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1. Introduction

The usual framework of control is the one given in probably the most studied control
problem, stochastic regulator control problem, which deals with minimizing a perfor-
mance index of a system governed by a set of differential equations. The stochastic linear
regulator problem has been studied by many authors including Bensoussan [4], Flem-
ing and Soner [9] for nondegenerate diffusions. Da Prato [8] gives the solution to the
stochastic linear regulator for the degenerate systems related to Riccati equations (i.e.,
any ordinary differential equation) for the quadratic case with infinite horizon. But he
has not established the existence of a classical solution of the Hamilton-Jacobi-Bellman
(HJB) equation (i.e., a partial differential equation in the optimal control theory) to the
linear regulator control problem. Here we have studied an extended stochastic control
problem of the linear regulator for the degenerate diffusions by considering the general
case with infinite horizon.

We are concerned with the stochastic control problem to minimize the discounted
expected cost:

J(c)= E
[∫∞

0
e−αt

{
f
(
xt
)

+
∣∣ct∣∣m

}
dt
]

(1.1)
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over c ∈� subject to the degenerate stochastic differential equation

dxt =
[
Axt + ct

]
dt+ σxtdwt, x0 = x ∈R, t ≥ 0, (1.2)

for α > 0, m≥ 0, nonzero constants A, σ �= 0, and a continuous function f onR such that

0≤ f (x)≤ K
(
1 + |x|m), x in R, (1.3)

k0|x|m− k1 ≤ f (x) (1.4)

for some constants K , k0, k1 > 0. Here, (wt) is a one-dimensinal standard Brownian mo-
tion on a complete probability space (Ω,�,P) endowed with the natural filtration �t

generated by σ(ws,s≤ t), and � denotes the class of all �t-progressively measurable pro-
cesses c = (ct) with J(c) <∞.

We also refer to Bensoussan [4], Fleming and Soner [9] for nondegenerate diffusions,
and also Da Prato [8] for the degenerate stochastic system from the view of Riccati equa-
tions in case of f (x)= Kx2 and m= 2.

The main purpose of the linear regulator problem (1.1) and (1.2) is to give a synthe-
sis of optimal control for degenerate stochastic systems by a classical solution u of the
associated HJB equation

H(x,u,u′,u′′) := αu−
{

1
2
σ2x2u′′ +Axu′ + min

r∈R
(|r|m + ru′

)
+ f (x)

}
= 0 in R,

(1.5)

where α > 0, ux, uxx are partial derivatives of u(x, t) with respect to x. Generaly speaking,
the difficulty stems from the degeneracy in the second-order term of (1.5).

Our objective is to find the viscosity solution for u of (1.5) following Bardi and
Capuzzo-Dolcetta [2], Crandall et al. [6], Fleming and Soner [9] through the limit of
the solution v = vL, L > 0, to the HJB equation

αvL(r)−
{

1
2
σ2x2v′′L (r) +Axv′L(r) + min

|r|≤L
(|r|m + rv′L(r)

)
+ f (x)

}
= 0 in R (1.6)

as L→∞, where the value function vL can be defined as a function whose value is the
minimum value of the objective function of the control problem for the system, that is,

vL(t,x)= inf
c∈�L

J(c) as L−→∞, (1.7)

where �L = {for all c = (ct)∈� such that |ct| ≤ L for all t≥0}. Also our study deals with
the smoothness of the viscosity solution u of (1.5) using a convexity argument of vL(x)
and u(x).

To this end, we assume that f is uniformly continuous with m-weight, that is, there
exists Cρ > 0, for any ρ > 0, such that

∣∣ f (x)− f (y)
∣∣≤ Cρ|x− y|m + ρ

(
1 + |x|m + |y|m) ∀x, y ∈R. (1.8)

We notice that (1.8) is fulfilled for f (x)= |x|μ, 0≤ μ≤m, and plays an important role as
treated in Koike and Morimoto [12], Menaldi and Robin [14].
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In Section 2, we show that the value function u(x) := limL→∞ vL(x) is a viscosity solu-
tion of (1.5). Section 3 is devoted to the study of smoothness of u. Finally, in Section 4,
we present an optimal control of the control problem (1.1) and (1.2).

2. Viscosity solutions

We studied here the properties of the value function vL(x) using the method of dynamic
programming, initiated by Bellman [3] and and showed that vL(x) converges to a viscosity
solution u(x) of the Bellman equation (1.5).

The notion of viscosity solutions to HJB equation was introduced by Crandall and
Lions [7] in the early 80’s and requires only the solution to be continuous and by Lions
[13] for second-order equations. Crandall et al. [6] showed a modern presentation of this
notion of solution in the User’s Guide to viscosity solutions and Fleming and Soner [9]
also described the connections with control problems. Bardi and Capuzzo-Dolcetta [2]
showed an introduction to the theory limited to first-order equations. They also charac-
terized the value function as a viscosity solution of HJB equation.

