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1. Introduction

Continued fractions (CFs) play a fundamental role in many investigations due to its ap-
plications to diverse fields like number theory, special functions, approximations, mo-
ment problems, digital networks, statistics, and signal processing. Their importance has
grown further with the advent of fast computing facilities.

The problem of converting a continued fraction into a power series is important in
applications and has been studied by several authors for more than a century. The coef-
ficients of a CF can be determined from the coefficients of a given power series through
quotient of Hankel determinants (Vein and Dale [17]). Jones and Thron [7, page 227]
describe a quotient-difference algorithm (qd algorithm) for computing the coefficients of
continued fractions corresponding to a given power series. The J-fraction corresponding
to a power series has been obtained from an addition formula by means of a decompo-
sition (Goulden and Jackson [5, page 295]). Euler’s connection describes an equivalence
between a T-fraction and a power series (Gill [4]).

The converse relation to evaluate the power series coefficients from a known continued
fraction expansion is pertinent and complicated. Rogers [15] obtained the first few coef-
ficients and Ramanujan (Berndt [2, Entry 17]) has given a recursion. Wall [18, page 203]
has presented an infinite Stieltjes matrix equation to obtain the coefficients of the power
series expansion of a J-fraction. Zajta and Pandikow [19], Flajolet [3], and Goulden and
Jackson [5] have employed a combinatorial approach.

CF applications to the study of birth and death processes (BDPs) were initiated by
Murphy and O’Donohoe [9] and later this concept has been discussed by several authors
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(e.g., Guillemin and Pinchon [6]).This association has been exploited to find the time-
dependent solutions of certain BDPs in closed form for specific birth and death rates
(Parthasarathy [11], Parthasarathy and Lenin [12]).

In this paper, we obtain the transient probabilities of state-dependent birth and death
processes in terms of power series expression using CFs. In this study, the underlying
forward Kolmogorov differential-difference equations are first transformed into a set of
linear algebraic equations by employing Laplace transforms. This leads to a J-fraction
which is expressed as a formal power series. Inverting we get the transient probabilities
of state-dependent BDPs in closed form. Several examples are presented to illustrate this
approach.

2. CFs and BDPs

Let {X(t), t ≥ 0} be a birth-death process with state-dependent birth and death rates a2n

and a2n+1, n= 0,1,2, . . . , respectively (instead of the usual λn and μn) defined on a prob-
ability space (Ω,�,P). The reason for this notation will become apparent in the sequel.
Then P(X(t)= n | X(0)= k)= Pkn(t) satisfy the forward Kolmogorov equations:

P′k0(t)=−a0Pk0(t) + a1Pk1(t),

P′kn(t)= a2n−2Pk,n−1(t)− (a2n−1 + a2n
)
Pkn(t) + a2n+1Pk,n+1(t), n= 1,2,3, . . . .

(2.1)

Taking Laplace transforms,

f (k)
n (s)=

∫∞

0
e−stPkn(t)dt, n= 0,1,2, . . . , (2.2)

for Re(s) > 0 of the system of equations given by (2.1). Initially we assume that k = 0, and
in that case f0(s) simplifies to the expression

f0(s)= 1
s+ a0− a1

(
f1(s)/ f0(s)

) , (2.3)

fn(s)
fn−1(s)

= a2n−2

s+ a2n−1 + a2n− a2n+1
(
fn+1(s)/ fn(s)

) , n= 1,2,3, . . . ,

= a2n−2

s+ a2n−1 + a2n
− a2na2n+1

s+ a2n+1 + a2n+2
− a2n+2a2n+3

s+ a2n+3 + a2n+4
−··· .

(2.4)

Iterating this,

f0(s)= 1
s+ a0

− a0a1

s+ a1 + a2
− a2a3

s+ a3 + a4
−··· , (2.5)

where we use the notation

a1

b1
− a2

b2
− a3

b3
−··· = a1

b1− a2

b2− a3

b3−

. (2.6)
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This is a J-fraction (or Jacobi fraction) and it can be represented as an S-fraction:

f0(s)= 1/s
1

+
a0/s

1
+

a1/s

1
+

a2/s

1
+

a3/s

1
+ ··· . (2.7)

For notational convenience, we use fn(s) instead of f (0)
n (s) throughout this paper.

