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We analyze and compare three (s,S) inventory systems with positive service time and re-
trial of customers. In all of these systems, arrivals of customers form a Poisson process
and service times are exponentially distributed. When the inventory level depletes to s
due to services, an order of replenishment is placed. The lead-time follows an exponen-
tial distribution. In model I, an arriving customer, finding the inventory dry or server
busy, proceeds to an orbit with probability γ and is lost forever with probability (1− γ).
A retrial customer in the orbit, finding the inventory dry or server busy, returns to the
orbit with probability δ and is lost forever with probability (1− δ). In addition to the de-
scription in model I, we provide a buffer of varying (finite) capacity equal to the current
inventory level for model II and another having capacity equal to the maximum inven-
tory level S for model III. In models II and III, an arriving customer, finding the buffer
full, proceeds to an orbit with probability γ and is lost forever with probability (1− γ). A
retrial customer in the orbit, finding the buffer full, returns to the orbit with probability
δ and is lost forever with probability (1− δ). In all these models, the interretrial times are
exponentially distributed with linear rate. Using matrix-analytic method, we study these
inventory models. Some measures of the system performance in the steady state are de-
rived. A suitable cost function is defined for all three cases and analyzed using graphical
illustrations.

Copyright © 2007 A. Krishnamoorthy and K. P. Jose. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

In all works reported in inventory prior to 1993, it was assumed that the time required to
serve the items to the customer is negligible. Berman et al. [1] were the first to attempt to
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introduce positive service time in inventory, where it was assumed that service time is a
constant. Later, Berman and Kim [2] extended this result to random service time. Berman
and Sapna [3] studied inventory control at a service facility, where exactly one item from
the inventory was used for each service provided. Using Markov renewal theory, they an-
alyzed a finite state space process. Arivarignan et al. [4] considered a perishable inventory
system with service facility with the arrival of customers forming a Poison process. Each
customer requires single item, which is delivered through a service of random duration
having exponential distribution.

Queuing systems, in which customers who find all servers busy and waiting positions
occupied may retry for service after a period of time, are called retrial queues or queues
with repeated attempts. This has been extensively investigated (see Yang and Temple-
ton [5], Falin [6], and Falin and Templeton [7]). Retrials of failed components for ser-
vice were introduced into the reliability of k-out-of-n system by Krishnamoorthy and
Ushakumari [8]. Artalejo et al. [9] were the first to study inventory policies with positive
lead-time and retrial of customers who could not get service during their earlier attempts
to access the service station; it may be noted that recently Ushakumari [10] obtained an-
alytical solution to this model.

So far, very little investigation is done in retrial inventory with service time. Krish-
namoorthy and Islam [11] analyzed a production inventory with retrial of customers. In
that paper, they considered an (s, S) inventory system where arrivals of customers form
a Poisson process and demands arising from the orbital customers are exponentially dis-
tributed with linear rate. Recently, Krishnamoorthy and Jose [12] studied an inventory
system with service and retrial of customers. They calculated the expected number of de-
partures after receiving service, the expected number of customers lost without getting
service, and the expected total cost of the system using matrix-analytic method. For a
detailed discussion of the matrix-analytic method, see [13].

In this paper, we compare three (s,S) inventory systems with service and retrial of
customers. Arrival of customers forms a Poisson process rate λ and service times are ex-
ponentially distributed with parameter μ. When the inventory level depletes to s due to
service, an order of replenishment is placed. The lead-time follows an exponential distri-
bution with rate β. In model I, an arriving customer who finds the inventory level zero
or server busy proceeds to an orbit with probability γ and is lost forever with probabil-
ity (1− γ). A retrial customer in the orbit who finds the inventory level zero or server
busy returns to the orbit with probability δ and is lost forever with probability (1− δ).
In models II and III, an arriving customer who finds buffer full proceeds to an orbit with
probability γ and is lost forever with probability (1− γ). A retrial customer from the orbit
who finds buffer full returns to the orbit with probability δ and is lost forever with prob-
ability (1− δ). In all these cases, the interretrial times follow an exponential distribution
with linear rate iθ when there are i customers in the system.

This paper is organized as follows. Sections 2, 3, and 4 provide the analysis of the mod-
els I, II, and III, respectively. Section 5 presents the cost analysis and numerical results.