Let ω : R 
→ R be a scalar function, defined on an open set R ⊆ R2. In the following,
we consider the second-order, partial differential equation

H
(

x,ω(x),ω′(x),ω′′(x)
)= 0 in R. (2.1)

Here H :R×R×R×R→R is a continuous (nonlinear) function.
The set of superdifferentials of ω at a point x is defined as

J2,+ω(x)=
{

(p,q)∈R2 : limsup
y→x

ω(y)−ω(x)− p · (y− x)− (1/2)q|y− x|2
|y− x|2 ≤ 0

}
. (2.2)

Similarly, the set of subdifferentials of ω at a point x is defined as

J2,−ω(x)=
{

(p,q)∈R2 : lim inf
y→x

ω(y)−ω(x)− p · (y− x)− (1/2)q|y− x|2
|y− x|2 ≥ 0

}
,

(2.3)

where (·) stands for the scalar product of two vectors in R2.
We recall by Crandall et al. [6] the definition of viscosity solutions of (2.1) in terms of

sub- and superdifferentials.

Definition 2.1. A function ω ∈ C(R) is called a viscosity subsolution of (2.1) if,

H
(

x,ω(x),p,q
)≤ 0 for every x ∈R∀(p,q)∈ J2,+ω(x). (2.4)

Similarly, a function ω ∈ C(R) is called a viscosity supersolution of (2.1) if

H
(

x,ω(x),p,q
)≥ 0 for every x ∈R∀(p,q)∈ J2,−ω(x). (2.5)

ω ∈ C(R) is a viscosity solution of (2.1) if it is both viscosity sub- and supersolutions of
(2.1).

We now turn to the second definition of a viscosity solution which is equivalent to the
previous one.
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Equivalent definition. A function ω ∈ C(R) is called a viscosity subsolution of (2.1) if,
for every ϕ∈ C2(R), ω−ϕ has a local maximum at x ∈R, then

H
(

x,ω(x),ϕ′(x),ϕ′′(x)
)≤ 0. (2.6)

Similarly, a function ω ∈ C(R) is called a viscosity supersolution of (2.1) if, for every
ϕ∈ C2(R), ω−ϕ has a local minimum at x ∈R, then

H
(

x,ω(x),ϕ′(x),ϕ′′(x)
)≥ 0. (2.7)

In order to ensure the integrability of J(c), we assume that

−α+
1
2
σ2m(m− 1) +m|A| < 0. (2.8)

Lemma 2.2. Let 2≤ μ≤m. Then, under (2.8),

E
[
e−αt

∣∣xt∣∣μ +
∫ t

0
e−αs

∣∣xs∣∣μds
]
≤ κμ

(
|x|μ +E

[∫ t

0
e−αs

∣∣cs∣∣μds
])

, (2.9)

for some constant κμ > 0, depending on μ.

Proof. By (2.8), we take β ∈ (0,α) such that

−β+
1
2
σ2μ(μ− 1) +μ|A| < 0. (2.10)

Itô’s formula gives

e−αt
∣∣xt∣∣μ = |x|μ +

∫ t

0
e−αs

{
−α

∣∣xs∣∣μ +μ
∣∣xs∣∣μ−1

sgn
(
xs
)(
Axs + cs

)

+
1
2
μ
(
μ− 1

)
σ2

∣∣xs∣∣μ
}
ds+

∫ t

0
e−αsμ

∣∣xs∣∣μσdws

= |x|μ +
∫ t

0
e−αs

(
−α+

1
2
μ(μ− 1)σ2 +μ|A|+β−β

)∣∣xs∣∣μds

+
∫ t

0
e−αsμ

∣∣xs∣∣μ−1
sgn

(
xs
)∣∣cs∣∣ds+

∫ t

0
e−αsμ

∣∣xs∣∣μσdws.

(2.11)

Using a usual localizing argument, we have by (2.10),

E
[
e−α(τn∧t)∣∣xτn∧t

∣∣μ]≤ |x|μ +E
[∫ τn∧t

0
e−αs

{− (α−β)
}∣∣xs∣∣μds

]

+E
[∫ τn∧t

0
e−αsμ

∣∣xs∣∣μ−1
sgn

(
xs
)∣∣cs∣∣ds

]
.

(2.12)
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So

E
[
e−αt

∣∣xt∣∣μ + (α−β)
∫ t

0
e−αs

∣∣xs∣∣μds
]
≤ |x|μ +E

[∫ t

0
e−αsμ

∣∣xs∣∣μ−1
sgn

(
xs
)∣∣cs∣∣ds

]

≤ |x|μ +E
[∫ t

0
e−αsμ

∣∣xs∣∣μ−1∣∣cs∣∣ds
]
.

