.

(4.21)

Now for t ≤ T , let Ȳ u
t = exp(Yu

t ). Using Itô’s formula we obtain

(
Ȳ∗t∧τ∧ν∗ − Ȳ u

t∧τ∧ν∗
)= exp

(
Y∗τ∧ν∗

)− exp
(
ξ1[τ=ν∗=T] +Uτ1[τ<ν∗] +Lν∗1[ν∗≤τ<T]

)

+
∫ τ∧ν∗

t∧τ∧ν∗
Ȳ∗s H

∗(s,x,Z∗s
)
ds

−
∫ τ∧ν∗

t∧τ∧ν∗
Ȳ u
s H
(
s,x,Zus ,us,v∗

(
s,x,Z∗s

))
ds

−
∫ τ∧ν∗

t∧τ∧ν∗

(
Ȳ∗s Z

∗
s − Ȳ u

s Z
u
s

)
dBs−

∫ τ∧ν∗

t∧τ∧ν∗
Ȳ∗s dK

∗,−
s , t ≤ T.

(4.22)

Then

(
Ȳ∗t∧τ∧ν∗ − Ȳ u

t∧τ∧ν∗
)= exp

(
Y∗τ∧ν∗

)− exp
(
ξ1[τ=ν∗=T] +Uτ1[τ<ν∗] +Lν∗1[ν∗<τ≤T]

)

+
∫ τ∧ν∗

t∧τ∧ν∗
Ȳ∗s
{
H∗(s,x,Z∗s

)−H(s,x,Z∗s ,us,v∗
(
s,x,Z∗s

))}
ds

+
∫ τ∧ν∗

t∧τ∧ν∗

{
Ȳ∗s H

(
s,x,Z∗s ,us,v∗

(
s,x,Z∗s

))

− Ȳ u
s H
(
s,x,Zus ,us,v∗

(
s,x,Z∗s

))}
ds

−
∫ τ∧ν∗

t∧τ∧ν∗

(
Ȳ∗s Z

∗
s − Ȳ u

s Z
u
s

)
dBs−

∫ τ∧ν∗

t∧τ∧ν∗
Ȳ∗s dK

∗,−
s

= exp
(
Y∗τ∧ν∗

)− exp
(
ξ1[τ=ν∗=T] +Uτ1[τ<ν∗] +Lν∗1[ν∗≤τ<T]

)

+
∫ τ∧ν∗

t∧τ∧ν∗
Ȳ∗s
{
H∗(s,x,Z∗s

)−H(s,x,Z∗s ,us,v∗
(
s,x,Z∗s

))}
ds

+
∫ τ∧ν∗

t∧τ∧ν∗

(
Ȳ∗s − Ȳ u

s

)
h
(
s,x,us,v∗

(
s,x,Z∗s

))
ds

−
∫ τ∧ν∗

t∧τ∧ν∗

(
Ȳ∗s Z

∗
s − Ȳ u

s Z
u
s

)
dB

u,v∗
(
s,x,Z∗s

)
s −

∫ τ∧ν∗

t∧τ∧ν∗
Ȳ∗s dK

∗,−
s .

(4.23)
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Now let us setDt = (Ȳ∗t − Ȳ u
t )exp(

∫ t
0 h(s,x,us,v∗(s,x,Z∗s ))ds), t ≤ T . Then we have for

all t ≤ T ,

Dt∧τ∧ν∗ =
∫ τ∧ν∗

t∧τ∧ν∗
exp

(∫ s
0
h
(
r,x,us,v∗

(
r,x,Z∗r

))
dr
)
Ȳ∗s

× {H∗(s,x,Z∗s
)−H(s,x,Z∗s ,us,v∗

(
s,x,Z∗s

))}
ds

−
∫ τ∧ν∗

t∧τ∧ν∗
exp

(∫ s
0
h
(
r,x,us,v∗

(
r,x,Z∗r

))
dr
)(
Ȳ∗s Z

∗
s − Ȳ u

s Z
u
s

)
dB

u,v∗(s,x,Z∗s )
s

−
∫ τ∧ν∗

t∧τ∧ν∗
exp

(∫ s
0
h
(
r,x,us,v∗

(
r,x,Z∗r

))
dr
)
Ȳ∗s dK

∗,−
s +Dτ∧ν∗ .