Assumption 1.1. (i) Interarrival times of demands are exponentially distributed with pa-
rameter λ.
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(ii) Service time follows exponential distribution with rate μ.

(iii) Lead-time follows exponential distribution with rate β.

(iv) Interretrial times are exponential with linear rate iθ when there are i customers
in the orbit.

Notation 1.2.

I(t): inventory level at time t.
N(t): number of customers in the orbit at time t.

M(t): number of customers in the buffer at time t.

C(t)=
⎧
⎪⎨

⎪⎩

0, if the server is idle,

1, if the server is busy.

e:(1,1, . . . ,1)′ column vector of 1’s of appropriate order.

For easy representation of the infinitesimal generator of the process, we use the fol-
lowing notations:

◦ = −(λ+ iθ),

∗=−(λ+β+ iθ),

�=−(λ+μ+ iθ),

Θ=−(λ+β+μ+ iθ),

Δ=−(λγ+β+ iθ(1− δ)
)
,

∇=−(λγ+μ+ iθ(1− δ)
)
,

Ω=−(λγ+β+μ+ iθ(1− δ)
)
.

(1.1)

2. Analysis of model I

We consider an (s,S) inventory system with retrial of customers. Arrival of customers
forms a Poisson process with rate λ. When the inventory level depletes to s due to de-
mands, an order of replenishment is placed. The lead-time is exponentially distributed
with rate β. An arriving customer who finds the inventory level zero proceeds to an or-
bit with probability γ and is lost forever with probability (1− γ). A retrial customer who
finds the inventory level zero returns to the orbit with probability δ and is lost forever
with probability (1− δ). The interretrial times follow an exponential distribution with
linear rate iθ when there are i customers in the orbit.

Let I(t) be the inventory level and let N(t) be the number of customers in the orbit at
time t. LetC(t) be the sever status which is equal to 0 if the server is idle and 1 if the sever is
busy. Now, {X(t), t ≥ 0}, whereX(t)= (N(t),C(t),I(t)), is a level-dependent quasi-birth-
death (LDQBD) process on the state space {(i,0, j), i≥ 0, 0≤ j ≤ S}∪{(i,1, j), i≥ 0,1≤
j ≤ S}. The infinitesimal generator Q of the process is a block tridiagonal matrix and it
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has the following form:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1,0 A0 0 0 0 ···
A2,1 A1,1 A0 0 0 ···

0 A2,2 A1,2 A0 0 ···
0 0 A2,3 A1,3 A0 ···
...

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.1)

where the blocksA0,A1,i (i≥ 0),and A2,i(i≥ 1) are square matrices, each of order (2S+1);
they are given by

A0 =
(
B0 0

0 λγIS

)

, A1,i =
(
E0 E1

E2 E3

)

, A2,i =
(
C0 C1

0 iθ(1− δ)IS

)

,

B0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

λγ 0 ··· 0

0 0 ··· 0
...

...
. . .

...

0 0 ··· 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(S+1)×(S+1)

,

E0 =

0

1

...

s

(s+ 1)

...

(S− s)
(S− s+ 1)

...

S

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Δ β

∗ β

. . .
. . .

∗ β

◦
. . .

◦
◦

. . .

◦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(S+1)×(S+1)

,

E1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ··· 0

λ 0 ··· 0

0 λ ··· 0
...

...
. . .

...

0 0 ··· λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(S+1)×S

, E2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ 0 0 ··· 0

0 μ 0 ··· 0
...

...
. . .

. . .
...

0 0 ··· μ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

S×(S+1)

,
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E3 =

1

2
...
s

(s+ 1)
...

(S− s)
(S− s+ 1)

...

S

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ω β
Ω β

. . .
. . .

Ω β

∇
. . .

∇
∇

. . .

∇

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

S×S

,

C0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

iθ(1− δ) 0 ··· 0

0 0 ··· 0
...

...
. . .

...

0 0 ··· 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(S+1)×(S+1)

, C1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ··· 0 0

iθ 0 ··· 0 0

0 iθ ··· 0 0
...

...
. . .

...
...

0 0 ··· iθ 0

0 0 ··· 0 iθ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(S+1)×S

.