(2.13)

We set q = μ/(μ− 1) and choose γ > 0 such that (β − α)/2 + (1/q)γqμq < 0. Then, by
Young’s inequality,

μ
∣∣xs∣∣μ−1∣∣cs∣∣≤ 1

q

(
γμ

∣∣xs∣∣μ−1
)q

+
1
μ

(
1
γ

∣∣cs∣∣
)μ

≤ α−β

2

∣∣xs∣∣μ +
1
μγμ

∣∣cs∣∣μ.
(2.14)

Therefore, we deduce (2.9). �

Theorem 2.3. Assume (1.3), (1.4), (1.8), and (2.8). Then

0≤ vL(x)≤ K
(
1 + |x|m), (2.15)

vL(x) fulfills (1.8) with some constant Cρ, independent of L, (2.16)

where K = K(1/α+ κm).

Proof. Let (zt) be the unique solution of

dzt = Aztdt+ σztdwt, z0 = x. (2.17)

Then, by (1.3) and Lemma 2.2,

vL(x)≤ E
[∫∞

0
e−αt f

(
zt
)
dt
]
≤ KE

[∫∞
0
e−αt

(
1 +

∣∣zt∣∣m
)
dt
]

≤ K

α
+Kκm

(
|x|m +E

[∫∞
0
e−αt

∣∣ct∣∣mdt
])

= K

α
+Kκm|x|m

≤ K
(
1 + |x|m),

(2.18)

which implies (2.15). To prove (2.16), we set Jc(x)= J(c) and denote by CL the class of all
c ∈�L satisfying

E
[∫∞

0
e−αt

∣∣xt∣∣mdt
]
≤ θ

(
1 + |x|m), (2.19)
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where θ = (K + 1 + k1/α)/k0. Since there exists c ∈�L, for any integer n ≥ 1, such that
Jc(x)≤ vL(x) + 1/n, we have by (1.4) and (2.15),

k0E
[∫∞

0
e−αt

∣∣xt∣∣mdt
]
− k1

α
≤
(
k+

1
n

)(
1 + |x|m). (2.20)

This yields that such c belongs to CL, and thus

vL(x)= inf
c∈�L

Jc(x). (2.21)

Let (yt) be the solution yt of (1.2) with y0 = y. It is clear that xt − yt fulfills (2.17) with
initial condition x− y. Hence, by (1.8), (2.21), and Lemma 2.2,

∣∣vL(x)− vL(y)
∣∣≤ sup

c∈�L

∣∣Jc(x)− Jc(y)
∣∣

≤ sup
c∈�L

E
[∫∞

0
e−αt

∣∣ f (xt)− f
(
yt
)∣∣dt

]

≤ sup
c∈�L

E
[∫∞

0
e−αt

{
Cρ

∣∣xt − yt
∣∣m + ρ

(
1 +

∣∣xt∣∣m +
∣∣yt∣∣m

)}
dt
]

≤ Cρκm|x− y|m +
ρ

α
+ 2ρθ

(
1 + |x|m + |y|m)

= Cρ|x− y|m + ρ
(
1 + |x|m + |y|m),

(2.22)

where Cρ = Cρκm and ρ = ρ/(1/α + 2θ). Therefore, we deduce (2.16), completing the
proof. �

Theorem 2.4. Under the assumptions of Theorem 2.3, the dynamic programming principle
holds for vL(x), that is, for any stopping time τ,

vL(x)= inf
c∈�L

E
[∫ τ

0
e−αt

{
f
(
xt
)

+
∣∣ct∣∣m

}
dt+ e−ατvL

(
xτ
)]
. (2.23)

Proof. We denote v(x) the right-hand side of (2.23). By the formal Markov property,

E
[∫∞

τ
e−αt

{
f
(
xt
)

+
∣∣ct∣∣m

}
dt |�τ

]
= e−ατJc̃

(
xτ
)
, (2.24)

with c̃ equal to c shifted by τ. Thus

Jc(x)= E
[∫ τ

0
+
∫∞
τ
e−αt

{
f
(
xt
)

+
∣∣ct∣∣m

}
dt
]

≥ E
[∫ τ

0
e−αt

{
f
(
xt
)

+
∣∣ct∣∣m

}
dt+ e−ατvL

(
xτ
)]
.

(2.25)
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It is known in Fleming and Soner [9], Nisio [15] that this formal argument can be verified,
and we deduce vL(x)≥ v(x).

