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minimizers of an integral functional of high order by using an interior local regularity
result and a modified Moser method with special test function.

Copyright © 2007 S. Bonafede et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we will study regularity properties of minimizers for integral functionals of
the form

I(u)=
∫
Ω

{
A
(
x,∇2u

)
+A0(x,u)

}
dx, (1.1)

defined in a suitable weighted Banach space; Ω is an open and bounded set of Rn and
∇2u= {Dαu : |α| = 1,2}.

We note that in this paper we obtain our regularity result directly working with the
functional I(u) instead of working with its Euler equation. In fact, we will not suppose any
differentiability of A(x,ξ), principal part of integrand of the functional I(u), but only that
it is a Carathèodory function, convex with respect to ξ, satisfying the following growth
condition: for almost every x ∈Ω and for every ξ = {ξα : |α| = 1,2},

c1

{ ∑
|α|=1

ν(x)
∣∣ξα∣∣q +

∑
|α|=2

μ(x)
∣∣ξα∣∣p

}
− f (x)≤A(x,ξ)

≤ c2

{ ∑
|α|=1

ν(x)
∣∣ξα∣∣q +

∑
|α|=2

μ(x)
∣∣ξα∣∣p

}
+ f (x),

(1.2)
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where c1,c2 are positive constants, f (x) is a nonnegative function, belonging to a suitable
Lebesgue space, and ν(x), μ(x) are positive measurable functions that we will specify later.

This kind of condition, introduced by Skrypnik in [1], is stronger than the one that
is usually considered (see, e.g., [2, 3]), but the usual growth condition in general cannot
give even the boundedness of the minima of I(u) (see [4]).

In [5], boundedness and Hölder continuity for minimizers of the same functional I(u)
in the interior of Ω were already established. Now the aim of this paper is to establish
Hölder continuity up to the boundary of any minimizer u(x).

Under some hypotheses on weighted functions in order to guarantee embedding be-
tween Banach spaces and under some hypotheses of regularity of the boundary ∂Ω, using
the convexity properties of the functionsA(x,ξ) andA0(x,η) and the above growth condi-
tions, we obtain an integral estimate of the gradient of the minimizers. Then the iterative
Moser method (see [6]) opportunely modified permits us to estimate the oscillation of
u(x) near the boundary of Ω. So with the interior regularity result of [5], we obtain our
goal.

In the nondegenerate case, the problem of regularity of minimizers of integral func-
tionals was studied, for example, by [4, 7–9]. Among recent researches, we recall [10–12].

Note that in the case of 2p < q < n, some results on Hölder continuity of solutions
of equations and variational inequalities with degenerate nonlinear high-order operators
have been obtained in [1, 13–16].

2. Hypotheses and statement of main results

In this section, we give hypotheses concerning weighted functions in order to define our
weighted Banach spaces, and to guarantee some embedding results, we give hypotheses
on the integrand functions and state the main result.

Let Ω be a bounded open set of Rn. Let p ≥ 2, q be two real numbers such that 2p <
q < n.

Hypothesis 2.1. Let ν(x) : Ω→R+ be a measurable function such that

ν∈ L1
loc(Ω),

(
1
ν

)1/(q−1)

∈ L1
loc(Ω). (2.1)

W1,q(ν,Ω) is the space of all functions u ∈ Lq(Ω) such that their derivatives, in the
sense of distribution, Dαu, |α| = 1, are functions for which the following properties hold:
ν1/qDαu∈ Lq(Ω) if |α| = 1; W1,q(ν,Ω) is a Banach space with respect to the norm

‖u‖1,q,ν =
(∫

Ω
|u|q dx+

∑
|α|=1

∫
Ω

ν(x)
∣∣Dαu

∣∣q dx
)1/q

. (2.2)

◦
W

1,q

(Ω, ν) is the closure of C∞0 (Ω) in W1,q(ν,Ω).