(2.2)

2.1. System stability. For the model under consideration, we define the following Lya-
punov test function (see Falin [6]):

φ(s)= i, if s is a state in the level i. (2.3)

The mean drift ys for any s belonging to the level i≥ 1 is given by

ys =
∑

p /=s
qsp
(
φ(p)−φ(s)

)

=
∑

u

qsu
(
φ(u)−φ(s)

)
+
∑

v

qsv
(
φ(v)−φ(s)

)
+
∑

w

qsw
(
φ(w)−φ(s)

)
,

(2.4)

where u, v, w vary over the states belonging to the levels (i− 1), i, and (i+ 1), respectively.
Then, by the definition of φ, φ(u)= i− 1, φ(v)= i and φ(w)= i+ 1 so that

ys =−
∑

u

qsu +
∑

w

qsw

=
⎧
⎨

⎩

−iθ, if the server is idle,

−iθ(1− δ) + λγ, otherwise.

(2.5)

Since (1− δ) > 0, for any ε > 0, we can find N ′ large enough so that ys < −ε for any s
belonging to the level i≥N ′. Hence, by Tweedie’s [14] result, the system under consider-
ation is stable.
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2.2. Choice of N. To find the truncation level N, one can use Neuts–Rao method (see
[15]). As outlined in Neuts [16], Elsner’s algorithm is used to determine the spectral
radius η(N) of R(N). To minimize the effect of the approximation on the probabilities, N
must be chosen such that |η(N)−η(N + 1)| < ε, where ε is an arbitrarily small value.

2.3. System performance measures. We partition the (i+ 1)th component of the steady
state probability vector x = (x0,x1,x2, . . . ,xN−1,xN , . . .) as

xi =
(
yi,0,0, yi,0,1, . . . , yi,0,S, yi,1,1, yi,1,2, . . . , yi,1,S

)
. (2.6)

Then,
(i) the expected inventory level, EI, in the system is given by

EI=
∞∑

i=0

S∑

j=0

j yi,0, j +
∞∑

i=0

S∑

j=1

j yi,1, j ; (2.7)

(ii) the expected number of customers, EO, in the orbit is given by

EO=
( ∞∑

i=1

ixi

)

e =
((N−1∑

i=1

ixi

)

+ xN−1R
(

N(I −R)−1 +R(I −R)−2
)
)

e; (2.8)

(iii) the expected reorder rate, EROR, is given by

EROR= μ
∞∑

i=0

yi,1,s+1; (2.9)

(iv) the expected number of departures, EDS, after completing service is given by

EDS= μ
∞∑

i=0

S∑

j=1

yi,1, j ; (2.10)

(v) the expected number of customers lost, EL1, before entering the orbit per unit
time is given by

EL1 = (1− γ)λ
∞∑

i=0

(

yi,0,0 +
S∑

j=1

yi,1, j

)

; (2.11)

(vi) the expected number of customers lost, EL2, after retrials per unit time is given
by

EL2 = θ(1− δ)
∞∑

i=1

i

(

yi,0,0 +
S∑

j=1

yi,1, j

)

; (2.12)
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(vii) the overall retrial rate, ORR, is given by

ORR= θ
( ∞∑

i=1

ixi

)

e; (2.13)

(viii) the successful retrial rate, SRR, is given by

SRR= θ
∞∑

i=0

i

( S∑

j=1

yi,0, j

)

. (2.14)

3. Analysis of model II

Here, in addition to the description in model I, we assume that there is a buffer of vary-
ing (finite) capacity, equal to the current inventory level. Customers, finding the buffer
full, are directed to an orbit. Let M(t) be the number of customers in the buffer at
time t. Now, {X(t), t ≥ 0}, where X(t) = (N(t),I(t),M(t)), is an LDQBD on the state
space {(i, j,k), i≥ 0,0≤ j ≤ S,0≤ k ≤ j}. Then, the generator has the form (2.1), where
the blocks A0,A1,i (i≥ 0), and A2,i(i≥ 1) are square matrices of the same order (1/2)(S+
1)(S+ 2) and they are given by

A0 =

0
1
2
...

S

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0

B1

B2

. . .

BS

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, A2,i =

0
1
2
...