In the next section, we obtain power series expression for P0n(t), n= 0,1,2, . . . , using
CFs.

3. Transient probabilities

In this section, we express the J-fraction (2.4) as a formal power series leading to the state
probabilities of general state-dependent BDPs. First we prove the following result.

Theorem 3.1. If

fn(s)
fn−1(s)

= a2n−2

∞∑

m=0

(−1)mB(m,n)
1

sm+1
, (3.1)

then B(0,n)= 1 and for m= 1,2,3, . . . ,

B(m,n)=
2n∑

i1=2n−1

ai1

i1+1∑

i2=2n−1

ai2

i2+1∑

i3=2n−1

ai3 ···
im−1+1∑

im=2n−1

aim ∀n∈N. (3.2)

Proof. Let us assume that

fn+1(s)
fn(s)

= a2n

∞∑

m=0

(−1)mB(m,n+ 1)
1

sm+1
. (3.3)

Also,

fn(s)
fn−1(s)

= a2n−2

s+ a2n−1 + a2n− a2n+1
(
fn+1(s)/ fn(s)

)

= a2n−2

s+ a2n−1 + a2n− a2na2n+1
∑∞

m=0(−1)mB(m,n+ 1)
(
1/sm+1

) .
(3.4)

From (3.1) and (3.4),
[ ∞∑

m=0

(−1)mB(m,n)
1

sm+1

][

1 +
a2n−1 + a2n

s
− a2na2n+1

∞∑

m=0

(−1)mB(m,n+ 1)
1

sm+2

]

= 1
s
.

(3.5)

In the above Cauchy product, only the coefficient of 1/s survives and the remaining coef-
ficients will be zero. For every n and m= 1,2,3, . . . , we obtain the following relation:

B(m,n)= (a2n−1 + a2n
)
B(m− 1,n) + a2na2n+1

[m−2∑

k=0

B(k,n+ 1)B(m− k− 2,n)

]

. (3.6)

From this, we prove the result (3.2) by induction on m for every n.
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For m= 1,

B(1,n)= a2n−1 + a2n =
2n∑

i1=2n−1

ai1 for every n. (3.7)

Assume that for every n, this result is valid for each nonnegative integer up to m− 1.
That is,

B(m− 1,n)=
2n∑

i1=2n−1

ai1

i1+1∑

i2=2n−1

ai2

i2+1∑

i3=2n−1

ai3 ···
im−2+1∑

im−1=2n−1

aim−1 ∀n∈N. (3.8)

Since

B(1,n+ 1)B(m− 3,n) +B(2,n+ 1)B(m− 4,n) + ···+B(m− 2,n+ 1)

=
2n+2∑

i1=2n+1

ai1

i1+1∑

i2=2n−1

ai2

i2+1∑

i3=2n−1

ai3 ···
im−3+1∑

im−2=2n−1

aim−2 ,
(3.9)

then

B(m− 2,n) +B(1,n+ 1)B(m− 3,n) +B(2,n+ 1)B(m− 4,n) + ···+B(m− 2,n+ 1)

=
2n∑

i1=2n−1

ai1

i1+1∑

i2=2n−1

ai2 ···
im−3+1∑

im−2=2n−1

aim−2 +
2n+2∑

i1=2n+1

ai1

i1+1∑

i2=2n−1

ai2 ···
im−3+1∑

im−2=2n−1

aim−2

=
2n+2∑

i1=2n−1

ai1

i1+1∑

i2=2n−1

ai2

i2+1∑

i3=2n−1

ai3 ···
im−3+1∑

im−2=2n−1

aim−2 .