Hypothesis 2.2. Let μ(x) : Ω→R+ be a measurable function such that

μ∈ L1
loc(Ω),

(
1
μ

)1/(p−1)

∈ L1
loc(Ω). (2.3)
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W
1,q
2,p(Ω,ν,μ) is the space of all functions u∈W1,q(Ω,ν) such that their derivatives, in

the sense of distribution, Dαu,|α| = 2, are functions for which the following properties

hold: μ1/pDαu∈ Lp(Ω) if |α| = 2; W
1,q
2,p(ν,μ,Ω) is a Banach space with respect to the norm

‖u‖ = ‖u‖1,q,ν +

( ∑
|α|=2

∫
Ω
μ(x)

∣∣Dαu
∣∣p

dx

)1/p

. (2.4)

◦
W

1,q

2,p(Ω,ν,μ) is the closure of C∞0 (Ω) in W
1,q
2,p(Ω,ν,μ).

Hypothesis 2.3. We assume the function 1/ν∈ Lt(Ω) with t > n/q.

We put q̃ = nqt/(n(1 + t)− qt). We can easily prove that a constant c0 > 0 exists such

that if u∈ ◦
W

1,q

(Ω,ν), the following inequality holds:

∫
Ω
|u|q̃ dx ≤ c0

(∫
Ω

[
1

ν(x)

]t
dx

)q̃/qt( ∑
|α|=1

∫
Ω

ν(x)
∣∣Dαu

∣∣q dx
)q̃/q

. (2.5)

We set ν̃(x)= μ(x)q/(q−2p)[1/ν(x)]2p/(q−2p).

Hypothesis 2.4. There exists t∗ > nt/(qt−n) such that ν, ν̃∈ Lt∗(Ω).

For every y ∈Rn and ρ > 0, we denote

B(y, ρ)= {
x ∈Rn : |x− y| < ρ

}
. (2.6)

Hypothesis 2.5. There exists a constant c′ > 0 such that for every y ∈Ω and ρ > 0, with
B(y, ρ)⊂Ω, we have

(
ρ−n

∫
B(y,ρ)

[
1

ν(x)

]t
dx

)1/t(
ρ−n

∫
B(y,ρ)

[
ν(x)

]t∗
dx

)1/t∗

≤ c′. (2.7)

We need these previous hypotheses in order to ensure the regularity of minimizers of
our functional in the interior of Ω. To have the regularity to the boundary, we need the
following further hypotheses concerning the boundary of Ω and the extension of weights
on the boundary.

Hypothesis 2.6. There exist c∗, ρ∗ such that for every y ∈ ∂Ω and ρ ∈ ]0,ρ∗[, we have

meas
(
B(y,ρ) \Ω)≥ c∗meas

(
B(y,ρ)

)
. (2.8)

Consequently, Ω belongs to the class S (see, e.g., [17]).
Let us put

Ω̂= {
x ∈Rn : dist (x,Ω) < ρ∗

}
. (2.9)
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Hypothesis 2.7. There exist a positive measurable function ν̂(x) : Ω̂→R and a real positive
number c′′ such that ν̂(x)= ν(x) in Ω and

(i) 1/ ν̂∈ Lt(Ω̂), ν̂∈ Lt
∗
(Ω̂)

(ii) for all y ∈ ∂Ω and ρ ∈ ]0,ρ∗[,

(
ρ−n

∫
B(y,ρ)

[
1

ν̂(x)

]t
dx

)1/t(
ρ−n

∫
B(y,ρ)

[
ν̂(x)

]t∗
dx

)1/t∗

≤ c′′. (2.10)

We denote by Rn,2 the space of all sets ξ = {ξα ∈R : |α| = 1,2} of real numbers.

Hypothesis 2.8. We suppose that A(x,ξ) : Ω × Rn,2→R and A0(x,η) : Ω × R→R are
Carathéodory functions. Moreover, functions A(x,·), A0(x,·) are convex in Rn,2 and R,
respectively, for almost all x ∈Ω.