S

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C0

C1

C2

. . .
CS

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A1,i =

0

1

2
...
s

s+ 1

S− s
S− s+ 1

S− s+ 2
...

S

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H0 U0

P1 H1 U1

P2 H2 U2

. . .
. . .

. . .
Ps Hs Us

Ps+1 Gs+1

. . .
. . .
PS−s GS−s

PS−s+1 GS−s+1

PS−s+2 GS−s+2

. . .
. . .

PS GS

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(3.1)
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where

B0=(λγ)1×1, Bn=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 ··· 0 0
...

. . .
...

...

0 ··· 0 0

0 ··· 0 λγ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(n+1)×(n+1)

(n= 1,2, . . . ,S), H0=(Δ)1×1,

Cn=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 iθ

0 iθ

. . .
. . .

0 iθ
0 iθ

iθ(1−δ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(n+1)×(n+1)

(n=1,2,. . .,S), C0=v
(
iθ(1−δ)

)

1×1,

Hn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ λ
Θ λ

Θ λ
. . .

. . .

Θ λ

Ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(n+1)×(n+1)

(n= 1,2, . . . ,S),

Gn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

◦ λ
� λ

� λ
. . .

. . .

� λ

∇

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(n+1)×(n+1)

(n= s+ 1,s+ 2, . . . ,S),

Un =

0

1

2
...

s

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β 0 0 ··· 0 0 ··· 0

0 β 0 ··· 0 0 ··· 0
0 0 β ··· 0 0 ··· 0
...

...
...

. . .
...

...
. . .

...

0 0 0 ··· β 0 ··· 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(n+1)×((S−s)+n+1)

(n= 0,1,2, . . . ,s),

Pn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ··· 0

μ 0 ··· 0
0 μ ··· 0
...

...
. . .

...

0 0 ··· μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(n+1)×n

(n= 1,2, . . . ,S).

(3.2)
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3.1. System stability. Here, mean drift ys is given by

ys =
⎧
⎨

⎩

−iθ(1− δ) + λγ, if the buffer is full,

−iθ, otherwise.
(3.3)

Since (1− δ) > 0, for any ε > 0, we can find N ′ large enough so that ys < −ε for any s
belonging to the level i≥N ′. Hence, by Tweedie’s [14] result, the system under consider-
ation is stable.

3.2. System performance measures. For computing various measures of performance,
we judiciously obtain a truncation level N . To find N , we adopt the procedure in Section
2.2. Here, again we partition the steady state probability vector x= (x0,x1,x2, . . . ,xN−1,
xN , . . . .) such that its (i+ 1)th component is

xi =
(
yi,0,0, yi,1,0, yi,1,1, yi,2,0, yi,2,1, yi,2,2, . . . , yi,S,0, yi,S,1, yi,S,2, . . . , yi,S,S

)
. (3.4)

(i) The expected inventory level, EI, in the system is given by

EI=
∞∑

i=0

S∑

j=0

j
∑

k=0

j yi, j,k. (3.5)

(ii) The expected number of customers, EO, in the orbit is given by

EO=
( ∞∑

i=1

ixi

)

e

=
((N−1∑

i=1

ixi

)

+ xN−1R
(

N(I −R)−1 +R(I −R)−2
)
)

e.

(3.6)

(iii) The expected number of customers, EB, in the buffer is given by

EB=
∞∑

i=0

S∑

j=0

j
∑

k=0

kyi, j,k. (3.7)

(iv) The expected reorder rate, EROR, is given by

EROR= μ
∞∑

i=0

s+1∑

k=1

yi,s+1,k. (3.8)
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(v) The expected number of departures, EDS, after completing service is given by

EDS= μ
∞∑

i=0

S∑

j=1

j
∑

k=1

yi, j,k. (3.9)

(vi) The expected number of customers lost, EL1, before entering the orbit per unit
time is given by

EL2 = (1− γ)λ
∞∑

i=0

S∑

j=0

yi, j, j . (3.10)

(vii) The expected number of customers lost, EL2, after retrials per unit time is given
by

EL2 = θ(1− δ)
∞∑

i=1

i

( S∑

j=1

yi, j, j

)

. (3.11)

(viii) The overall rate of retrials, ORR, is given by

ORR= θ
( ∞∑

i=1

ixi

)

e. (3.12)