(3.10)
Therefore,

B(m,n)= a2n−1B(m− 1,n) + a2nB(m− 1,n) + a2na2n+1

[m−2∑

k=0

B(k,n+ 1)B(m− k− 2,n)

]

= a2n−1

2n∑

i1=2n−1

ai1

i1+1∑

i2=2n−1

ai2

i2+1∑

i3=2n−1

ai3 ···
im−2+1∑

im−1=2n−1

aim−1

+ a2n

2n∑

i1=2n−1

ai1

i1+1∑

i2=2n−1

ai2

i2+1∑

i3=2n−1

ai3 ···
im−2+1∑

im−1=2n−1

aim−1

+ a2na2n+1

2n+2∑

i1=2n−1

ai1

i1+1∑

i2=2n−1

ai2

i2+1∑

i3=2n−1

ai3 ···
im−3+1∑

im−2=2n−1

aim−2
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= a2n−1

2n∑

i1=2n−1

ai1

i1+1∑

i2=2n−1

ai2

i2+1∑

i3=2n−1

ai3 ···
im−2+1∑

im−1=2n−1

aim−1

+ a2n

2n+1∑

i1=2n−1

ai1

i1+1∑

i2=2n−1

ai2

i2+1∑

i3=2n−1

ai3 ···
im−2+1∑

im−1=2n−1

aim−1

=
2n∑

i1=2n−1

ai1

i1+1∑

i2=2n−1

ai2

i2+1∑

i3=2n−1

ai3 ···
im−1+1∑

im=2n−1

aim .

(3.11)

Thus the result is true for m. �

Expression for P00(t). The next theorem gives an expansion of J-fraction as a power series
with explicit coefficients.

Theorem 3.2. If

P00(t)=
∞∑

m=0

(−1)mA(m,0)
tm

m!
, (3.12)

then A(0,0)= 1 and for m= 1,2,3, . . . ,

A(m,0)= a0

1∑

i1=0

ai1

i1+1∑

i2=0

ai2

i2+1∑

i3=0

ai3 ···
im−2+1∑

im−1=0

aim−1 . (3.13)

Proof. Let us assume that

f0(s)=
∞∑

m=0

(−1)m
A(m,0)
sm+1

. (3.14)

From (3.1),

f0(s)= 1
s+ a0− a1

(
f1(s)/ f0(s)

) = 1
s+ a0− a0a1

∑∞
m=0(−1)m

(
B(m,1)/sm+1

) . (3.15)

From (3.14) and (3.15),

[ ∞∑

m=0

(−1)m
A(m,0)
sm+1

][

1 +
a0

s
− a0a1

∞∑

m=0

(−1)m
B(m,1)
sm+2

]

= 1
s
. (3.16)

Hence for m= 1,2,3, . . . ,

A(m,0)= a0A(m− 1,0) + a0a1

[m−2∑

k=0

B(k,1)A(m− k− 2,0)

]

. (3.17)

Now, we prove the result (3.13) by induction on m. Using (3.17), it is easily seen that
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for m= 1,2,

A(1,0)= a0;

A(2,0)= a0A(1,0) + a0a1A(0,0)= a0
(
a0 + a1

)= a0

1∑

i1=0

ai1 .
(3.18)

Assume that this result is valid for each nonnegative integer up to m:

A(m,0)= a0

1∑

i1=0

ai1

i1+1∑

i2=0

ai2

i2+1∑

i3=0

ai3 ···
im−2+1∑

im−1=0

aim−1 . (3.19)

Using (3.2) in (3.17),

A(m+ 1,0)= a0A(m,0) + a0a1
[
A(m− 1,0) +A(m− 2,0)B(1,1) +A(m− 3,0)B(2,1)

+ ···+A(1,0)B(m− 2,1) +B(m− 1,1)
]

= a0a0

1∑

i1=0

ai1

i1+1∑

i2=0

ai2

i2+1∑

i3=0

ai3 ···
im−2+1∑

im−1=0

aim−1

+ a0a1

[

a0

1∑

i1=0

ai1

i1+1∑

i2=0

ai2

i2+1∑

i3=0

ai3 ···
im−3+1∑

im−2=0

aim−2

+
2∑

i1=1

ai1

i1+1∑

i2=0

ai2

i2+1∑

i3=0

ai3 ···
im−2+1∑

im−1=0

aim−1

]

= a0a0

1∑

i1=0

ai1

i1+1∑

i2=0

ai2

i2+1∑

i3=0

ai3 ···
im−2+1∑

im−1=0

aim−1

+ a0a1

2∑

i1=0

ai1

i1+1∑

i2=0

ai2

i2+1∑

i3=0

ai3 ···
im−2+1∑

im−1=0

aim−1 .