To prove the reverse inequality, we take 0 < δ < 1 with Cρδm < ρ for any ρ > 0. Then,
by (2.22), we have for |x− y| < δ,

∣∣vL(x)− vL(y)
∣∣≤ sup

c∈�L

∣∣Jc(x)− Jc(y)
∣∣≤ Cρδ

m + ρ
(
1 + |x|m + |y|m)

< Ξρ(x) := ρ
(
2m + 2

)(
1 + |x|m).

(2.26)

Let {Si} be a sequence of disjoint subsets of R such that

diam
(
Si
)
< δ,

⋃
i

Si =R. (2.27)

By (2.21), for any i, we take x(i) ∈ Si and c(i) ∈�L such that

Jc(i)

(
x(i))≤ vL

(
x(i))+ ρ. (2.28)

On the other hand, by the definition of v(x), we can find c ∈�L such that

v(x) + ρ≥ E
[∫ τ

0
e−αt

{
f
(
xt
)

+
∣∣ct∣∣m

}
dt+ e−ατvL

(
xτ
)]
. (2.29)

Define cτ ∈�L by

cτt = ct1{t<τ} +
∑
i

c(i)
t−τ1xτ∈Si1{t≥τ}. (2.30)

Then we have

c̃t
τ =

∑
i

c(i)
t 1xτ∈Si , for xτ ∈ Si,

Jc(i)

(
xτ
)= Jc(i)

(
xτ
)− Jc(i)

(
x(i))+ Jc(i)

(
x(i))

≤ Ξρ
(
xτ
)

+ Jc(i)

(
x(i))≤ Ξρ

(
xτ
)

+ vL
(
x(i))+ ρ

≤ Ξρ
(
xτ
)− vL

(
xτ
)

+ vL
(
x(i))+ vL

(
xτ
)

+ ρ

≤ 2Ξρ
(
xτ
)

+ vL
(
xτ
)

+ ρ.

(2.31)
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Using the formal Markov property, we have by Lemma 2.2,

v(x) + ρ≥ E
[∫ τ

0
e−αt

{
f
(
xt
)

+
∣∣ct∣∣m

}
dt+ e−ατ

(
Jc̃τ

(
xτ
)− 2Ξρ

(
xτ
)− ρ

)]

= E
[∫ τ

0
e−αt

{
f
(
xτt
)

+
∣∣cτt

∣∣m}dt+E
[∫∞

τ
e−αt

{
f
(
xτt
)

+
∣∣cτt

∣∣m}dt |�τ

]]

− 2E
[
e−ατΞρ

(
xτ
)]− ρ

= E
[∫ τ

0
e−αt

{
f
(
xτt
)

+
∣∣cτt

∣∣m}dt+E
[∫∞

τ
e−αt

{
f
(
xτt
)

+
∣∣cτt

∣∣m}dt |�τ

]]

− 2ρ
(
2m + 2

)
E
[
e−ατ

(
1 +

∣∣xτ∣∣m
)]
− ρ

≥ vL(x)− 2ρ
(
2m + 2

)[
κm

(
|x|m +E

[∫ τ

0
e−ατ

∣∣cτ∣∣mdτ
])]

− ρ

≥ vL(x)− 2ρ
(
2m + 2

)[(
1 + κm|x|m

)
+ κmE

[∫∞
0
e−αs

∣∣cs∣∣mds
]]
− ρ

≥ vL(x)− 2ρ
(
2m + 2

)(
1 + κm +

κmLm

α

)(
1 + |x|m)− ρ

= vL(x)− 2
(

1 + κm +
κmLm

α

)
Ξρ(x)− ρ,

(2.32)

where xτt is the response to cτt with xτ0 = xτ . Letting ρ→ 0, we deduce v(x)≥ vL(x), which
completes the proof. �

Theorem 2.5. Under the assumptions of Theorem 2.3, u is a viscosity solution of (1.5),
which satisfies (1.3) and (1.8).

Proof. We note by Lemma 2.2 that for 0≤ μ≤m,

E
[∫ h

0

∣∣xt∣∣μdt
]
≤ eαhE

[∫ h

0
e−αt

∣∣xt∣∣μdt
]

≤ eαh
∫ h

0
κμ

(
|x|μ +E

[∫∞
0
e−αs

∣∣cs∣∣μds
])

≤ eαhhκμ

(
|x|μ +E

[∫∞
0
e−αs

∣∣cs∣∣μds
])

, h > 0,

(2.33)

and by the moment inequalities for local martingales (Karatzas and Shreve [11]),

E

[
sup

0≤s≤h

∣∣xs− x
∣∣μ
]
≤ 3μE

[(∫ h

0

∣∣Axt∣∣dt
)μ

+
(∫ h

0

∣∣ct∣∣dt
)μ

+

(
sup

0≤s≤h

∣∣∣∣
∫ s

0
σxtdwt

∣∣∣∣
)μ]

≤ 3μ
(
|A|μhμ−1E

[∫ h

0

∣∣xt∣∣μdt
]