(4.24)

Next for n≥ 0, let τn be the stopping time defined by τn = inf{t ≥ 0,
∫ t

0(|Z∗s |2 + |Zus |2)ds≥
n}∧T . Then τn ↗ T as n→∞ and we have

Dt∧τ∧ν∗∧τn =Dτ∧ν∗∧τn +
∫ τ∧ν∗∧τn

t∧τ∧ν∗∧τn
exp

(∫ s
0
h
(
r,x,ur ,v∗

(
r,x,Z∗r

))
dr
)
Ȳ∗s

× {H∗(s,x,Z∗s
)−H(s,x,Z∗s ,us,v∗

(
s,x,Z∗s

))}
ds

−
∫ τ∧ν∗∧τn

t∧τ∧ν∗∧τn
exp

(∫ s
0
h
(
r,x,ur ,v∗

(
r,x,Z∗r

))
dr
)(
Ȳ∗s Z

∗
s − Ȳ u

s Z
u
s

)
dB

u,v∗(s,x,Z∗s )
s

−
∫ τ∧ν∗∧τn

t∧τ∧ν∗∧τn
exp

(∫ s
0
h
(
r,x,ur ,v∗

(
r,x,Z∗r

))
dr
)
Ȳ∗s dK

∗,−
s .

(4.25)

As Ȳ∗ ≥ 0, dK∗− ≥ 0, and H∗(t,x,Z∗t )−H(t,x,Z∗t ,ut,v∗(t,x,Z∗t )) ≤ 0, then taking the
conditional expectation in (4.25) yields Dt∧τ∧ν∗∧τn ≤ Eu,v∗(t,x,Z∗t )[Dτ∧ν∗∧τn|Ft∧τ∧ν∗∧τn]
for any t ≤ T . But Ȳ∗τ∧ν∗ ≤ Ȳ u

τ∧ν∗ , then Dτ∧ν∗ ≤ 0. Therefore if we use the dominated
convergence theorem we obtain that, for any t ≤ T , Dt∧τ∧ν∗ ≤ 0 since for any t ≤ T ,
(Eu,v∗[Dτ∧ν∗∧τn|Ft∧τ∧ν∗∧τn])n≥0 → Eu,v∗[Dτ∧ν∗|Ft∧τ∧ν∗] in L1(dPu,v∗) as n→∞. Finally
D0 ≤ 0 implies that

exp
(
Y∗0
)≤ exp

(
Yu

0

)
. (4.26)

On the other hand we have

J
(
u,τ;v∗,ν∗

)= exp
(
Yu

0

)
. (4.27)

Indeed,

Ȳ u
0 = Ȳ u

τ∧ν∗ +
∫ τ∧ν∗

0
Ȳ u
s H
(
s,Zus ,us,v∗

(
s,x,Z∗s

))
ds−

∫ τ∧ν∗

0
Ȳ u
s Z

u
s dBs. (4.28)
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Let us set Ỹ u
t = exp(

∫ t
0 h(s,x,us,v∗(s,x,Z∗s ))ds)Ȳ u

t , t ≤ T ; Ỹ u is bounded since h and Ȳ u

are also bounded. On the other hand, Itô’s formula implies that for any t ≤ τ ∧ ν∗,

dỸu
t = Ỹ u

t Z
u
t dB

u,v∗(t,x,Z∗t )
t . (4.29)

Now for n ≥ 0 let δn = inf{t ≥ 0,
∫ t

0 |Zus |2 ≥ n}∧T , therefore δn is a stopping time such
that δn ↗ T as n→∞. Then according to (4.29) we obtain

Ỹ u
0 = Eu,v∗(t,x,Z∗t )[Ỹ u

0

]

= Eu,v∗(t,x,Z∗t )
[
Ỹ u
τ∧ν∗∧δn −

∫ τ∧ν∗∧δn

0
Ỹ u
s Z

u
s dB

u,v∗(s,x,Z∗s )
s

]

= Eu,v∗(t,x,Z∗t )
[
Ỹ u
τ∧ν∗∧δn

]
,

(4.30)

since
∫ t∧δn

0 Ỹ u
s Z

u
s dB

u,v∗(s,x,Z∗s )
s is a Pu,v∗(x,t,Z∗t )-martingale. But the process Ỹ u is bounded,

then using the Lebesgue-dominated convergence theorem we obtain

Ỹ u
0 = Eu,v∗(t,x,Z∗t )[Ỹ u

τ∧ν∗
]

= Eu,v∗(t,x,Z∗t )
[

exp
{∫ τ∧ν∗

0
h
(
s,x,us,v∗

(
s,x,Z∗s

))
ds+Yu

τ∧ν∗

}]

= Eu,v∗(t,x,Z∗t )
[

exp
{∫ τ∧ν∗

0
h
(
s,x,us,v∗

(
s,x,Z∗s

))
ds

+ ξ1[τ=ν∗=T] +Uτ1[τ<ν∗] +Lν∗1[ν∗≤τ<T]

}]

= J(u,τ, ;v,ν∗
)
.