(3.20)

Hence the result is true for m+ 1.
From (3.14), we obtain (3.12). �

Expression for P0n(t). The next theorem gives expressions for P0n(t), n= 1,2,3, . . . .

Theorem 3.3. For n= 1,2,3, . . . ,

P0n(t)= Ln−1

∞∑

m=0

(−1)mA(m,2n)
tm+n

(m+n)!
, (3.21)

where

A(m,n)=
n∑

i1=0

ai1

i1+1∑

i2=0

ai2

i2+1∑

i3=0

ai3 ···
im−1+1∑

im=0

aim ∀n∈N, (3.22)

and Ln−1 = a0a2a4 ···a2n−2, L−1 = 1 with A(0,n)= 1.
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Proof. Theorems 3.1 and 3.2 yield

f1(s)= f1(s)
f0(s)

f0(s)= a0

∞∑

m=0

(−1)m
B(m,1)
sm+1

∞∑

m=0

(−1)m
A(m,0)
sm+1

= a0

∞∑

m=0

(−1)m

sm+2

m∑

k=0

A(m− k,0)B(k,1)

= a0

∞∑

m=0

(−1)m
A(m,2)
sm+2

,

(3.23)

where A(m,2)=∑m
k=0A(m− k,0)B(k,1).

From (3.2) and (3.13),

A(m,2)=
2∑

i1=0

ai1

i1+1∑

i2=0

ai2

i2+1∑

i3=0

ai3 ···
im−1+1∑

im=0

aim . (3.24)

For k = 0 and n= 1,2,3, . . . , the Laplace transform of (2.1) is given by

(
s+ a2n−1 + a2n

)
fn(s)= a2n−2 fn−1(s) + a2n+1 fn+1(s). (3.25)

Assume that, the power series representation of fn(s) is of the form

fn(s)= Ln−1

∞∑

m=0

(−1)m
A(m,2n)
sm+n+1

. (3.26)

Substitute (3.26) in (3.25) and comparing the coefficients on each side, for m≥ 2 and for
every n,

A(m,2n)=A(m,2n− 2) +
(
a2n−1 + a2n

)
A(m− 1,2n) + a2na2n+1A(m− 2,2n+ 2),

(3.27)

and if m= 1,

A(1,2n)=A(1,2n− 2) +
(
a2n−1 + a2n

)
. (3.28)

From this,

A(1,2n)=
2n∑

i1=0

ai1 for every n. (3.29)

By induction hypothesis, we assume that for each nonnegative integer n, this result is
valid up to m− 1, that is,

A(m− 1,2n)=
2n∑

i1=0

ai1

i1+1∑

i2=0

ai2

i2+1∑

i3=0

ai3 ···
im−2+1∑

im−1=0

aim−1 . (3.30)
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Thus,

A(m,2n)=A(m,2n− 2) +
(
a2n−1 + a2n

)
A(m− 1,2n) + a2na2n+1A(m− 2,2n+ 2)

=A(m,2n− 2) + a2n−1

2n∑

i1=0

ai1

i1+1∑

i2=0

ai2 ···
im−2+1∑

im−1=0

aim−1

+ a2n

2n∑

i1=0

ai1

i1+1∑

i2=0

ai2 ···
im−2+1∑

im−1=0

aim−1 + a2na2n+1

2n+2∑

i1=0

ai1

i1+1∑

i2=0

ai2 ···
im−3+1∑

im−2=0

aim−2

=A(m,2n− 2) + a2n−1

2n∑

i1=0

ai1

i1+1∑

i2=0

ai2 ···
im−2+1∑

im−1=0

aim−1

+ a2n

2n+1∑

i1=0

ai1

i1+1∑

i2=0

ai2 ···
im−2+1∑

im−1=0

aim−1 .