+ eαhhμ−1E
[∫∞

0
e−αt

∣∣ct∣∣μdt
]

+Chμ/2−1E
[∫ h

0

∣∣xt∣∣μdt
])

(2.34)
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for some constant C > 0. Hence, taking μ= 2, we have

lim
h→ 0

sup
c∈�L

E

[
sup

0≤s≤h

∣∣xs− x
∣∣2
]
= 0. (2.35)

Recall by (1.8) that f is uniformly continuous on each compact interval. Thus we can
apply a standard result of viscosity solutions (Crandall et al. [6, Theorem 3.1, page 220])
to observe that vL is a viscosity solution of

αV −
{

1
2
σ2x2V ′′ +AxV ′ + min

r≤L
(|r|m + rV ′)+ f (x)

}
= 0 in R. (2.36)

Now we can define u(x) by u(x)= limL→∞ vL(x) being nonincreasing. By Theorem 2.3,
it is clear that u fulfills (1.3) and (1.8). Thus by Dini’s theorem (Apostol [1]), we can ob-
serve the locally uniform convergence and the viscosity property of u (Crandall et al. [6]).
The proof is complete. �

3. Classical solutions

We studied the smoothness of the viscosity solution u of (1.5). In what follows, we say that
u is a classical solution of (1.5) if it is twice differentiable and satisfies the equation point-
wise. The value function, in general, is not smooth even for smooth systems. In order to
prove the smoothness of the viscosity solution u of (1.5), we used a convexity argument
of vL(x), u(x) and the technique of viscosity solutions is used to construct solutions.

Theorem 3.1. Assume (1.3), (1.4), (1.8), and (2.8). Then

u∈ C2(R \ {0}). (3.1)

Proof
Step 1. By the convexity of u, we recall a classical result of Fleming and Soner [9] to see
that lebesgue measure of R \�∪{0} = 0, where

�= {x ∈R : u is twice differentiable at x}. (3.2)

By the definition of twice differentiability, we have

(
u′(x),u′′(x)

)∈ J+2u(x)∩ J−2u(x) ∀x ∈�, (3.3)

and hence

−αu+
1
2
σ2x2u′′ +Axu′ + (1−m)

( |u′|
m

)m/(m−1)

+ f (x)= 0 ∀x ∈�. (3.4)
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Let d+u(x) and d−u(x) denote the right- and the left-hand drrivatives of u(x), respec-
tively. Define r±(x) by

−αu(x) +
1
2
σ2x2r±(x) +Axd±u(x) + (1−m)

(∣∣d±u(x)
∣∣

m

)m/(m−1)

+ f (x)= 0 ∀x ∈ (
R \ {0}).

(3.5)

Since d+u= d−u= u′ on �, we have r+ = r− = u′′ a.e. By definition, d+u(x) is right con-
tinuous, and so is r+(x). Hence it is easy to see that

u(y)−u(x)=
∫ y

x
d+u(s)ds,

d+u(s)−d+u(x)=
∫ s

x
r+(t)dt, s > x.

(3.6)

Thus we get

R(u; y) :=
{
u(y)−u(x)−d+u(x)(y− x)− 1/2r+(x)|y− x|2}

|y− x|2

=
∫ y
x

(
d+u(s)−d+u(x)− r+(x)(s− x)

)
ds

|y− x|2

=
∫ y
x

{∫ s
x

(
r+(t)− r+(x)

)
dt
}
ds

|y− x|2 −→ 0 as y ↓ x.

(3.7)

Step 2. We claim that u(x) is differentiable at x ∈ R \�∪{0}. It is well known in Bardi
and Capuzzo-Dolcetta [2], Clarke [5] that

∂u(x)= [
d+u(x),d−u(x)

] ∀x ∈ (
R \ {0}), (3.8)

where ∂u(x) is the generalized gradient of u at x. Suppose d+u(x) > d−u(x). Set

p̂ = ξd+u(x) + (1− ξ)d−u(x),

r̂ = ξr+(x) + (1− ξ)r−(x), 0 < ξ < 1.
(3.9)

If

lim inf
y→x

R(u; y) < 0, (3.10)

then we can find a sequence yn→ x such that limn→∞R(u; yn) < 0. By (3.7), we may con-
sider that yn ≤ yn+1 < x for every n, taking a subsequence if necessary. Hence

lim
n→∞

u
(
yn
)−u(x)−d+u(x)

(
yn− x

)
∣∣yn− x

∣∣ ≤ 0, (3.11)
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this leads to d+u(x)≤ d−u(x), which is a contradiction. Thus we have (d+u(x),r+(x))∈
J2,−u(x) and similarly, (d−u(x),r−(x)) ∈ J2,−u(x). By the convexity of J2,−u(x), we get
( p̂, r̂)∈ J2,−u(x). Now we note that