(4.31)

Henceforth, taking into account (4.19) and (4.26), we obtain

J
(
u∗,τ∗;v∗,ν∗

)≤ J(u,τ;v∗,ν∗
)
. (4.32)

In the same way we can show that for any v ∈ and ν∈� we have

J
(
u∗,τ∗;v,ν

)≤ J(u∗,τ∗;v∗,ν∗
)
. (4.33)

Thus we showed that (u∗,τ∗;v∗,ν∗) is a saddle-point for the mixed zero-sum sensitive
game. �

Remark 4.2. The process (exp(Y∗t ))t≤T is the value function of the risk-sensitive mixed
zero-sum differential game. This characterization combined with the fact that in the
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Figure 4.1. Simulation of a path of Y (Y0 = 1.4755).

previous proof the maximality of the solution has not been used, imply that the solu-
tion of the BSDE associated with (H∗(t,x,z) + (1/2)|z|2,ξ,L,U) is unique.

We are now going to deal with an example for which we give also a numerical treat-
ment. The simulations are made on the ground of a paper by Mémin et al. [24]. Basically
in that work, the theoretical BSDE is associated with a discrete BSDE where the Brownian
motion is replaced by a weighted sum of independent Bernoulli symmetric random vari-
ables. Then the discrete BSDE is solved backwardly. Finally with that solution, a process
is constructed which converges uniformly to the theoretical solution of the BSDE.

Example 4.3. Assume that T = 1 and d = 1 and let us set Lt = 0.5∧ |Bt|, Ut =max{3,
|Bt|∧ 2} for any t ≤ 1 and ξ = |B1|∧ 1. On the other hand, let x = (xt)t≤T be the process
such that for any t ≤ 1, xt = x̄+Bt.

Now let U = [0,1], let V = [−1,1], and let f (resp., h) be the function defined by
f (t,x,u,v) = u + 2v (resp., h(t,x,u,v) = (1/2)(u2 + v2)). Obviously in that case Isaacs
condition is satisfied and the function H∗ of (4.8) is given by

H∗(t,x, p)=H(t,x, p,u∗(t,x, p),v∗(t,x, p)
)

= 4p+ 1
2

1[p≥0] +
1− 4p− p2

2
1[−1≤p<0] +

2− 2p
2

1[p<−1]

(4.34)

with u∗(t,x, p)= 1[p<−1]− p1[−1≤p<0] and v∗(t,x, p)= 1[p≥0]− 1[p<0].

Let (Yt,Zt,K+
t ,K−t )t≤1 be the solution of the double-barrier reflected BSDE associated

with (H∗(t,xt,z) + (1/2)|z|2,ξ,L,U). The following drawing is a simulation of a path
of Y .

Figure 4.1 shows the simulation of a path of Y .
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5. Application in finance

We now deal with the problem of the yield of an American game, or recallable, option
under Knightian uncertainty. First let us briefly describe that kind of option.

In a financial market assume we have a risky asset whose dynamic is given by

dSt = St
(
μdt+ νdBt

)
, t ≤ T. (5.1)

For the sake of simplicity we assume ν, μ > 0 are real constants and (Bt)t≤T is a 1-dimen-
sional Brownian motion on the probability space (Ω,�,P).

The usual American option is a contract between a trader and a broker who are, re-
spectively, the buyer and the seller of the option. The trader pays a premium and obtains
the right to ask for a wealth (Lt)t≤T when he decides within a period of time [0,T]. The
process L is called the payoff of the option (e.g., Lt = (St −K)+ where S is the dynamic of
the asset which bears the option and K the strike) and T its maturity. So the main prob-
lems are the value of the option, the optimal time when the trader should exercise his
option, the existence of a hedging strategy for the broker, and so forth. In the framework
of those options, the broker has no right other than to provide the wealth for the trader
when the latter decides to exercise his option.

An American game option is a standard American option where the broker is allowed
to cancel the contract which binds him to the trader. In a way, he recalls the option. But
in that case, he pays what the trader of the option would have earned if he had exercised
his option at the same time plus a money penalty.

The motivations of those options is that insurance companies, which usually are the
sellers of options, try to protect themselves against some events which could threaten
their existence when facing charges which they cannot predict and bear.

The problem of pricing a recallable option in a complete financial market has been
considered and solved in [8]. In this work we just focus on the yield of such an option
under Knightian uncertainty.