(3.31)

Using A(m,0)= a0
∑1

i1=0 ai1
∑i1+1

i2=0 ai2
∑i2+1

i3=0 ai3 ···
∑im−2+1

im−1=0 aim−1 , the result is true for m.
We obtain (3.21) from (3.26). �

Observe that the power series expression of P0n(t) starts with tn and the coefficients
A(m,2n) and B(m,n) differ only in the lower limits of the summations.

Expression for Pkn(t). In the above analysis, we assumed that P(X(0)= 0)= 1. If P(X(0)=
k)= 1,

f (k)
n (s)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Mk

Lk−1Mn
Bn(s) fk(s), n= 0,1,2, . . . ,k,

1
Lk−1

Bk(s) fn(s), n= k,k+ 1,k+ 2, . . . (see Jones and Thron [7]),
(3.32)

where Mn = a1a3a5 ···a2n−1 with M0 = 1 and Bn(s) is an orthogonal polynomial satisfy-
ing the three-term recurrence relation

Bn(s)= (s+ a2n−3 + a2n−2
)
Bn−1(s)− a2n−4a2n−3Bn−2(s), n= 2,3,4, . . . ,k, (3.33)

with B0(s)= 1 and B1(s)= s+ a0.
We can write

Bn(s)=
n∑

m=0

φm(2n+ 1)sn−m, (3.34)

where φ0(n)= 1, φm(n)= 0 if m≥ [(n+ 1)/2], for n= 1,2,3, . . . and m≥ 1,

φm(n+ 1)=
n−2m∑

i1=0

ai1

n−2m+2∑

i2=i1+2

ai2

n−2m+4∑

i3=i2+2

ai3 ···
n−2∑

im=im−1+2

aim (3.35)

(see Parthasarathy and Sudhesh [14]).
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From (3.26) and (3.34),

f (k)
n (s)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Mk

Mn

∞∑

m=0

(−1)m

sm+k−n+1

min(m,n)∑

r=0

(−1)rφr(2n+ 1)A(m− r,2k), n= 0,1,2, . . . ,k,

Ln−1

Lk−1

∞∑

m=0

(−1)m

sm+n−k+1

min(m,k)∑

r=0

(−1)rφr(2k+ 1)A(m− r,2n), n= k,k+ 1,k+ 2, . . . .

(3.36)

Inverting we get the following theorem.

Theorem 3.4. If X(0) = k, then the power series representation for the state probabilities
Pkn(t), n = 0,1,2, . . . , corresponding to a state-dependent BDP with birth and death rates,
respectively, a2n and a2n+1 (0≤ n <∞) are given by

Pkn(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mk

Mn

∞∑

m=0

(−1)m
tm+k−n

(m+ k−n)!

×
min(m,n)∑

r=0

(−1)rφr(2n+ 1)A(m− r,2k), n= 0,1,2, . . . ,k,

Ln−1

Lk−1

∞∑

m=0

(−1)m
tm+n−k

(m+n− k)!

×
min(m,k)∑

r=0

(−1)rφr(2k+ 1)A(m− r,2n), n= k,k+ 1, . . . .

(3.37)

4. Examples

From (3.22),

A(m,n)=
n∑

i1=0

ai1

i1+1∑

i2=0

ai2

i2+1∑

i3=0

ai3 ···
im−1+1∑

im=0

aim

=
n−1∑

i1=0

ai1

i1+1∑

i2=0

ai2 ···
im−1+1∑

im=0

aim + an

n+1∑

i2=0

ai2

i2+1∑

i3=0

ai3 ···
im−1+1∑

im=0

aim

= A(m,n− 1) + anA(m− 1,n+ 1).

(4.1)

Thus,

A(m,n)= a0A(m− 1,1) + a1A(m− 1,2) + ···+ anA(m− 1,n+ 1). (4.2)

This recurrence relation is useful to obtain elegant power series coefficients as illustrated
below.