(ix) The successful rate of retrials, SRR, is given by

SRR= θ
∞∑

i=0

i

( S∑

j=1

j−1
∑

k=0

yi, j,k

)

. (3.13)

4. Analysis of model III

The distinguishing factor of this model from model II is that the capacity of the buffer is
equal to S, the maximum inventory level, irrespective of the inventory held at any given
instant of time. Here, {X(t), t ≥ 0}, where X(t)= (N(t),I(t),M(t)), is an LDQBD on the
state space {(i, j,k), i ≥ 0,0 ≤ j ≤ S,0 ≤ k ≤ S}. Then, the generator has the form (2.1),
where the blocks A0,A1,i (i ≥ 0), and A2,i (i ≥ 1) are square matrices of the same order



A. Krishnamoorthy and K. P. Jose 11

(S+ 1)2 and they are given by

A0 =

0

1

2
...

S

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0

B1

B2

. . .

BS

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, A2,i =

0

1

2
...

S

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C0

C1

C2

. . .
CS

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A1,i =

0

1

2
...

s

s+ 1

S− s
S− s+ 1

S− s+ 2
...

S

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H0 U0

P1 H1 U1

P2 H2 U2

. . .
. . .

. . .
Ps Hs Us

Ps+1 Gs+1

. . .
. . .
PS−s GS−s

PS−s+1 GS−s+1

PS−s+2 GS−s+2

. . .
. . .
PS GS

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(4.1)

where

Bn =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 ··· 0 0
...

. . .
...

...

0 ··· 0 0
0 ··· 0 λγ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(S+1)×(S+1)

(n= 0,1,2, . . . ,S),

Cn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 iθ
0 iθ

. . .
. . .

0 iθ
0 iθ

iθ(1− δ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(S+1)×(S+1)

(n= 0,1,2, . . . ,S),

H0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ λ
∗ λ

. . .
. . .

∗ λ
Δ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(S+1)×(S+1)

,
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Hn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ λ
Θ λ

Θ λ
. . .

. . .

Θ λ
Ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(S+1)×(S+1)

(n= 1,2, . . . ,S),

Gn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

◦ λ
� λ

� λ
. . .

. . .

� λ
∇

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(S+1)×(S+1)

(n= s+ 1,s+ 2, . . . ,S),

Un =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β
β

β
. . .

β

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(S+1)×(S+1)

(n= 0,1,2, . . . ,s),

Pn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ··· 0 0
μ 0 ··· 0 0
0 μ ··· 0 0
...

...
. . .

...
...

0 0 ··· μ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(S+1)×(S+1)

(n= 1,2, . . . ,S). (4.2)

(4.3)

4.1. System stability. Here, mean drift ys is given by

ys =
⎧
⎨

⎩

−iθ(1− δ) + λγ, if the butter is full,

−iθ, otherwise.
(4.4)

Since (1− δ) > 0, for any ε > 0, we can find N ′ large enough so that ys < −ε for any s
belonging to the level i≥N ′. Hence, by Tweedie’s [14] result, the system under consider-
ation is stable.

4.2. System performance measures. To find the truncation level N, we adopt the pro-
cedure as in Section 2.2. The (i+ 1)th component of the steady state probability vector
x = (x0,x1,x2, . . . ,xN−1,xN , . . .) can be partitioned as

xi =
(
yi,0,0, yi,0,1, yi,0,2, . . . , yi,0,S, yi,1,0, yi,1,1, yi,1,2, . . . , yi,1,S, . . . , yi,S,0, yi,S,1, yi,S,2, . . . , yi,S,S

)
.