So assume we have a trader c1 who buys the recallable option and a broker c2 who
sells it. On the other hand, suppose that the option is on the risky asset whose dynamic is
given by (St)t≤T . As said previously, if

(i) the trader decides first to exercise the option at a stopping time σ , he makes a
profit which is equal to eLσ (e.g., Lt = (St −K)+ where K is the strike);

(ii) the broker decides first to cancel the option at τ, he pays the trader an amount
equal to eUτ ;

(iii) both decide to go up to the maturity T of the option, c1 earns eξ paid by c2.
The processes L, U and the random variable ξ are the same as in the previous section. On
the other hand the difference U −L is the money penalty that c2 pays for his decision to
cancel the option. Therefore the yield of the option when c1 (resp., c2) exercises (resp.,
cancels) at σ (resp., τ) is given by

J(τ,σ)= E[exp
{
Lσ1[σ≤τ<T] +Uτ1[τ<σ] + ξ1[τ=σ=T]

}]
. (5.2)
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However rationality of the behaviors of the broker and the trader, implies that the yield
of the option is given by

V = essinf
τ ≥ 0

esssup
σ≥0

J(τ,σ)= esssup
σ≥0

essinf
τ ≥ 0

J(τ,σ). (5.3)

Knightian uncertainty assumes that we are not sure that the probability under which
the market will evolve is P. It could be P but it could also be another probability not
far from P. Let Pϑ be such a probability. The parameter ϑ = (ϑs)s≤T is a �-measurable
stochastic process valued in a compact set [−κ,κ]; κ is called the degree of Knightian un-
certainty and the set of those ϑ′s is denoted by Θ. Closeness of Pϑ to P leads us to assume
that Pϑ is absolutely continuous with respect to P and its density function is given by

dPϑ

dP
= exp

{
−
∫ T

0
ν−1ϑsdBs− 1

2

∣∣ν−1ϑs
∣∣2
ds
}
. (5.4)

Therefore the process (St)t≤T of (5.1) satisfies the following: for any t ≤ T ,

dSt =
(
μ− ϑt

)
Stdt+ νStdB

ϑ
t , (5.5)

where (Bϑt = Bt +
∫ t

0 ν−1ϑs)t≤T is a Brownian motion under Pϑ. In a way this means that
the yield of the risky asset in a short time interval dt given �t is equal to (μ− ϑt)Stdt. For
more detail on Knightian uncertainty one can refer to [18].

Now once again the behavior of the trader as well as that of the broker are rational,
therefore the minimum and maximum yields of the option are given respectively by

Ymin = inf
ϑ∈Θ

essinf
τ≥0

esssup
σ≥0

Eϑ
[

exp
{
Lσ1[σ≤τ<T] +Uτ1[τ<σ] + ξ1[τ=σ=T]

}]
,

Ymax = sup
ϑ∈Θ

essinf
τ ≥ 0

esssup
σ≥0

Eϑ
[

exp
{
Lσ1[σ≤τ<T] +Uτ1[τ<σ] + ξ1[τ=σ=T]

}]
;

(5.6)

Eϑ is the expectation under Pϑ.
Now we are going to characterize Ymin and Ymax via BSDEs which we have studied in

Sections 2 and 3. Actually let θ ∈ [−κ,κ], z ∈ R, and H(t,θ,z) =−(θ/ν)z. For z ∈ R, let
θ1(z)= κ1[z≤0]− κ1[z>0] and θ2(z)=−θ1(z). Therefore θ1 and θ2 verify

H
(
t,θ1(z),z

)= sup
θ∈[−κ,κ]

H(t,θ,z), H
(
t,θ2(z),z

)= inf
θ∈[−κ,κ]

H(t,θ,z). (5.7)

Obviously the functions which with z associate H(t,θ1(z),z) and H(t,θ2(z),z), respec-
tively, are continuous with linear growth. Then we have the following result whose proof
is a direct consequence of Theorem 4.1.
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Figure 5.1. Simulation of paths of Ỹ and Ȳ (Ỹ0 = 0 and Ȳ0 = 0.1).

Theorem 5.1. Let (Ȳ , Z̄, K̄+, K̄−) (resp., (Ỹ , Z̃, K̃+, K̃−)) be the solution of the BSDE as-
sociated with (H(t,θ1(z),z) + (1/2)|z|2,ξ,L,U) (resp., (H(t,θ2(z),z) + (1/2)|z|2,ξ,L,U)),
then

Ymax = exp Ȳ0, Ymin = exp Ỹ0. (5.8)

Figure 5.1 shows the simulations of paths of Ỹ and Ȳ .
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