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1. Introduction

Let Bn = {x ∈Rn : |x| < 1}, n≥ 2, be the unit ball in Rn, Sn−1 = ∂Bn. Consider the Wein-
stein equation in Bn of the form

Δλu=
(
1−|x|2)

{
1−|x|2

4

∑

j

∂2u

∂x2
j

+ λ
∑

j

x j
∂u

∂xj
+ λ
(
n

2
− 1− λ

)
u

}

= 0, (1.1)

where u = u(x), x ∈ Bn, λ ∈ R. In this paper, we prove a monotonicity property and a
refined estimate of Harnack inequality for positive solutions of (1.1).

The differential operator Δλ in (1.1) is a natural extension of the Laplacian operator
(λ= 0). If T is a Möbius transformation from Bn onto Bn and T′(x) denotes the Jacobian
matrix, then for every solution u of (1.1) in Bn, the function

∣
∣detT′(x)

∣
∣(n−2−2λ)/2n

u
(
T(x)

)
(1.2)

is also a solution of (1.1), as proved by Akın and Leutwiler [1]. More precisely,

Δλ
{∣
∣detT′(x)

∣
∣(n−2−2λ)/2n

u
(
T(x)

)}= ∣∣detT′(x)
∣
∣(n−2−2λ)/2n

Δλu
(
T(x)

)
(1.3)
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for twice differentiable functions u(x) in Bn [2]. Therefore, Δλ is also called invariant
Laplacian and the solutions of (1.1) are called invariant harmonic functions. The Dirich-
let problem for (1.1) and its half-space counterpart are challenging and interesting, as
summarized in Liu and Peng [2], where the authors also pointed out that invariant har-
monic functions do not possess good boundary regularity in general. The classical Har-
nack inequality gives scale invariant bounds for nonnegative (nonpositive) harmonic
functions in the plane. Harnack-type inequalities have been an important tool in the gen-
eral theory of harmonic functions and partial differential equations, on which Kassmann
[3] provided a through introduction and survey of the development and applications. In
this paper, we give an estimate of Harnack inequality bounds for any two points in Bn

based on a monotonicity property of positive invariant harmonic functions.
In this section, we state the main results. The proofs are provided in the subsequent

sections. For positive solutions of (1.1), Theorem 1.1 describes a monotonicity property,
Theorem 1.2 gives bounds for a Harnack-type inequality for two points on the same ray,
and Theorem 1.3 extends the estimates for the Harnack-type inequality to any two points
in Bn. Two interesting special cases—one on harmonic functions and another on the
Laplace-Beltrami operator associated with the Poincaré metric—are stated as corollaries.

To study the properties of solutions of Δλu= 0, one often needs to distinguish the cases
of λ≥ − 1/2 and λ <−1/2. Throughout this paper, we denote

δ = δ(λ)= 1
2

(
1 + 2λ−|1 + 2λ|)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, λ≥ − 1
2

1 + 2λ, λ <−1
2

for λ∈R. (1.4)

Theorem 1.1. Let u(x), x ∈ Bn, be a positive solution of Δλu= 0, λ∈R. Then for ζ ∈ Sn−1,
the function

(1− r)n−1−δ

(1 + r)1+2λ−δ u(rζ) (1.5)

is decreasing for 0≤ r < 1 and the function

(1 + r)n−1−δ

(1− r)1+2λ−δ u(rζ) (1.6)

is increasing for 0≤ r < 1.

Theorem 1.2. Let u(x), x ∈ Bn, be a positive solution of Δλu= 0, λ∈R. Then for ζ ∈ Sn−1

and 0≤ r′ ≤ r < 1,

(
1− r
1− r′

)2λ+1−δ(1 + r′

1 + r

)n−1−δ
u(r′ζ)≤ u(rζ)≤

(
1 + r
1 + r′

)2λ+1−δ(1− r′
1− r

)n−1−δ
u(r′ζ).