Example 4.1 (BDPs with equal rates). Let us assume that the birth and death rates are
equal. That is, a2n = a2n+1 = λ > 0, n= 0,1,2, . . . (i.e., λ= μ).
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Then,

A(m,n)= n+ 1
n+m+ 1

(
n+ 2m
m

)

λm for every n. (4.3)

Therefore,

A(m,2n)= 2n+ 1
2n+m+ 1

(
2n+ 2m

m

)

λm =�m+n,nλ
m, (4.4)

where �m,n = ((2n+ 1)/(n+m+ 1))
(

2m
m+n

)
, 0≤ n≤m is a generalized Catalan number.

If ai = λ, i= 0,1,2, . . . , then

f0(s)= 1/s
1

+
λ/s

1
+

λ/s

1
+

λ/s

1
+ ··· =

∞∑

m=0

(−1)m�m,0
λm

sm+1
, (4.5)

where �m,0 = 1/(m+ 1)
(

2m
m

)
is a Catalan number.

Thus, for n= 0,1,2, . . . ,

P0n(t)=
∞∑

m=0

(−1)m�m+n,n
(λt)m+n

(m+n)!
. (4.6)

Example 4.2 (busy period distribution of M/M/1 queue). Customers arrive at an M/M/1
queueing system at a Poisson process with parameter λ and service times are exponen-
tially distributed with parameter μ. A busy period begins with the arrival of a customer
to an idle channel and ends when the channel becomes idle once more. The cumula-
tive distribution function of the busy period is determined by considering the original
differential-difference equations for a birth-death process given in (2.1) with an absorb-
ing barrier imposed at zero system size (i.e., a0 = 0) and a2n = λ, a2n−1 = μ, n= 1,2,3, . . . .

Then P′0(t) gives the density function of the length of the busy period. The differential-
difference equations are

P′0(t)= μP1(t),

P′1(t)=−(λ+μ)P1(t) +μP2(t),

P′n(t)= λPn−1(t)− (λ+μ)Pn(t) +μPn+1(t), n= 2,3,4, . . . ,

(4.7)

with P1(0)= 1.
The Laplace transform of the busy period density function equals

μ

s+ λ+μ
− λμ

s+ λ+μ
− λμ

s+ λ+μ
−··· =

p−
√
p2− 4λμ

2λ
, (4.8)

where p = s+ λ+μ.

From this, the density function of the busy period equals
√
μ/λe−(λ+μ)t(I1[2t

√
λμ]/t),

t > 0, where In(·) is the modified Bessel function of the first kind of order n.
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Example 4.3 (M/M/1 queue). The arrival (birth) and departure (death) rates are given by

a2n = λ, a2n+1 = μ, n= 0,1,2, . . . . (4.9)

From (2.4), for an M/M/1 queue, n= 1,2,3, . . . ,

fn(s)
fn−1(s)

= λ

s+ λ+μ
− λμ

s+ λ+μ
− λμ

s+ λ+μ
−···

= β

[
p−

√
p2−α2

α

]

,

(4.10)

where p = s+ λ+μ, α= 2
√
λμ, β =

√
λ/μ.

Therefore,

fn(s)= βn
[
p−

√
p2−α2

α

]n

f0(s),

f0(s)= 1
s
− λ

s

2
α

[
p−

√
p2−α2

α

]

.

(4.11)

Thus, for n= 1,2,3, . . . ,

P0n(t)= λβn−1
∫ t

0
exp

[− (λ+μ)y
][
In−1(αy)− In+1(αy)

]
P00(t− y)dy,

P00(t)= 1− λ
∫ t

0
e−(λ+μ)y[I0(αy)− I2(αy)

]
dy

(4.12)

(see Parthasarathy [10]).