(4.5)
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Then,
(i) the expected inventory level, EI, in the system is given by

EI=
∞∑

i=0

S∑

j=0

S∑

k=0

j yi, j,k; (4.6)

(ii) the expected number of customers, EO, in the orbit is given by

EO=
( ∞∑

i=1

ixi

)

e

=
((N−1∑

i=1

ixi

)

+ xN−1R
(

N(I −R)−1 +R(I −R)−2
)
)

e;

(4.7)

(iii) the expected number of customers, EB, in the buffer is given by

EB=
∞∑

i=0

S∑

j=0

S∑

k=0

kyi, j,k; (4.8)

(iv) the expected reorder rate, EROR, is given by

EROR= μ
∞∑

i=0

S∑

k=1

yi,s+1,k; (4.9)

(v) the expected number of departures, EDS, after completing service is given by

EDS= μ
∞∑

i=0

S∑

j=1

S∑

k=1

yi, j,k; (4.10)

(vi) the expected number of customers lost, EL1, before entering the orbit per unit
time is given by

EL1 = (1− γ)λ
∞∑

i=0

S∑

j=0

yi, j,S; (4.11)

(vii) the expected number of customers lost, EL2, after retrials per unit time is given
by

EL2 = θ(1− δ)
∞∑

i=1

i

( S∑

j=1

yi, j,S

)

; (4.12)

(viii) the overall rate of retrials, ORR, is given by

ORR= θ
( ∞∑

i=1

ixi

)

e; (4.13)
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(ix) the successful rate of retrials, SRR, is given by

SRR= θ
∞∑

i=0

i

( S∑

j=1

S−1∑

k=0

yi, j,k

)

. (4.14)

5. Cost analysis and numerical results

We define different costs as
K = fixed cost,
c1 = procurement cost/unit,
c2 = holding cost of inventory/unit /unit time,
c3 = holding cost of customers/unit /unit time,
c4 = cost due to loss of customers/unit /unit time,
c5 = cost due to service/unit /unit time,
c6 = revenue from service/unit/unit time.

We introduce a cost function, defined as the expected total cost (ETC) of the system,
which is given by

ETC= (K + (S− s)c1
)
EROR + c2EI + c3(EO + EB) + c4

(
EL1 + EL2

)
+
(
c5− c6

)
EDS.

(5.1)

In the following tables, we provide a comparison among the overall and successful rates
of retrials for models I–III.

5.1. Interpretations of the numerical results in the tables. As the arrival rate λ increases,
the number of customers in the orbit becomes larger so that the overall and successful
rates of retrials from the orbit will increase (see Table 5.1). As the replenishment rate β
or service rate μ increases, the arriving customers will get the inventory more rapidly,
and thereby the number of customers in the orbit gets decreased. In that case, the overall
and successful rates of retrials will decrease (see Tables 5.2 and 5.3). With the increase in
probability γ of primary arrivals joining the orbit or in return probability δ of retrial cus-
tomers, the orbit size increases. Here, again overall and successful rates of retrials increase
(see Tables 5.4 and 5.5). Table 5.6 indicates that as the retrial rate θ of customers in the
orbit increases, the overall and successful rates of retrials from the orbit will increase.

Next, we provide graphical illustrations of the performance measures of the above
described models.

5.2. Interpretations of the graphs. The objective is to compare the three models and
identify the one which is more profitable. For this, we compute the minimum value of the
expected total cost per unit time by varying the parameters one at a time keeping others
fixed. Since the objective function is known only implicitly, the analytical properties such
as convexity of the analytic function cannot be studied in general. By fixing all the param-
eters except the arrival rate λ, it is clear from Figure 5.1 that the cost function is convex
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Table 5.1. Variations in arrival rate λ. μ= 1.5; β = 1; θ = 0.75; γ = 0.2; δ = 0.4; N = 62; s = 1; S = 4;
c1 = 1; c2 = 1; c3 = 0.6; c4 = 1; c5 = 2; c6 = 1.

λ
Model I Model II Model III

ORR SRR ORR SRR ORR SRR

2.6 0.288076 0.081170 1.250731 0.660523 0.561902 0.145595

2.7 0.307286 0.087625 1.274185 0.662086 0.605659 0.149230

2.8 0.326964 0.094214 1.297996 0.663758 0.649895 0.153096

2.9 0.347096 0.100919 1.322157 0.665546 0.694298 0.157210

3.0 0.367663 0.107724 1.346658 0.667455 0.738639 0.161582

3.1 0.388647 0.114610 1.371489 0.669494 0.782765 0.166204

3.2 0.410028 0.121562 1.396640 0.671670 0.826577 0.171040

3.3 0.431785 0.128564 1.422100 0.673990 0.870013 0.176015

3.4 0.453897 0.135600 1.447860 0.676462 0.913040 0.180994

3.5 0.476343 0.142656 1.473909 0.679093 0.955641 0.185780

Table 5.2. Variations in replenishment rate β. λ= 2; μ= 1.5; θ = 0.75; γ = 0.2; δ = 0.4; N= 48; s= 1;
S= 4; c1 = 1; c2 = 5; c3 = 0.5; c4 = 1; c5 = 2; c6 = 1.