(1.7)

Notice that case λ= 0 (δ = 0) gives the classical Harnack Inequality.
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Theorem 1.3. Let u(x), x ∈ Bn, be a positive solution of Δλu= 0, λ∈R. Let ξ1,ξ2 ∈ Sn−1

and 0≤ r1 ≤ r2 < 1. Then

fλ
(− r1,−r2

)
exp

{− gλ
(
r1,ξ1,ξ2

)}≤ u
(
r2ξ2

)

u
(
r1ξ1

) ≤ fλ
(
r1,r2

)
exp

{
gλ
(
r1,ξ1,ξ2

)}
(1.8)

with

fλ
(
r1,r2

)=
(

1 + r2

1 + r1

)2λ+1−δ(1− r1

1− r2

)n−1−δ
,

gλ
(
r1,ξ1,ξ2

)= π

2

∣
∣ξ2− ξ1

∣
∣ |n+ 2λ− 2δ|r1

(
1− r1

)2 .

(1.9)

Remarks 1.4. The sharpness of the bounds in the above theorems are discussed in the
proofs of Lemma 2.4, Theorems 1.2 and 1.3. The equality case can be achieved in
Theorem 1.2. Only trivial equalities are attained in Theorem 1.3.

Case λ= 0 corresponds to harmonic functions, wherein Theorem 1.3 can be stated as
the following.

Corollary 1.5. Let u(x) be a positive harmonic function in Bn. ξ1,ξ2 ∈ Sn−1, 0≤ r1 ≤ r2 <
1. Then

f
(− r1,−r2

)
exp

{− g(r1
)}≤ u

(
r2ξ2

)

u
(
r1ξ1

) ≤ f
(
r1,r2

)
exp

{
g
(
r1
)}

, (1.10)

where

f
(
r1,r2

)=
(

1 + r2

1 + r1

)(
1− r1

1− r2

)n−1

,

g
(
r1
)= g(r1,ξ1,ξ2

)= π

2

∣
∣ξ2− ξ1

∣
∣ nr1
(
1− r1

)2 .
(1.11)

Notice that when r2 = r = |x|, r1 = 0, (1.8) becomes

1− r
(1 + r)n−1 ≤

u(x)
u(0)

≤ 1 + r

(1− r)n−1 , (1.12)

the classical Harnack inequality in Bn.
Case λ= n/2− 1 corresponds to the Laplace-Beltrami operator Δn/2−1 associated with

the Poincaré metric. In this case, Theorem 1.3 has the following form.

Corollary 1.6. Let u(x), x ∈ Bn, be a positive solution of Δn/2−1u = 0. Let ξ1,ξ2 ∈ Sn−1

and 0≤ r1 ≤ r2 < 1. Then

1
C
≤ u

(
r2ξ2

)

u
(
r1ξ1

) ≤ C, (1.13)

where

C = C(r1,r2,ξ1,ξ2

)=
(

1 + r2

1 + r1
·1− r1

1− r2

)n−1

exp

{

π
∣
∣ξ2− ξ1

∣
∣ (n− 1)r1
(
1− r1

)2

}

. (1.14)
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2. Proof of Theorem 1.1

Our proofs depend on an integral representation for positive solutions of Weinstein equa-
tions in Bn derived by Leutwiler [4] based on earlier work of Huber [5] and Brelot-Collin
and Brelot [6]. We state Leutwiler’s representation as a theorem below (with a slightly
different parametrization).

Theorem 2.1 (The representation theorem, Leutwiler [4, Theorem 3.2]). Each positive
solution of (1.1) admits the unique representation

u(x)=
∫

Sn−1

(
1−|x|2)1+2λ−δ

|x−η|n+2λ−2δ
dμ(η), (2.1)

where μ is a positive measure on Sn−1.

According to the representation theorem, every positive solution of Δλu = 0 can be
identified with its integral representation (2.1) and the corresponding positive measure
μ. Notice that when λ≥ − 1/2, the integrand of (2.1) is the Poisson kernel

Pλ(x,η)=
(
1−|x|2)1+2λ

|x−η|n+2λ
. (2.2)

In the sequel, we will use the representation formula (2.1) in terms of the Poisson kernel
for positive solutions of (1.1) for the case λ≥ − 1/2. The solutions of (1.1) with λ <−1/2
is related to that of λ >−1/2 by a corresponding principle, also proved by Leutwiler [4].
We state a special case of the correspondence principle as a lemma.