Hypothesis 2.9. There exist c1,c2 > 0 and a nonnegative function f ∈ Lt
∗
(Ω) such that for

almost x ∈Ω and for every ξ ∈Rn,2, the inequality (1.2) holds.

Hypothesis 2.10. There exist c3 > 0,c4 ∈ [0,c1/c0[, and f0 ∈ Lt
∗
(Ω) such that, almost ev-

erywhere in Ω and for all η ∈R, the following inequality holds:

−c4|η|q− f0(x)≤ A0(x,η)≤ c3|η|q + f0(x). (2.11)

Let I :
◦
W

1,q

2,p(ν,μ,Ω)→R be the functional of the form

I(u)=
∫
Ω

{
A
(
x,∇2u

)
+A0(x,u)

}
dx. (2.12)

From the theory of monotone and coercive operators, it is well known that under the

previous hypotheses there exists u(x) minimizer of I in
◦
W

1,q

2,p(Ω,ν,μ). Moreover, u(x) is
essentially bounded in Ω and Hölder continuous in every compact subset of Ω (see [5]).

Now, we can formulate our regularity result more precisely.

Theorem 2.11. Let u(x) be a minimizer of I(u) in
◦
W

1,q

2,p(ν,μ,Ω), then there exists u(x) :

Ω→R such that u(x)= u(x) a.e. in Ω, and for every x, y ∈Ω, we have

∣∣u(x)−u(y)
∣∣≤ C|x− y|γ, (2.13)

where positive constants C and γ depend only on known values and on ‖u‖Lq̃(Ω).

3. Proof of Theorem 2.11

In this section, we give a proof of Theorem 2.11.
We set

m1 = q2

q− 2p
, σ = 1

2m1

(
q− n

t
− n

t∗

)
. (3.1)
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Let u(x) : Ω→R be a minimizer of I in
◦
W

1,q

2,p(ν,μ,Ω). Let us put

u(x)=
⎧⎨
⎩
u(x), if x ∈Ω,

0, if x ∈Rn \Ω.
(3.2)

Let us fix y ∈Ω and ρ ∈ ]0,(1/2)ρ∗[, and let us put

ω1 = ess inf
B(y,2ρ)

u, ω2 = ess sup
B(y,2ρ)

u, ω = ω2−ω1. (3.3)

It is simple to prove that ω1 ≤ 0 and ω2 ≥ 0.
By Ladyzhenskaya’s lemma (see [8, Lemma 4.8]), it is sufficient to prove that

osc
{
u,B(y,ρ)

}≤ c5 ω+ ρσ , with c5 ∈ ]0,1[. (3.4)

Here and in the sequel, with ci, i = 5,6, . . . , we intend positive constants depending
only on n, p, q, q̃, c0, c1, c2, c3, c4, c′, c′′, t, t∗, ρ∗, c∗, diamΩ, on the norms of 1/ ν̂(x) in
Lt(Ω̂) and f (x) in Lt∗(Ω), and on the norm of u(x) in Lq̃(Ω).

We will assume that

ω ≥ ρσ (otherwise it is clear that (3.4) is true) (3.5)

ω2 ≥ ω

2
. (3.6)

It is known that there exists a set E ⊂ Ω∩ B(y,2ρ) such that measE = 0, and for all
x ∈ (Ω∩B(y,2ρ) \E), we have

ω1 ≤ u(x)≤ ω2. (3.7)

We introduce now the following function:

F(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ω2−u(x) + ρσ

, if x ∈ (
Ω∩B(y,2ρ)

) \E,

1
2ω

, if x ∈ (
Ω \B(y,2ρ)

)∪E,

(3.8)
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and the cutoff function ϕ∈ C∞(Ω), 0≤ ϕ≤ 1 in Ω, defined by

ϕ(x)=
⎧⎪⎨
⎪⎩

1, if x ∈Ω∩B
(
y,

3
2
ρ
)