Example 4.4 (chain sequence). We consider a birth-death process with birth and death
rates a2n and a2n+1, n= 0,1,2, . . . , satisfying the conditions

a0 = 1, a2n−1 + a2n = 1, a2n−2a2n−1 = γ > 0, n= 1,2,3, . . . . (4.13)

Then the birth and death rates are given by

a2n = τUn+1(1/τ)
2Un(1/τ)

, n= 0,1,2, . . . , a2n−1 = τUn−1(1/τ)
2Un(1/τ)

, n= 1,2,3, . . . , (4.14)

where τ = 2√γ.
The CF representation of f0(s) is given by

f0(s)= 1
s+ 1

− γ

s+ 1
− γ

s+ 1
−··· = 2

τ

p−
√
p2− τ2

τ
, (4.15)

where p = s+ 1.
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Also for n= 1,2,3, . . . ,

fn(s)
fn−1(s)

= 2a2n−2

τ

p−
√
p2− τ2

τ
, (4.16)

and therefore,

fn(s)= 2
τ
Un

(
1
τ

)( p−
√
p2− τ2

τ

)n+1

. (4.17)

From this for n= 0,1,2, . . . ,

P0n(t)= e−tUn

(
1
τ

)
[
In(τt)− In+2(τt)

]
. (4.18)

Example 4.5 (linear rates). Let a2n = a2n+1 = n+ 1, n= 0,1,2, . . . .
Using (4.1),

A(m,2n)=m!

(
n+m

m

)2

. (4.19)

Therefore,

P0n(t)=
∞∑

m=0

(−1)m
(
n+m

m

)

tn+m

= tn

(1 + t)n
, n= 0,1,2, . . . .

(4.20)

This result agrees with Lenin et al. [8, Example 2].

Example 4.6. Let an = (n+ 1)a, n= 0,1,2, . . . , and a > 0, then

A(m,n)= (2m)!
2mm!

(
n+ 2m

2m

)

am. (4.21)

Thus,

P0n(t)=
∞∑

m=0

(−1)m
(2n+ 2m)!

m!n!
(at/2)n+m

(n+m)!
, n= 0,1,2, . . . . (4.22)

Example 4.7 (Rogers-Ramanujan CF). Consider the rates

an = qn+1, n= 0,1,2, . . . , 0 < q < 1. (4.23)

A BDP related to the J-fraction expansion of this has been studied by Parthasarathy et al.
[13]. This CF leads to another BDP when looked as an S-fraction:

f0(s)= 1/s
1

+
q/s

1
+

q2/s

1
+

q3/s

1
+ ··· . (4.24)

This is the celebrated Rogers-Ramanujan CF (Berndt [2]) related to the q-series. Stanley
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[16, pages 235-236] has given an interesting combinatorial interpretation of this CF in
terms of the area under lattice paths.

The q-binomial coefficient is defined as

[
n
j

]

=
⎧
⎪⎨

⎪⎩

(q;q)n
(q;q) j(q;q)n− j

if 0≤ j ≤ n,

0 if j < 0 or j > n.
(4.25)

Here (a;q)n =
∏n−1

i=0 (1− aqi).
It is well known that

∞∑

n=0

[
m+n− 1

n

]

zn = 1
(1− z)(1− zq)

(
1− zq2

)···(1− zqm−1
) (4.26)

(Andrews [1]).
Define

Qm(z)=
∞∑

n=0

A(m,n)zn, A(0,n)= 1. (4.27)

The recurrence relation (4.1) gives

Qm(z)= 1
z(1− z)

Qm−1(qz)− 1
z(1− z)

A(m− 1,0). (4.28)

From this we obtain

Q0(z)= (1− z)−1,

Qm(z)= 1

zmq(m2)∏m
i=0

(
1− zqi

) −
m−1∑

k=0

A(k,0)

zm−kq(m−k2 )∏m−k−1
i=0

(
1− zqi

) .
(4.29)

Using (4.26),

Qm(z)= 1

q(m2)

∞∑

r=0

[
m+ r
r

]

zr−m−
m−1∑

k=0

A(k,0)

q(m−k2 )

∞∑

r=0

[
m+ r− k− 1

r

]

zr+k−m. (4.30)

Comparing coefficients on each side, for m≥ 1 and n= 0,1,2, . . . ,

A(m,n)= 1

q(m2)