Lemma 2.2 (The correspondence principle, Leutwiler [4, Lemma 3.4]). If u(x), x ∈ Bn,
is a solution of Δλu= 0, λ <−1/2, then

Δλ̃ũ= 0 with ũ(x)= (1−|x|2)−(1+2λ)
u(x), λ̃=−(1 + λ) >−1

2
. (2.3)

We need the following two lemmas for the proof of Theorem 1.1.

Lemma 2.3. Let x ∈Rn, |x| = r, ζ ∈ Sn−1. If λ≥ − 1/2, then

−
(
n+ 2λ− (n− 2λ− 2)r

)(
1− r2

)2λ

|x− ζ|n+2λ

≤ ∂

∂r

(
1− r2

)1+2λ

|x− ζ|n+2λ
≤
(
n+ 2λ+ (n− 2λ− 2)r

)(
1− r2

)2λ

|x− ζ|n+2λ
.

(2.4)

Proof. Write x = |x|η = rη, η·ζ =∑n
i=1ηiζi. Since

∂

∂r
|x− ζ|2 = ∂

∂r

(|x|2− 2rη·ζ + 1
)= 2(r−η·ζ),

∂

∂r
|x− ζ|n+2λ = ∂

∂r

(|x− ζ|2)(n+2λ)/2 = (n+ 2λ)|x− ζ|n+2λ−2(r−η·ζ),

(2.5)
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we have

∂

∂r

(
1− r2

)1+2λ

|x− ζ|n+2λ

= (1 + 2λ)
(
1− r2

)2λ
(−2r)|x− ζ|n+2λ− (1− r2

)1+2λ
(∂/∂r)|x− ζ|n+2λ

|x− ζ|2(n+2λ)

= −2(1 + 2λ)
(
1− r2

)2λ
r|x− ζ|n+2λ− (1− r2

)1+2λ
(n+ 2λ)|x− ζ|n+2λ−2(r−η·ζ)

|x− ζ|2(n+2λ)

= −2(1 + 2λ)
(
1− r2

)2λ
r|x− ζ|2− (1− r2

)1+2λ
(n+ 2λ)(r−η·ζ)

|x− ζ|n+2λ+2
.

(2.6)

To prove the right-side inequality in Lemma 2.3, it suffices to show

−2(1 + 2λ)r|x− ζ|2− (1− r2)(n+ 2λ)(r−η·ζ)≤ (n+ 2λ+ (n− 2λ− 2)r
)|x− ζ|2,

(2.7)

which is equivalent to

−(n+ 2λ)
(
1− r2)(r−η·ζ)≤ (n+ 2λ)(1 + r)|x− ζ|2. (2.8)

Since λ≥ − 1/2, n+ 2λ > 0, the above becomes

−(1− r2)(r−η·ζ)≤ (1 + r)|x− ζ|2, (2.9)

or

−(1− r)(r−η·ζ)≤ r2− 2rη·ζ + 1, (2.10)

which, after a simplification, is equivalent to

η·ζ ≤ 1. (2.11)

The inequality is true since ζ ,η ∈ Sn−1. To prove the left-side inequality in Lemma 2.3, it
suffices to show that

−2(1 + 2λ)r|x− ζ|2− (1− r2)(n+ 2λ)(r−η·ζ)≥ − (n+ 2λ− (n− 2λ− 2)r
)|x− ζ|2,

(2.12)

which is equivalent to

(n+ 2λ)
(
1− r2)(r−η·ζ)≤ (n+ 2λ)(1− r)|x− ζ|2, (2.13)

which is, after a simplification,

−η·ζ ≤ 1, (2.14)

true since ζ ,η ∈ Sn−1. This completes the proof of Lemma 2.3. �
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Lemma 2.4. Let u(x) be a positive solution of Δλu= 0, λ≥ − 1/2, |x| = r. Then

−
(
n+ 2λ− (n− 2λ− 2)r

)

1− r2
u(x)≤ ∂u(x)

∂r
≤
(
n+ 2λ+ (n− 2λ− 2)r

)

1− r2
u(x). (2.15)

Proof. By the representation theorem, u has the integral representation (2.1) of the Pois-
son kernel with a positive measure μ on Sn−1,

u(x)=
∫

Sn−1

(
1−|x|2)1+2λ

|x− ζ|n+2λ
dμ(ζ). (2.16)

Applying Lemma 2.3, we have

∫

Sn−1

∂

∂r

((
1−|x|2)1+2λ

|x− ζ|n+2λ

)

dμ(ζ)

≤
∫

Sn−1

(
n+ 2λ+ (n− 2λ− 2)r

)(
1− r2

)2λ

|x− ζ|n+2λ
dμ(ζ)

=
(
n+ 2λ+ (n− 2λ− 2)r

)

1− r2

∫

Sn−1

(
1−|x|2)1+2λ

|x− ζ|n+2λ
dμ(ζ)

=
(
n+ 2λ+ (n− 2λ− 2)r

)

1− r2
u(x).