( p̂)m < ξ
(
d+u(x)

)m
+ (1− ξ)

(
d−u(x)

)m
, (3.12)

and hence by (3.5),

−αu(x) +
1
2
σ2x2r̂ +Axp̂+

(1−m)
mm/m−1

(∣∣∂u(x)
∣∣)m(2−m)/(m−1)| p̂|m + f (x) > 0. (3.13)

On the other hand, by the definition of viscosity solution,

−αu(x) +
1
2
σ2x2q+Axp+ (1−m)

( |p|
m

)m/(m−1)

+ f (x)≤ 0 ∀(p,q)∈ J2,−u(x), (3.14)

which is a contradiction. Therefore, we deduce that ∂u(x) is a singleton, and so u is dif-
ferentiable at x Clarke [5].
Step 3. We claim that u′ is continuous on (R \ {0}). Let xn → x and pn = u′(xn) → p.
Then by convexity, we have

u(y)≥ u(x) + p(y− x) ∀y. (3.15)

Hence we see that p ∈D−u(x), where

D−u(x)=
{
p ∈R : liminf y→x

{
u(y)−u(x)− p(y− x)

}
|y− x| ≥ 0

}
. (3.16)

Since ∂u(x) = D−u(x) and ∂u(x) is a singleton, we deduce p = u′(x) by Bardi and
Capuzzo-Dolcetta [2, Proposition 4.7, page 66].
Step 4. We set w = u′. Since

−αu(xn)+
1
2
σ2x2

nw
′(xn)+Axnw

(
xn
)

+ (1−m)
(∣∣w(xn)∣∣

m

)m/(m−1)

+ f
(
xn
)= 0, xn ∈�,

(3.17)

the sequence {w′(xn)} converges uniquely as xn → x ∈ R \�∪ {0}, and w is Lipschitz
near x by monotonicity. Hence, we have a well-known result in nonsmooth analysis that
∂w(x) coincides with the convex hull of the set

D∗w(x)= {
q ∈R : q = lim

n→∞w
′(xn), xn ∈�→ x

}
. (3.18)

Then

−αu(x) +
1
2
σ2x2q+Axw(x) + (1−m)

(∣∣w(x)
∣∣

m

)m/(m−1)

+ f (x)= 0 ∀q ∈ ∂w(x).

(3.19)
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Hence we observe that ∂w(x) is a singleton, and then w(x) is differentiable at x. The
continuity of w′(x) follows immediately. Thus we conclude that w ∈ C1(R \ {0}) and
(R \�∪{0}) is empty. The proof is complete. �

Theorem 3.2. Make the assumptions of Theorem 2.3. Further, assume that

f (x) : convex, (3.20)

f (x)/x2 −→ f̂ ∈R+ as x −→ 0. (3.21)

Then

u∈ C1(R)∩C2(R \ {0}). (3.22)

In addition, if f̂ = 0, then

u∈ C2(R). (3.23)

Proof. We first observe that vL is a viscosity solution of the boundary value problem:

V ′′ +G(x,V ,V ′)= 0 in (a,b),

V(a)= vL(a), V(b)= vL(b),
(3.24)

for any interval [a,b]⊂R \ {0}, where

G(x,V ,V ′)= 2
{−αV +AxV ′ + min|r|≤L

(|r|m + rV ′)+ f (x)
}

σ2x2
= 0. (3.25)

Standard elliptic regularity theory (Fleming and Soner [9, Theorem 4.1]) and the unique-
ness of viscosity solutions (Crandall et al. [6]) yield that vL is smooth in (a,b). Since
m≥ 2, we note that

∣∣∣∣min
|r|≤L

(|r|m + rv′L
)∣∣∣∣≤

∣∣∣∣min
r∈R

(|r|m + rv′L
)∣∣∣∣= (m− 1)

(∣∣v′L
∣∣

m

)m/(m−1)

≤ (m− 1)

⎧⎨
⎩
(∣∣v′L

∣∣
m

)2

+ 1

⎫⎬
⎭ .