[
2m+n
m

]

−
m−1∑

k=0

1

q(m−k2 )

[
2m+n− 2k− 1

m− k− 1

]

A(k,0). (4.31)

For n= 0,

A(m,0)= 1

q(m
2)

[
2m
m

]

−
m−1∑

k=0

1

q(m−k2 )

[
2m− 2k− 1
m− k− 1

]

A(k,0). (4.32)
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The above recursion leads to A(1,0)= q and for m= 2,3,4, . . . ,

A(m,0)=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

M1(1− q) 1
M2
(
1− q2

)
M1 1

M3
(
1− q3

)
M2 M1 1

...
...

. . .
. . .

Mm
(
1− qm

)
Mm−1 Mm−2 ··· M1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (4.33)

where Mm = qm
2
/
∏m

i=1(1− qi), m= 1,2,3, . . . .
We then obtain for n= 0,1,2, . . . ,

P0n(t)= qn
2
∞∑

m=0

{
1

q(m
2)

[
2m+n
m

]

−
m−1∑

k=0

1

q(m−k
2 )

[
2m+n− 2k− 1

m− k− 1

]

A(k,0)

}
tm+n

(m+n)!
.

(4.34)

In the following section, we present the transient solution of a finite state-dependent
BDP with examples.

5. Finite BDPs

For a finite state-dependent BDP with birth and death rates a2n (0≤ n≤N − 1) and a2n−1

(1≤ n≤N), respectively, the transient probabilities

P0n(t)= Ln−1

∞∑

m=0

(−1)mA(m,2n)
tm+n

(m+n)!
, n= 0,1,2, . . . ,N , (5.1)

where

A(m,n)=
n∑

i1=0

ai1

i1+1∑

i2=0

ai2

i2+1∑

i3=0

ai3 ···
im−1+1∑

im=0

aim , (5.2)

with A(0,n)= 1 for every n, and an = 0 if n≥ 2N .
If N = 1,

f0(s)=
∞∑

m=0

(−1)m
A(m,0)
sn+1

, f1(s)= a0

∞∑

m=0

(−1)m
A(m,1)
sn+2

, (5.3)

where

A(m,0)= a0
(
a0 + a1

)m−1
, m= 1,2,3, . . . , A(0,0)= 1,

A(m,1)= (a0 + a1
)m

, m= 0,1,2, . . . .
(5.4)

Or,

P00(t)= a1

a0 + a1
+

a0

a0 + a1
exp

[− (a0 + a1
)
t
]
,

P01(t)= a0

a0 + a1
− a0

a0 + a1
exp

[− (a0 + a1
)
t
]
.

(5.5)
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If N = 2,

A(m,0)= a0

r1− r2

[(
rm1 − rm2

)− (a2 + a3
)(
rm−1

1 − rm−1
2

)]
, m= 1,2,3, . . . , (5.6)

where

r1
(
or r2

)= 1
2

[
a0 + a1 + a2 + a3±

√(
a0 + a1 + a2 + a3

)2− 4
(
a0
(
a2 + a3

)
+ a1a3

)
]

, (5.7)

with A(0,0)= 1, and for m= 0,1,2, . . . ,

A(m,2)= 1
r1− r2

[(
rm+1

1 − rm+1
2

)− a3
(
rm1 − rm2

)]
,

A(m,3)= 1
r1− r2

[
rm+1

1 − rm+1
2

]
.

(5.8)

We then obtain

P00(t)=
[

1− a0
(
a2 + a3

)

r1r2

]
+

a0

r1− r2

[
1− a2 + a3

r1

]
e−r1t +

a0

r1− r2

[
a2 + a3

r2
− 1

]
e−r2t,

P01(t)= a0a3

r1r2
+

a0

r1− r2

[(
a3

r1
− 1

)
e−r1t +

(
1− a3

r2

)
e−r2t

]
,

P02(t)= a0a2

r1r2
+

a0a2e−r1t

r1
(
r1− r2

) − a0a2e−r2t

r2
(
r1− r2

) .

(5.9)
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