,

0, if x ∈Ω \B(y,2ρ).
(3.9)

Moreover, we can choose ϕ(x) satisfying |Dαϕ| ≤ c6ρ−|α|, |α| = 1,2.
We observe that if (3.6) does not hold, it is possible to repeat all considerations substi-

tuting u(x)−ω1 + ρσ to ω2−u(x) + ρσ in the definition of function F(x).
Let us fix s > m1 and define

v(x)=
[[

F(x)
]q−1− 1(

ω2 + ρσ
)q−1

]
ϕs(x). (3.10)

It is useful to note that due to (3.6) and (3.7)

∣∣∣∣∣
[
F(x)

]q−1− 1(
ω2− ρσ

)q−1

∣∣∣∣∣≤ 2q−1[F(x)
]q−1

. (3.11)

Thanks to Hypotheses 2.1, 2.2, 2.4 and (3.5), (3.7), (3.11), we have v ∈ ◦
W

1,q

2,p(Ω,ν,μ) and

∣∣Dαv− (q− 1)ϕs(x)Fq(x)Dαu
∣∣≤ c7s

[
ϕ(x)

]s−1[
F(x)

]q−1
ρ−1, for |α| = 1, (3.12)

∣∣Dαv− (q− 1)ϕs(x)Fq(x)Dαu
∣∣

≤ c8s
2[ϕ(x)

]s−2[
F(x)

]q−1
{ ∑
|β|=1

∣∣Dβu
∣∣2

(
ω2−u+ ρσ

)2 + ρ−2

}
for |α| = 2.

(3.13)

Next, if we put

λ= ρσq

q
, z(x)= (q− 1)ϕs(x)Fq(x), (3.14)

it follows that 0≤ λz(x)≤ 1 in Ω.
u(x) being a minimizer for our functional, we have

I(u)≤ I(u− λv), (3.15)

or

∫
Ω
A
(
x,∇2u

)
dx ≤

∫
Ω
A
(
x,∇2u− λ∇2v

)
dx+

∫
Ω
A0

(
x,u− λv

)
dx−

∫
Ω
A0

(
x,u

)
dx.

(3.16)
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Since A(x,ξ) is convex, the first term on the right-hand side can be evaluated in such
a way that

A
(
x,∇2u− λ∇2v

) ≤ (1− λz)A
(
x,∇2u

)
+ λzA

(
x,−H

z

)
, (3.17)

where H(x)=∇2v(x)− z(x)∇2u(x).
From (3.12) and (3.13), using Young’s inequality, we obtain

A
(
x,∇2u− λ∇2v

)≤ (1− λz)A
(
x,∇2u

)
+ λc9s

qε
∑
|α|=1

ν(x)
∣∣Dαu

∣∣qFq(x)ϕs(x)

+ λc10s
qε−m1

[
ρ−qν + ρ−σm1

(
f (x) + ν̃(x)

)]
ϕs−m1 .

(3.18)

Let us evaluate now the term

A0(x,u− λv)≤ A0(x,u) + c11
λ(q− 1)ϕs

ρσq
(
1 + f0(x)

)
. (3.19)

So using Hypothesis 2.9,

∫
Ω

{ ∑
|α|=1

ν(x)
∣∣Dαu

∣∣q
}

(q− 1)Fq(x)ϕs(x)dx

≤ c12s
qε−m1

∫
Ω

[
ρ−qν(x) + ρ−σm1

(
f (x) + ν̃(x) + f0(x) + 1

)][
ϕ(x)

]s−m1dx

+ c9s
qε
∫
Ω

{ ∑
|α|=1

ν(x)
∣∣Dαu

∣∣q
}
Fq(x)ϕs(x)dx,

(3.20)

from which, choosing ε in a suitable way, we obtain

∫
Ω∩B(y,2ρ)

{ ∑
|α|=1

ν(x)
∣∣Dαu

∣∣q
}
Fq(x)ϕs(x)dx

≤ c13s
(m1+1)q

∫
Ω

[
ρ−qν(x) + ρ−σm1

(
ν̃(x) + f (x) + f0(x) + 1

)][
ϕ(x)

]s−m1dx.