β
Model I Model II Model III

ORR SRR ORR SRR ORR SRR

1.1 0.169276 0.041360 1.106037 0.695448 0.311534 0.199893

1.2 0.156979 0.037028 1.095219 0.692633 0.293366 0.201550

1.3 0.146188 0.033169 1.085242 0.690077 0.277385 0.201175

1.4 0.136660 0.029745 1.076010 0.687745 0.263261 0.199345

1.5 0.128201 0.026713 1.067440 0.685611 0.250709 0.196505

1.6 0.120650 0.024032 1.059460 0.683649 0.239489 0.192984

1.7 0.113876 0.021662 1.052012 0.681840 0.229406 0.189028

1.8 0.107770 0.019564 1.045041 0.680167 0.220297 0.184812

1.9 0.102244 0.017706 1.038504 0.678616 0.212029 0.180464

2.0 0.097222 0.016058 1.032359 0.677173 0.204490 0.176075

Table 5.3. Variations in service rate μ. λ= 2; β= 1; θ = 0.75; γ = 0.2; δ = 0.4; N= 37; s= 1; S= 4; c1 =
1; c2 = 1; c3 = 1; c4 = 1; c5 = 2; c6 = 1.

μ Model I Model II Model III

ORR SRR ORR SRR ORR SRR

2.1 0.174671 0.045655 1.920751 1.497005 0.366320 0.290650

2.2 0.173506 0.045573 1.866814 1.442761 0.362866 0.286314

2.3 0.172406 0.045494 1.812846 1.388586 0.359369 0.281763

2.4 0.171364 0.045416 1.758860 1.334492 0.355847 0.276986

2.5 0.170376 0.045341 1.704867 1.280491 0.352321 0.271972

2.6 0.169438 0.045268 1.650881 1.226597 0.348820 0.266708

2.7 0.168546 0.045196 1.596919 1.172826 0.345380 0.261181

2.8 0.167697 0.045127 1.543002 1.119197 0.342050 0.255375

2.9 0.166888 0.045059 1.489156 1.065732 0.338890 0.249274

3.0 0.166116 0.044994 1.435410 1.012452 0.335977 0.242856
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Table 5.4. Variations in probability γ of primary arrivals joining the orbit. λ = 2; β = 1; μ = 1.5;
θ = 0.75; δ = 0.4; N= 56; s= 1; S= 4; c1 = 1; c2 = 5; c3 = 1; c4 = 1; c5 = 2; c6 = 1.

γ Model I Model II Model III

ORR SRR ORR SRR ORR SRR

0.24 0.235962 0.058532 1.166675 0.716265 0.373307 0.197246

0.28 0.294115 0.071712 1.217041 0.734260 0.422046 0.201751

0.32 0.357502 0.085542 1.268831 0.752496 0.477661 0.209205

0.36 0.425575 0.099809 1.321993 0.770936 0.538306 0.219249

0.40 0.497650 0.114299 1.376494 0.789548 0.601978 0.231259

0.44 0.573019 0.128825 1.432317 0.808309 0.667075 0.244629

0.48 0.651051 0.143245 1.489458 0.827201 0.732477 0.258886

0.52 0.731269 0.157471 1.547918 0.846208 0.797423 0.273698

0.56 0.813361 0.171460 1.607709 0.865318 0.861393 0.288838

0.60 0.897137 0.185199 1.668843 0.884520 0.924018 0.304154

Table 5.5. Variations in return probability δ of retrial customers. λ = 2; β = 1; μ = 1.5; θ = 0.75;
γ = 0.2; N= 51; s= 1; S= 4; c1 = 1; c2 = 1.6; c3 = 0.32; c4 = 1; c5 = 2; c6 = 1.