(3.26)

Then by the Theorem 3.1, we have u∈ C2(R \ {0}).
To prove (3.22), it suffices to show that u satisfies

u′(x)= o(1) as x −→ 0, (3.27)

since, under (3.20), vL and u are convex by (Fleming and Soner [9, Chapter 4, Lemma

10.6]). By (3.21), there exists λ > 0, for any ε > 0 such that f (x) ≤ ( f̂ + ε)x2 for |x| < λ,
and hence, by (1.3),

f (x)≤ ( f̂ + ε)x2 +K
(

1
λm

+ 1
)
|x|m, ∀x ∈R. (3.28)
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By (2.17) and Lemma 2.2, we have u(x) ≤ E[
∫∞

0 e−αt f (zt)dt] ≤ C(κ2x2 + κm|x|m), and
then

u(x)=O
(
x2) as x −→ 0. (3.29)

By convexity,

u(y)≥ u(x) +u′(x)(y− x), x �= 0. (3.30)

Substituting y = 2x and y = 0, we get u(2x)≥ u(x) +u′(x)x and u(x)−u′(x)x ≤ u(0)= 0
by (3.29). Thus

u(2x)
x2

≥ u′(x)
x

≥ u(x)
x2

, (3.31)

and then

u′(x)=O(x) as x −→ 0, (3.32)

which implies (3.27). Finally, suppose f̂ = 0. Then, by virtue of (3.28), we have u(x) =
o(x2) as x→ 0. Moreover, by (3.31), u′(x)= o(x) as x→ 0. Dividing (1.5) by x2 and pass-
ing to the limit, we get u′′(0)= 0 which implies (3.23). �

4. Optimality

The optimal control for the linear regulator problem is a linear function of x(t). This is
particularly convenient for implementation. Because of this, controls have been designed
for many nonlinear problems as well as linear problems, using the solution of the linear
regulator problem. We will give an optimal control of the stochastic control problem
(1.1), (1.2). Let us consider the stochastic differential equation

dx∗t =
[
Ax∗t +ϕ◦u′(x∗t )]dt+ σx∗t dwt, x∗0 = x, (4.1)

where ϕ◦u′(x∗t ) is the composite function of ϕ and u and ϕ(x) :=−sgn(x)(|x|/m)1/(m−1)

is the minimizer of minr∈R(|r|m + rx), m≥ 0.
The main references for this section are Ikeda and Watanabe [10], and (Karatzas and

Shreve [11, page 219]). Our aim is to prove Theorem 4.1.

Theorem 4.1. Assume (1.3), (1.4), (1.8), (2.8), (3.20), and (3.21). Then the optimal control
c∗t is given by

c∗t = ϕ◦u′(x∗t ). (4.2)

Proof. By (3.22), there exists a weak solution (x∗t ) of (4.1) up to explosion time σ =
inf{t : |x∗t | = ∞} (cf. Ikeda and Watanabe [10, Chapter 4, Theorem 2.3]). We note by
(3.27) and by convexity that xϕ◦u′(x)≤ 0 (Ikeda and Watanabe [10]). Indeed, by (3.27),
u′(0) = 0, since u(x): convex and u ∈ C2(R), so u′′(x′) ≥ 0, x′ ∈ R. Using mean value
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theorem, u′(x)−u′(0)= xu′′(x′)≥ 0 for all x′ ∈ (0,x), u′(x)≥ 0. Again, u′(0)−u′(x)=
(−x)u′′(x′) ≥ 0 for all x′ ∈ (x,0), u′(x) ≤ 0. Now ϕ(x) := −sgn(x)(|x|/m)1/(m−1),
sgn(ϕ(x)) = −sgn(x), sgnϕ(u′(x)) = −sgn(u′(x)), and sgnϕ(u′(x)) = −1 for x ≥ 0 and
sgnϕ(u′(x))= 1 for x ≤ 0. Hence xϕ(u′(x))≤ 0 for both x ≥ 0 and x ≤ 0.

Since, by Itô’s formula,

d
(
x∗t

)2 = 2x∗t dx
∗
t +

1
2
σ2(x∗t )2

2dt

= 2x∗t
[(
Ax∗t +ϕ◦u′(x∗t ))dt+ σx∗t dwt

]
+ σ2(x∗t )2

dt,

d
(
zt
)2 = 2ztdzt +

1
2
σ2(zt)2

2dt

= 2zt
[
Aztdt+ σztdwt

]
+ σ2(zt)2

dt,

(4.3)

by the assumptions of the comparison theorem, we have b1(x)= Ax+ϕ ◦u′(x) + σ2(x)2,
b2(x)= Ax + σ2(x)2 then, we have b1(x) < b2(x) and |σx− σ y| = |σ||x− y|, where σx =
ρ(x), so