(3.21)

Then, definition of ϕ(x) gives

∫
Ω∩B(y,(2/3)ρ)

{ ∑
|α|=1

ν(x)
∣∣Dαu

∣∣q
}
Fq(x) dx ≤ c14

∫
Ω∩B(y,2ρ)

φ(x) dx, (3.22)

where φ(x)= ρ−qν(x) + ρ−σm1 (ν̃(x) + f (x) + f0(x) + 1).
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Let us introduce now the function ϕ1 ∈ C∞(Ω), defined by

ϕ1(x)=

⎧⎪⎪⎨
⎪⎪⎩

1, if x ∈Ω∩B(y,ρ),

0, if x ∈Ω \B
(
y,

3
2
ρ
)

,
(3.23)

with |Dαϕ1| ≤ c15ρ−|α|,|α| = 1,2.
Let us put χ = 2pq/(q− 2p), and let us fix r > 0, s > m1. We define

G(x)=max

{[
F(x)

](q−1)/χ − 1(
ω2 + ρσ

)(q−1)/χ ,0

}
,

w(x)=Gχ(x)
[

log
(
2ωeF(x)

)]r
ϕs

1,

w̃(x)= (q− 1)
[
G(x)

]χ−1[
F(x)

](q−1)/χ+1[
log

(
2ωeF(x)

)]r

+ r
[
G(x)

]χ
F(x)

[
log

(
2ωeF(x)

)]r−1
.

(3.24)

Thanks to Hypotheses 2.1, 2.2, 2.4 and (3.5), (3.7), we can prove that w(x) belongs to
◦
W

1,q

2,p(Ω,ν,μ) and

∣∣Dαw− w̃ϕs
1(x)Dαu

∣∣≤ c16sG
χ(x)

[
log

(
2ωeF(x)

)]r
ρ−1[ϕ1(x)

]s−1
, if |α| = 1,

∣∣Dαw− w̃ϕs
1(x)Dαu

∣∣≤ c17s
2(r + 1)2[G(x)

]χ−2[
F(x)

]2((q−1)/χ)[
log

(
2ωeF(x)

)]r[
ϕ1(x)

]s−2

×
⎧⎨
⎩
( ∑
|β|=1

Dβu

ω2−u+ ρσ

)2

+ ρ−2

⎫⎬
⎭ , if |α| = 2.

(3.25)

Let us put now

λ1 = ρσq

(q+ r)
[

log(2ωe/ρσ)
]r , H1(x)=∇2w(x)− w̃(x)ϕs

1(x)∇2u(x), (3.26)

and we introduce E1 = {x ∈Ω : w̃(x)ϕs
1(x) �=0}.

It is easy to prove that

0≤ λ1w̃(x)ϕs
1(x)≤ 1, ∀x ∈Ω. (3.27)

Taking into account that

I(u)≤ I
(
u− λ1w

)
, (3.28)

we obtain
∫
Ω
A
(
x,∇2u

)
dx ≤

∫
Ω
A
(
x,∇2u− λ1∇2w

)
dx+

∫
Ω
A0

(
x,u− λ1w

)
dx−

∫
Ω
A0(x,u) dx.