(2.17)

It follows that

∂u(x)
∂r

=
∫

Sn−1

∂

∂r

((
1−|x|2)1+2λ

|x− ζ|n+2λ

)

dμ(ζ)≤
(
n+ 2λ+ (n− 2λ− 2)r

)

1− r2
u(x). (2.18)

The left-side inequality in Lemma 2.4 can be proved in the same manner. For the equality

case, consider uy(x)= (1−|x|2)1+2λ
/|x− y|n+2λ which is invariant harmonic in Rn \ {y}

for y ∈ Sn−1. A simple calculation shows that the equalities hold for uy(x) when x = |x|y
and x =−|x|y, respectively. This completes the proof of Lemma 2.4. �

Now we prove Theorem 1.1.

Proof. First, consider the case λ≥ − 1/2 (δ = 0). Define

ϕ(r)= (1− r)n−1

(1 + r)1+2λ , ψ(r)= (1 + r)n−1

(1− r)1+2λ , for 0≤ r < 1, (2.19)

then

ϕ′(r)
ϕ(r)

=−
(
n+ 2λ+ (n− 2λ− 2)r

)

1− r2
,

ψ′(r)
ψ(r)

=
(
n+ 2λ− (n− 2λ− 2)r

)

1− r2
. (2.20)

For x = rζ , |x| = r, ζ ∈ Sn−1, denote

I(r,ζ)= ϕ(r)u(rζ), J(r,ζ)= ψ(r)u(rζ). (2.21)
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To prove Theorem 1.1 for λ≥ − 1/2, we need to show that I(r,ζ) is decreasing and J(r,ζ)
is increasing in r. By Lemma 4.1,

d

dr

(
logI(r,ζ)

)= ϕ′(r)
ϕ(r)

+
1

u(x)
∂u(x)
∂r

≤ −
(
n+ 2λ+ (n− 2λ− 2)r

)

1− r2
+

(
n+ 2λ+ (n− 2λ− 2)r

)

1− r2
= 0.

(2.22)

Therefore, log I(r,ζ) is decreasing in r, and so is I(r,ζ). Similarly,

d

dr

(
log J(r,ζ)

)= ψ′(r)
ψ(r)

+
1

u(x)
∂u(x)
∂r

≥
(
n+ 2λ− (n− 2λ− 2)r

)

1− r2
−
(
n+ 2λ− (n− 2λ− 2)r

)

1− r2
= 0.

(2.23)

Hence, J(r,ζ) is increasing in r. We have proved Theorem 1.1 for the case λ≥ − 1/2.
If Δλu= 0, λ <−1/2, then

ũ(x)= (1−|x|2)−(1+2λ)
u(x) (2.24)

satisfies

Δλ̃ũ= 0 with λ̃=−(1 + λ) >−1
2

(2.25)

by the correspondence principle (Lemma 2.2). From the above results for λ >−1/2,

(1− r)n−1

(1 + r)1+2λ̃
ũ(rζ)= (1− r)n−1

(1 + r)−(1+2λ)

(
1− r2)−(1+2λ)

u(rζ)= (1− r)n−2−2λu(rζ) (2.26)

is decreasing in r, and

(1 + r)n−1

(1− r)1+2λ̃
ũ(rζ)= (1 + r)n−1

(1− r)−(1+2λ)

(
1− r2)−(1+2λ)

u(rζ)= (1 + r)n−2−2λu(rζ) (2.27)

is increasing in r. Recall that δ = 0 for λ ≥ − 1/2 and δ = 1 + 2λ for λ < −1/2, we have
shown that

(1− r)n−1−δ

(1 + r)1+2λ−δ u(rζ) (2.28)

is decreasing in r and

(1 + r)n−1−δ

(1− r)1+2λ−δ u(rζ) (2.29)

is increasing in r for any λ∈R. This completes the proof of Theorem 1.1. �
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3. Proof of Theorem 1.2

The proof for Theorem 1.2 is based on Theorem 1.1 and the following lemma.