δ
Model I Model II Model III

ORR SRR ORR SRR ORR SRR

0.35 0.179867 0.044661 1.077717 0.684408 0.325449 0.190152

0.40 0.183381 0.045382 1.117815 0.698563 0.332249 0.195492

0.45 0.187421 0.046189 1.162668 0.714154 0.338966 0.201308

0.50 0.192090 0.047095 1.213261 0.731433 0.345442 0.207632

0.55 0.197515 0.048111 1.270888 0.750721 0.351484 0.214490

0.60 0.203860 0.049248 1.337303 0.772436 0.356886 0.221897

0.65 0.211348 0.050516 1.414941 0.797138 0.361457 0.229859

0.70 0.220371 0.051921 1.507329 0.825602 0.365094 0.238379

0.75 0.232606 0.053478 1.619805 0.858943 0.367846 0.247469

0.80 0.266273 0.055392 1.760960 0.898851 0.369974 0.257184

Table 5.6. Variations in retrial rate θ. λ= 2; β = 1; μ= 1.5; γ = 0.2; δ = 0.4; N = 28; s= 1; S= 4; c1 =
1; c2 = 1; c3 = 1; c4 = 60; c5 = 2; c6 = 1.

θ
Model I Model II Model III

ORR SRR ORR SRR ORR SRR

1.1 0.200807 0.035823 1.137674 0.284382 0.309113 0.049809

1.2 0.204819 0.036609 1.142996 0.297763 0.310083 0.053750

1.3 0.208480 0.037415 1.148167 0.312566 0.311154 0.058208

1.4 0.211829 0.038242 1.153192 0.329041 0.312339 0.063285

1.5 0.214901 0.039085 1.158074 0.347505 0.313649 0.069106

1.6 0.217728 0.039944 1.162817 0.368356 0.315098 0.075831

1.7 0.220334 0.040814 1.167424 0.392112 0.316703 0.083670

1.8 0.222745 0.041689 1.171901 0.419448 0.318480 0.092899

1.9 0.224979 0.042563 1.176251 0.451269 0.320448 0.103889

2.0 0.227055 0.043427 1.180478 0.488808 0.322629 0.117151
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Figure 5.1. Arrival rate versus ETC.

in λ for model III. For given parameter values, this function attains the following mini-
mum values: (a) 7.966 at λ= 2.6 for model I, (b) 11.287 at λ= 2.6 for model II, and (c)
7.747 at λ= 3.1 for model III. Therefore, model III is the best for minimum cost per unit
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Figure 5.2. Replenishment rate versus ETC.

time. As replenishment rate β increases (keeping other parameters fixed), one can observe
that cost function attains the minimum values 16.543, 21.647, and 14.057 at λ = 1.1 for
models I, II, and III, respectively. Here, also model III is the best for minimum cost per
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Figure 5.3. Service rate versus ETC.

unit time. One can observe the minimum value of the objective function by changing the
other parameters μ,γ,δ, and θ (see Figures 5.3, 5.4, 5.5, and 5.6). In all examples consid-
ered here, the cost function has the minimum value for model III. Therefore, model III



20 Journal of Applied Mathematics and Stochastic Analysis

0.70.60.50.40.30.2

γ

16

18

20

E
T

C

Model I

λ= 2; β = 1; μ= 1.5; θ = 0.75; δ = 0.4; N = 56; s= 1;
S= 4; c1 = 1; c2 = 5; c3 = 1; c4 = 1; c5 = 2; c6 = 1

(a)

0.70.60.50.40.30.2

γ

22

23

24

E
T

C

Model II

(b)

0.70.60.50.40.30.2

γ

14

15

16

E
T

C

Model III

Minimum

(c)

Figure 5.4. Gamma versus ETC.

(model with buffer size equal to the maximum inventory level S) can be considered as the
best model for practical applications.

As indicated in the introduction, Ushakumari [10] obtained analytical solution to in-
ventory system with retrial of unsatisfied customers. However, she considered a system
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Figure 5.5. Delta versus ETC.

with negligible service time. Thus, that problem turns out to be just two-dimentional.
This is not the case with the problem discussed in this paper since the authors considered
positive lead time. This fact prevents the problem from getting analytical solution. Thus,
we are forced to take recourse to numerical study.
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Figure 5.6. Theta versus ETC.
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