(3.29)
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We can write for the first term in the right-hand side

A
(
x,∇2u− λ1∇2w

)≤ (
1− λ1w̃ϕ

s
1(x)

)
A
(
x,∇2u

)
+ λ1w̃ϕ

s
1(x)A

(
x,− H1

w̃ϕs
1(x)

)
, (3.30)

and using Hypothesis 2.9 and Young’s inequality, we derive

A
(
x,∇2u− λ1∇2w

)
≤ (

1− λ1w̃ϕ
s
1(x)

)
A
(
x,∇2u

)
+ c18λ1ε(r + s)q+1

×
{ ∑
|β|=1

ν(x)
∣∣Dβu

∣∣q
}[

G(x)
]χ−1[

F(x)
](q−1)/χ+1

× [
log

(
2ωeF(x)

)]r
ϕs

1(x) + c19λ1ε
−m1 (r + s)m1+1

× [
ρ−qν(x) + ρ−2σm1

(
ν̃(x) + f (x)

)][
log

(
2ωeF(x)

)]r[
ϕ1(x)

]s−m1 .

(3.31)

We evaluate now

A0
(
x,u− λ1w

)≤ A0(x,u) + λ1ϕ
s
1(r + s)

[
log

(
2ωeF(x)

)]r
ρ−σq

(
f0(x) + 1

)
. (3.32)

Then, from (3.31) and (3.32), we have

∫
Ω

{ ∑
|α|=1

ν(x)
∣∣Dαu

∣∣q
}[

G(x)
]χ−1[

F(x)
](q−1)/χ+1[

log
(
2ωeF(x)

)]r
ϕs

1(x)dx

≤ c18

∫
Ω
ε(r+s)q+1

{∑
|β|=1

ν(x)
∣∣Dβu

∣∣q
}[

G(x)
]χ−1[

F(x)
](q−1)/χ+1[

log(2ωeF(x))
]r
ϕs

1(x)dx

+
∫
Ω
ε−m1c19(r + s)m1+1[ρ−qν(x) + ρ−2σm1

(
ν̃(x) + f (x) + f0(x) + 1

)]

×[ log
(
2ωeF(x)

)]r[
ϕ1(x)

]s−m1dx.
(3.33)

And so choosing ε in a suitable way, we obtain

∫
Ω

{ ∑
|α|=1

ν(x)
∣∣Dαu

∣∣q
}[

G(x)
]χ−1[

F(x)
](q−1)/χ+1[

log
(
2ωeF(x)

)]r
ϕs

1(x)dx

≤ c20

∫
Ω

(r + s)m2+1φ1(x)
[

log
(
2ωeF(x)

)]r[
ϕ1(x)

]s−m1dx,

(3.34)

where m2 =m1(q+ 2) and φ1(x)= [ρ−qν(x) + ρ−2σm1 (ν̃(x) + f (x) + f0(x) + 1)].
We define

E0(ρ)=
{
x ∈ B

(
y,

3
2
ρ
)
∩Ω : F(x)≥ 2χ/(q−1)

ω2 + ρσ

}
. (3.35)
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We can suppose that

meas
(
E0(ρ)

) �=0. (3.36)

In fact, if (3.36) is not true, without any difficulties we obtain by the use of (3.6) the same
inequality (3.4). We have

G(x)≥ 1
2

[
F(x)

](q−1)/χ
, ∀x ∈ E0(ρ). (3.37)

Using this fact, inequality (3.34) gives

∫
E0(ρ)

{ ∑
|α|=1

ν(x)
∣∣Dαu

∣∣q
}
Fq(x)

[
log

(
2ωeF(x)

)]r
ϕs

1(x)dx

≤ c21(r + s)m2+1
∫
Ω
φ1(x)

[
log

(
2ωeF(x)

)]r[
ϕ1(x)

]s−m1dx.

(3.38)

Therefore, for every r > 0 and s > m1, using Hölder’s inequality,

∫
E0(ρ)

{ ∑
|α|=1

ν(x)
∣∣Dαu

∣∣q
}
Fq(x)

[
log

(
2ωeF(x)

)
]
r
ϕs

1(x)dx

≤ c21(r + s)c22

(∫
Ω∩B(y,2ρ)

φt∗
1 (x)dx

)1/t∗

×
(∫

Ω∩B(y,2ρ)

[
log

(
2ωeF(x)

)]rt∗/(t∗−1)[
ϕ1(x)

](s−m1)t∗/(t∗−1)
dx

)(t∗−1)/t∗

.