Lemma 3.1. Let f (r) be a positive function on r ∈ [0,1). If for a,b ∈R,

−a+ br
1− r2

f (r)≤ f ′(r)≤ a− br
1− r2

f (r), (3.1)

then for 0≤ r′ ≤ r < 1,

(
1 + r
1 + r′

)−a( 1− r2

1− r′2
)(b+a)/2

f (r′)≤ f (r)≤
(

1 + r
1 + r′

)a( 1− r2

1− r′2
)(b−a)/2

f (r′). (3.2)

Proof. The integral

∫
a− br
1− r2

dr = a ln(1 + r) +
1
2

(b− a) ln
(
1− r2)+C. (3.3)

Thus for 0≤ r′ ≤ r′′ < 1, by (3.1),

ln f (r′′)− ln f (r′)=
∫ r′′

r′

f ′(r)
f (r)

dr ≤
∫ r′′

r′

a− br
1− r2

dr ≤ ln
(

1 + r′′

1 + r′

)a(1− r′′2
1− r′2

)(b−a)/2

,

(3.4)

that is, the right-side inequality in (3.2) holds. Similarly, by the left-side of (3.1),

ln f (r′′)− ln f (r′)≥
∫ r′′

r′
− a+ br

1− r2
dr ≥ ln

(
1 + r′′

1 + r′

)−a(1− r′′2
1− r′2

)(b+a)/2

, (3.5)

hence the left-side inequality in (3.2) holds. �

Now we prove Theorem 1.2.

Proof. For λ≥ − 1/2, u(rζ) satisfies Lemma 2.4. Therefore, (3.1) holds with f (r)= u(rζ),
a= n+ 2λ, b =−n+ 2λ+ 2. Let 0≤ r′ ≤ r < 1. Inequality (3.2) in Lemma 3.1 implies

(
1 + r
1 + r′

)−n−2λ( 1− r2

1− r′2
)2λ+1

u(r′ζ)≤ u(rζ)≤
(

1 + r
1 + r′

)n+2λ( 1− r2

1− r′2
)−n+1

u(r′ζ), (3.6)

which is equivalent to

(
1− r
1− r′

)2λ+1(1 + r′

1 + r

)n−1

u(r′ζ)≤ u(rζ)≤
(

1 + r
1 + r′

)2λ+1(1− r′
1− r

)n−1

u(r′ζ). (3.7)

If Δλu = 0, λ < −1/2, then ũ(x) = (1− |x|2)−(1+2λ)u(x) satisfies Δλ̃ũ = 0 with λ̃ = −(1 +
λ) >−1/2 according to the correspondence principle (Lemma 2.2). From the above proof
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for λ >−1/2,

(
1− r
1− r′

)2λ̃+1(1 + r′

1 + r

)n−1

ũ(r′ζ)≤ ũ(rζ)≤
(

1 + r
1 + r′

)2λ̃+1(1− r′
1− r

)n−1

ũ(r′ζ), (3.8)

that is,

(
1 + r′

1 + r

)n−2−2λ

u(r′ζ)≤ u(rζ)≤
(

1− r′
1− r

)n−2−2λ

u(r′ζ). (3.9)

Combining the cases λ ≥ − 1/2 and λ < −1/2 completes the proof of Theorem 1.2. The

equality cases are achieved by the function uy(x)= (1−|x|2)1+2λ−δ
/|x− y|n+2λ−2δ at x =

|x|y and x =−|x|y, respectively. �

4. Proof of Theorem 1.3

The proof of Theorem 1.3 is based on the following three lemmas.