∫ ε
0 ρ

−2(x)dx = ∫ ε
0 (σx)−2dx =∞. Thus we can see that (x∗t )2 ≤ (zt)2 by the com-

parison theorem (Ikeda and Watanabe [10]). Since the explosion time σ = inf{t : |x∗t | =
∞}, we have∞= (x∗σ )2 ≤ (zσ)2. Hence σ =∞. By the monotonicity of u′(x) and ϕ(x), we
have ϕ◦u′(y) < ϕ◦u′(x) for y < x. Then

dyt =
[
Ayt +ϕ◦u′(yt)]dt+ σ ytdwt, y0 = x∗,

dx∗t =
[
Ax∗t +ϕ◦u′(x∗t )]dt+ σx∗t dwt, x∗0 = x∗,

d
(
yt − x∗t

)= [
A
(
yt − x∗t

)
+
(
ϕ◦u′(yt)−ϕ◦u′(x∗t ))]dt+ σ

(
yt − x∗t

)
dwt,

(4.4)

by Itô’s formula,

d
(
yt − x∗t

)2 = 2
(
yt − x∗t

)
d
(
yt − x∗t

)
+

1
2
σ2(yt − x∗t

)2
2dt

= 2A
(
yt − x∗t

)2
dt+ 2

(
yt − x∗t

)(
ϕ◦u′(yt)−ϕ◦u′(x∗t ))dt

+ 2σ
(
yt − x∗t

)2
dwt + σ2(yt − x∗t

)2
dt

≤ (
2A+ σ2)(yt − x∗t

)2
dt+ 2σ

(
yt − x∗t

)2
dwt.

(4.5)

Hence

(
yt − x∗t

)2 ≤ (
2A+ σ2)∫ t

0

(
ys− x∗s

)2
ds+ 2σ

∫ t

0

(
ys− x∗s

)2
dws,

E
[(
yt − x∗t

)2
]
≤ (

2A+ σ2)∫ t

0
E
[(
ys− x∗s

)2
]
ds.

(4.6)

Setting ξ(t)= E[(yt − x∗t )2], we obtain ξ(t)≤ K
∫ t

0 ξ(s)ds, for all t ≥ 0, where K > 2A+ σ2.
By Gronwall lemma, we have ξ(t) = 0 a.s. for all t ≥ 0. Therefore, E[(yt − x∗t )2] = 0 a.s.
for all t ≥ 0, from which we have yt ≤ x∗t . So, the uniqueness of (4.1) holds. Thus we con-
clude that (4.1) admits a unique strong solution (x∗t ) (cf. Ikeda Watanabe [10, Chapter 4,
Theorem 1.1]).
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Now, we apply Itô’s formula for convex functions (Karatzas and Shreve [11, 219]) to
obtain

e−αtu
(
x∗t

)= u(x) +
∫ t

0
e−αs

(
−αu+Axu′ + c∗s u

′ +
1
2
σ2x2u′′

)
|x=x∗s ds

+
∫ t

0
e−αsσx∗s u

′dws.

(4.7)

By virtue of (1.5)

E
[
e−α(t∧τn)u

(
x∗t∧τn

)]= u(x)−E
[∫ t∧τn

0
e−αs

{
f
(
x∗s

)
+
∣∣c∗s

∣∣m}ds
]

, (4.8)

where {τn} is a sequence of localizing stopping times for the local martingale. Letting
n→∞ and then t →∞, we get J(c∗) ≤ u(x) and c∗ = (c∗t ) ∈�. Moreover, taking into
account (2.34) with μ =m, again we apply Itô’s formula for convex functions (Karatzas
and Shreve [11, page 219]) and we can see by the same calculation as above that

e−αtu
(
xt
)= u(x) +

∫ t

0
e−αs

(
−αu+Axu′ + csu

′ +
1
2
σ2x2u′′

)
|x=xsds

+
∫ t

0
e−αsσxsu′

(
xs
)
dws

≥ u(x)−
∫ t

0
e−αs

{
f
(
xs
)

+
∣∣cs∣∣m

}
ds+

∫ t

0
e−αsσxsu′

(
xs
)
dws.

(4.9)

Again by virtue of (1.5), we have

E
[
e−αtu

(
xt
)]≥ u(x)−E

[∫ t

0
e−αs

{
f
(
xs
)

+
∣∣cs∣∣m

}
ds
]

, c ∈�. (4.10)

By (1.4), we have

E
[∫∞

0
e−αtk0

∣∣xt∣∣mdt
]
−E

[∫∞
0
e−αtk1dt

]

≤ E
[∫∞

0
e−αt f

(
xt
)
dt
]
≤ E

[∫∞
0
e−αtK

(
1 +

∣∣xt∣∣m
)
dt
]
.

(4.11)

Then

E
[∫∞

0
e−αt

∣∣xt∣∣mdt
]
≤ K + k1

k0α
+
K

k0
E
[∫∞

0
e−αt

∣∣xt∣∣mdt
]

≤ K + k1

k0α
+
Kκm
k0

(
|x|m +E

[∫∞
0
e−αt

∣∣ct∣∣mdt
])

≤ K + k1

k0α
+
Kκm
k0

|x|m + κm
KLm

k0α
<∞

(4.12)

which implies liminf t→∞E[e−αt|xt|m]= 0. Therefore, we deduce u(x)≤ J(c) for all c ∈�.
The proof is complete. �
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