(3.39)

Let us put ϑ= (q̃/q)((t∗ − 1)/t∗), m∗=(m1t∗/(t∗ − 1)), J= log[(2χ/(q−1)+1eω)/(ω2 +ρσ)],
and for any r, s > 0, we define

H(r,s)=
∫
Ω∩B(y,2ρ)

[
log

(
2ωeF(x)

)]r
ϕs

1(x) dx+ Jrρn. (3.40)

We introduce a new cutoff function ϕ2(x) : B(y,2ρ)→R, ϕ2 ∈ C∞(B(y,2ρ)), such that

ϕ2(x)=

⎧⎪⎪⎨
⎪⎪⎩

1, if x ∈ B(y,ρ),

0, if x ∈ B(y,2ρ) \B
(
y,

3
2
ρ
)
.

(3.41)

Let us observe that ϕ2(x)= ϕ1(x) in B(y,2ρ)∩Ω.
We define the following function:

F(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ω2−u+ ρσ

, if x ∈Ω∩B(y,2ρ) \E,

1
2ω

, if x ∈ E,

(3.42)
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and we set

v(x)=
[

max
{[

log
(
2ωeF(x)

)]r
, Jr

}]1/q̃
ϕ
s/q̃
2 (x). (3.43)

We have
∫
Ω∩B(y,2ρ)

[
log

(
2ωeF(x)

)]r
ϕs

1(x) dx ≤
∫
Ω∩B(y,2ρ)

vq̃ dx, (3.44)

and by Hypothesis 2.7, due to v ∈ ◦
W

1,q

(B(y,2ρ), ν̂),

∫
B(y,2ρ)

|v|q̃dx ≤ c̃

(∫
B(y,2ρ)

[
1

ν̂(x)

]t
dx

)q̃/qt( ∑
|α|=1

∫
B(y,2ρ)

ν̂(x)
∣∣Dαv

∣∣q dx
)q̃/q

. (3.45)

From the definition of the function v(x) and (3.39), we have

(∫
B(y,2ρ)

∑
|α|=1

ν̂(x)
∣∣Dαv

∣∣qdx
)q̃/q

≤ c23(r + s)c24

(∫
B(y,2ρ)

φt∗
1 (x)dx

)q̃/qt∗(∫
B(y,2ρ)

[
log

(
2ωeF(x)

)]r/ϑ[
ϕ2(x)

](s/ϑ)−m∗
dx

)ϑ

+ c25J
rsq̃

(
ρ−q

∫
B(y,2ρ)

ν̂(x)dx
)q̃/q

.

(3.46)

From (3.45) and (3.46), using Hypothesis 2.7 and (3.40), we deduce that

∫
B(y,2ρ)

vq̃ dx ≤ c26(r + s)c27ρn(1−ϑ)

[
H

(
r

ϑ
,
s

ϑ
−m∗

)]ϑ

, (3.47)

and taking into account inequality (3.44), finally we obtain

H(r,s)≤ c28(r + s)c29ρn(1−ϑ)

[
H

(
r

ϑ
,
s

ϑ
−m∗

)]ϑ

, (3.48)

for all r > 0 and s > m1(q̃/q).
Now, we can organize the iterative Moser method (see [6]). We introduce for i =

0,1,2, . . . ,

ri = tq

t+ 1
ϑi, si = m∗ϑ

ϑ− 1

(
ϑi+1− 1

)
. (3.49)

Then, (3.48) written with r = ri and s= si gives us

H(ri,si
)≤ c30ρ

n(1−ϑ)ϑic29
[
H
(
ri−1,si−1

)]ϑ
. (3.50)
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Using this recurrent relation, we obtain, for any integer i,

H
(
ri,si

)≤ c31
[
ρ−nH

(
r0,s0

)]ϑi
. (3.51)

Our aim now is to get a suitable estimate of the following integral:

∫
Ω∩B(y,(3/2)ρ)

[
log

(
2ωe

ω2−u+ ρσ

)]tq/(t+1)

dx. (3.52)

We put

v0(x)= [
log

(
2ωeF(x)

)]tq/(t+1) ∀x ∈ B
(
y,

3
2
ρ
)
. (3.53)

It is not difficult to prove that v0 ∈W1,1(B(y, (3/2)ρ)). Moreover, by Hypothesis 2.6,

meas
(
B
(
y,

3
2
ρ
)
\Ω

)
≥ c32ρ

n (3.54)

and since ω2 ≥ ω/2 and ω ≥ ρσ ,

v0(x)≤ c33 ∀x ∈ B
(
y,

3
2
ρ
)
\Ω. (3.55)

So, by [18, Lemma 4], we have
∫
B(y,(3/2)ρ)

v0 dx ≤ c34ρ
n + c34ρ

∫
B(y,(3/2)ρ)

∣∣Dαv0
∣∣q dx. (3.56)

By applying Young’s inequality, we obtain

∫
Ω∩B(y,(3/2)ρ)

v0 dx ≤ c35ρ
n + c35ρ

tq/(t+1)
∫
B(y,(3/2)ρ)

[
F(x)

]tq/(t+1)
[ ∑
|α|=1

∣∣Dαu
∣∣
]tq/(t+1)

dx.

(3.57)

But using Hölder inequality, (3.22), Hypothesis 2.7, and definition of σ , we find

∫
B(y,(3/2)ρ)

[
F(x)

]tq/(t+1)
[ ∑
|α|=1

∣∣Dαu
∣∣
]tq/(t+1)

dx

≤ c36ρ
nt/t∗′ (t+1)

[∫
Ω∩B(y,2ρ)

φt∗(x)dx
]t/t∗(t+1)[∫

Ω∩B(y,2ρ)

[
1

ν(x)

]t
dx

]t/t(t+1)

≤ c37ρ
(n/t)+(n/t∗)−q.

(3.58)

Hence, from (3.57) and (3.58), we establish
∫
B(y,(3/2)ρ)

[
log

(
2ωeF(x)

)]tq/(t+1)
dx ≤ c38ρ

n. (3.59)
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Finally, from the last inequality and (3.51), we obtain
∫
B(y,ρ)

[
log

(
2ωeF(x)

)]ri ≤ cri39. (3.60)

Therefore,

ess sup
B(y,ρ)∩Ω

log
(
2ωeF(x)

)≤ c40. (3.61)

From this assertion, we deduce the inequality (3.4). Now, using [8, Lemma 4.8] and
the interior regularity result of [5], we get the conclusion of Theorem 2.11.

4. Examples

Now, we describe a situation where hypotheses stated in Section 2 are satisfied.
First of all, we consider an example of the integrand:

A(x,ξ) +A0(x,η), (4.1)

satisfying conditions in Hypotheses 2.9 and 2.10.
For every n-dimensional multi-index α and every x ∈Ω, ξ ∈Rn,2, and η ∈R,

A(x,ξ) +A0(x,η)= ν(x)
∑
|α|=1

∣∣ξα∣∣q−1
ξα +μ(x)

∑
|α|=2

∣∣ξα∣∣p−1
ξα + |η|q−1η. (4.2)

Let us choose

μ(x)= ∣∣x− x0
∣∣αp , ν(x)= ∣∣x− x0

∣∣αq , (4.3)

where x0 is an arbitrary point in B(1). By this choice, the conditions of Hypotheses 2.1
and 2.2 are satisfied if we assume

−n < αq < n(q− 1), −n < αp < n(p− 1). (4.4)

Finally, choosing 0 < αq < q and qαp− 2pαq > 0 and taking the number t, t∗ such that

n

q
< t <

n

αq
, t∗ >

nt

qt−n
, (4.5)

then Hypotheses 2.3–2.7 also hold.
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