Lemma 4.1. Let u(x), x ∈ Bn, be a positive solution of Δλu = 0, λ ∈ R. Let ϕ(t), t ∈ [0,1]
be the shortest arc on the great circle connecting ξ1 and ξ2. Then

∣
∣
∣
∣
d

dt
u
(
rϕ(t)

)
∣
∣
∣
∣≤

r
∣
∣(n+ 2λ− 2δ)ϕ′(t)

∣
∣

(1− r)2 u
(
rϕ(t)

)
, r ∈ [0,1]. (4.1)

Proof. Direct calculation shows that

d

dt

1
∣
∣rϕ(t)−η∣∣n+2λ−2δ =

(n+ 2λ− 2δ)rϕ′(t)·η
∣
∣rϕ(t)−η∣∣n+2λ−2δ+2 . (4.2)

Applying |rϕ(t)−η| ≥ |1− rφ(t)·η| ≥ 1− r, we have

∫

Sn−1

∣
∣
∣
∣
∣
d

dt

1
∣
∣rϕ(t)−η∣∣n+2λ−2δ

∣
∣
∣
∣
∣dμ(η)

=
∫

Sn−1

∣
∣(n+ 2λ− 2δ)rϕ′(t)·η∣∣
∣
∣rϕ(t)−η∣∣n+2λ−2δ+2 dμ(η)

≤ |n+ 2λ− 2δ|r
∫

Sn−1

∣
∣ϕ′(t)

∣
∣|η|

∣
∣rϕ(t)−η∣∣n+2λ−2δ

(1− r)2
dμ(η)

= r
∣
∣(n+ 2λ− 2δ)ϕ′(t)

∣
∣

(1− r)2(1− r2
)1+2λ−δ

∫

Sn−1

(
1− r2

)1+2λ−δ
∣
∣rϕ(t)−η∣∣n+2λ−2δ dμ(η)

= r
∣
∣(n+ 2λ− 2δ)ϕ′(t)

∣
∣

(1− r)2(1− r2
)1+2λ−δ u

(
rϕ(t)

)
.

(4.3)
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By Lebesgue’s dominant convergence theorem,

∣
∣
∣
∣
d

dt
u
(
rϕ(t)

)
∣
∣
∣
∣=

∣
∣
∣
∣
∣
d

dt

∫

Sn−1

(
1−∣∣rϕ(t)

∣
∣2)1+2λ−δ

∣
∣rϕ(t)−η∣∣n+2λ−2δ dμ(η)

∣
∣
∣
∣
∣

= (1− r2)1+2λ−δ
∣
∣
∣
∣
∣

∫

Sn−1

d

dt

1
∣
∣rϕ(t)−η∣∣n+2λ−2δ dμ(η)

∣
∣
∣
∣
∣

≤ r
∣
∣(n+ 2λ− 2δ)ϕ′(t)

∣
∣

(1− r)2 u
(
rϕ(t)

)
.

(4.4)

�

Lemma 4.2. Let

ξi =
(
0, . . . ,0,r cosθi,r sinθi

)∈ Sn−1, i= 1,2,
∣
∣θ2− θ1

∣
∣≤ π,

ϕ(t)= (0, . . . ,0,r cosθt,r sinθt
)
, θt = tθ2 + (1− t)θ1, t ∈ [0,1].

(4.5)

Then

∣
∣ϕ′(t)

∣
∣≤ π

2

∣
∣ξ2− ξ1

∣
∣. (4.6)

Proof. It suffices to prove for n = 2. For computation convenience, we use the complex
plane notations in R2. Denote ξi = e1θi ;

ξ2− ξ1 = eiθ2 − eiθ1

= exp
(
i
θ2 + θ1

2

)(
exp

(
i
θ2− θ1

2

)
− exp

(
− i θ2− θ1

2

))

= exp
(
i
θ2 + θ1

2

)
(2i)sin

θ2− θ1

2
.

(4.7)

Notice that

∣
∣
∣
∣sin

x

2

∣
∣
∣
∣≥

∣
∣
∣
∣
x

π

∣
∣
∣
∣ for |x| ≤ π, (4.8)

so |θ2− θ1| ≤ π implies

∣
∣eiθ2 − eiθ1

∣
∣= 2

∣
∣
∣
∣sin

(
θ2− θ1

2

)∣∣
∣
∣≥

2
π

∣
∣θ2− θ2

∣
∣. (4.9)

Furthermore,

ϕ′(t)= d

dt

(
eitθ2+i(1−t)θ1

)= ϕ(t)i
(
θ2− θ1

)
. (4.10)
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Thus

∣
∣ϕ′(t)

∣
∣= ∣∣θ2− θ1

∣
∣≤ π

2

∣
∣eiθ2 − eiθ1

∣
∣= π

2

∣
∣ξ2− ξ1

∣
∣. (4.11)

�

Lemma 4.3. Let u(x), x ∈ Bn, be a positive solution of Δλu = 0, λ ∈ R. Let ξ1,ξ2 ∈ Sn−1.
Then for r ∈ [0,1),

exp
{
− π

2

∣
∣ξ2− ξ1

∣
∣ |n+ 2λ− 2δ|r

(1− r)2

}
≤ u

(
rξ2

)

u
(
rξ1

) ≤ exp
{
π

2

∣
∣ξ2− ξ1

∣
∣ |n+ 2λ− 2δ|r

(1− r)2

}
.

(4.12)

Proof. For ξ1,ξ2 ∈ Sn−1, there exists a Möbius transformationT inRn such thatT(Sn−1)=
Sn−1, and for all r ∈ [0,1],

T
(
rξi
)= (0, . . . ,0,r cosθi,r sinθi

)
for i= 1,2,

∣
∣θ2− θ1

∣
∣≤ π (4.13)

with

∣
∣detT′(x)

∣
∣= 1,

∣
∣T
(
rξ2

)−T(rξ1

)∣∣= ∣∣rξ2− rξ1

∣
∣, (4.14)

and u(T(x)) is also a positive solution of (1.1) with respect to the measure μ(T−1(x)).
Since Δλ is invariant under such orthogonal transformation, we may assume without loss
of generality that

ξi =
(
0, . . . ,0,cosθi, sinθi

)
for i= 1,2,

∣
∣θ2− θ1

∣
∣≤ π. (4.15)

Let

ϕ(t)= (0, . . . ,0,r cosθt,r sinθt
)
, θt = tθ2 + (1− t)θ1, t ∈ [0,1]. (4.16)

Then ϕ(0)= ξ1, ϕ(1)= ξ2. By (4.1) in Lemma 4.1 and (4.6) in Lemma 4.2,

∣
∣
∣
∣

∫ 1

0

(d/dt)u
(
rϕ(t)

)

u
(
rϕ(t)

) dt
∣
∣
∣
∣≤

∫ 1

0

∣
∣
∣
∣

(d/dt)u
(
rϕ(t)

)

u
(
rϕ(t)

)
∣
∣
∣
∣dt

≤ |n+ 2λ− 2δ|r
(1− r)2

∫ 1

0

∣
∣ϕ′(t)

∣
∣dt ≤ π

2

∣
∣ζ2− ζ1

∣
∣ |n+ 2λ− 2δ|r

(1− r)2 .

(4.17)

Since

ln
u
(
rξ2

)

u
(
rξ1

) = ln
u
(
rϕ(1)

)

u
(
rϕ(0)

) =
∫ 1

0

(d/dt)u
(
rϕ(t)

)

u
(
rϕ(t)

) dt, (4.18)

we have
∣
∣
∣
∣ ln

u
(
rξ2

)

u
(
rξ1

)
∣
∣
∣
∣≤

π

2

∣
∣ξ2− ξ1

∣
∣ |n+ 2λ− 2δ|r

(1− r)2 . (4.19)
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Therefore,

−π
2

∣
∣ξ2− ξ1

∣
∣ |n+ 2λ− 2δ|r

(1− r)2 ≤ ln
u
(
rξ2

)

u
(
rξ1

) ≤ π

2

∣
∣ξ2− ξ1

∣
∣ |n+ 2λ− 2δ|r

(1− r)2 . (4.20)

This completes the proof of Lemma 4.3. �

The proof of Theorem 1.3 follows immediately.

Proof. Write

u
(
r2ξ2

)

u
(
r1ξ1

) = u
(
r2ξ2

)

u
(
r1ξ2

)
u
(
r1ξ2

)

u
(
r1ξ1

) . (4.21)

Applying Lemma 4.3 and Theorem 1.2, Theorem 1.3 follows. The function uy(x) = (1−
|x|2)1+2λ−δ

/|x− y|n+2λ−2δ at x = |x|y and x = −|x|y gives the trivial equalities achieved
in Theorem 1.2. �
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