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This paper is the continuation of the paper entitled “Hereditary portfolio optimization
with taxes and fixed plus proportional transaction costs I” that treats an infinite-time
horizon hereditary portfolio optimization problem in a market that consists of one sav-
ings account and one stock account. Within the solvency region, the investor is allowed
to consume from the savings account and can make transactions between the two as-
sets subject to paying capital-gain taxes as well as a fixed plus proportional transaction
cost. The investor is to seek an optimal consumption-trading strategy in order to maxi-
mize the expected utility from the total discounted consumption. The portfolio optimiza-
tion problem is formulated as an infinite dimensional stochastic classical impulse control
problem due to the hereditary nature of the stock price dynamics and inventories. This
paper contains the verification theorem for the optimal strategy. It also proves that the
value function is a viscosity solution of the QVHJBI.
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the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction and summary of results in [1]

This is the second of the two companion papers (see [1] for the first paper) that treat
an infinite time horizon hereditary portfolio optimization problem in a financial market
that consists of one savings account and one stock account. It is assumed that the savings
account compounds continuously with a constant interest rate r > 0 and the unit price
process, {S(t), t ≥ 0}, of the underlying stock follows a nonlinear stochastic hereditary
differential equation (see (1.23)). The main purpose of the stock account is to keep track
of the inventories (i.e., the time instants and the base prices at which shares were pur-
chased or sold) for the purpose of calculating the capital-gain taxes, and so forth. In the
stock price dynamics, we assume that both f (St) (the mean rate of return) and g(St) (the
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volatility coefficient) depend on the entire history of stock prices St over the time interval
(−∞, t] instead of just the current stock price S(t) at time t ≥ 0 alone. Within the solvency
region �κ (to be defined in (1.9)) and under the requirements of paying a fixed plus pro-
portional transaction costs and capital-gain taxes, the investor is allowed to consume from
his savings account in accordance with a consumption rate process C = {C(t), t ≥ 0}
and can make transactions between his savings and stock accounts according to a trad-
ing strategy � = {(τ(i),ζ(i)), i = 1,2, . . .}, where τ(i), i = 0,1,2, . . . denote the sequence
of transaction times and ξ(i) stands for the quantities of transactions at time τ(i) (see
Definition 1.10).

The investor will follow the following set of consumption, transaction, and taxation
rules (Rules 1.1–1.6). Note that an action of the investor in the market is call a transaction
if it involves trading of shares of the stock such as buying and selling.

Rule 1.1. At the time of each transaction, the investor has to pay a transaction cost that
consists of a fixed cost κ > 0 and a proportional transaction cost with the cost rate of
μ ≥ 0 for both selling and buying shares of the stock. All the purchases and sales of any
number of stock shares will be considered one transaction if they are executed at the same
time instant and therefore incur only one fixed fee κ > 0 (in addition to a proportional
transaction cost).

Rule 1.2. Within the solvency region �κ, the investor is allowed to consume and to borrow
money from his savings account for stock purchases. He can also sell and/or buy-back at
the current price shares of the stock he bought and/or short sold at a previous time.

Rule 1.3. The proceeds for the sales of the stock minus the transaction costs and capital-
gain taxes will be deposited in his savings account and the purchases of stock shares to-
gether with the associated transaction costs and capital-gain taxes (if short shares of the
stock are bought back at a profit) will be financed from his savings account.

Rule 1.4. Without loss of generality, it is assumed that the interest income in the savings
account is tax free by using the effective interest rate r > 0, where the effective interest rate
equals the interest rate paid by the bank minus the tax rate for the interest income.

Rule 1.5. At the time of a transaction (say t ≥ 0), the investor is required to pay a capital-
gain tax (resp., be paid a capital-loss credit) in the amount that is proportional to the
amount of profit (resp., loss). A sale of stock shares is said to result in a profit if the current
stock price S(t) is higher than the base price B(t) of the stock and it is a loss otherwise. The
base price B(t) is defined to be the price at which the stock shares were previously bought
or short sold, that is, B(t)= S(t− τ(t)) where τ(t) > 0 is the time duration for which those
shares (long or short) have been held at time t. The investor will also pay capital-gain taxes
(resp., be paid capital-loss credits) for the amount of profit (resp., loss) by short-selling
shares of the stock and then buying back the shares at a lower (resp., higher) price at
a later time. The tax will be paid (or the credit will be given) at the buying-back time.
Throughout the end, a negative amount of tax will be interpreted as a capital-loss credit.
The capital-gain tax and capital-loss credit rates are assumed to be the same as β > 0 for
simplicity. Therefore, if |m| (m> 0 stands for buying and m< 0 stands for selling) shares
of the stock are traded at the current price S(t) at the base B(t) = S(t− τ(t)), then the
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amount of tax due at the transaction time is given by

|m|β(S(t)− S(t− τ(t)
))
. (1.1)

Rule 1.6. The tax and/or credit will not exceed all other gross proceeds and/or total costs
of the stock shares, that is,

m(1−μ)S(t)≥ βm∣∣S(t)− S(t− τ(t)
)∣∣ if m≥ 0,

m(1 +μ)S(t)≤ βm∣∣S(t)− S(t− τ(t)
)∣∣ if m< 0,

(1.2)

where m ∈ � denotes the number of shares of the stock traded with m ≥ 0 being the
number of shares purchased and m< 0 being the number of shares sold.

Convention 1.7. Throughout the end, we assume that μ+β < 1.

Under the above assumptions and Rules 1.1–1.6, the investor’s objective is to seek an
optimal consumption-trading strategy (C∗,�∗) in order to maximize

E

[∫∞

0
e−δt

Cγ(t)
γ

dt

]

, (1.3)

the expected utility from the total discounted consumption over the infinite time hori-
zon, where δ > 0 represents the discount rate and 0 < γ < 1 represents the investor’s risk
aversion factor.

Due to the fixed plus proportional transaction costs and the hereditary nature of the
stock dynamics and inventories, the problem will be formulated as a combination of a
classical control (for consumptions) and an impulse control (for the transactions) prob-
lem in infinite dimensions. In the first paper [1], a quasivariational Hamilton-Jocobi-
Bellman inequality (QVHJBI) for the value function together with its boundary condi-
tions are derived. This paper establishes the verification theorem for the optimal invest-
ment-trading strategy. It is also shown here that the value function is a viscosity solu-
tion of the QVHJBI (see QVHJBI(∗) in Section 2). Due to the complexity of the analysis
involved, the uniqueness result and finite dimensional approximations for the viscosity
solution of QVHJBI(∗) will be treated separately in a future paper.

In this and the previous paper, the state space will be S = �×N×�× L2
ρ. In the

above,
(i) the stock inventory space, N, is the space of bounded measurable functions ξ :

(−∞,0]→� of the following form:

ξ(θ)=
∞∑

k=0

n(−k)1{τ(−k)}(θ), θ ∈ (−∞,0], (1.4)

where {n(−k), k = 0,1,2, . . .} is a sequence in � with n(−k) = 0 for all but
finitely many k,

−∞ < ··· < τ(−k) < ··· < τ(−1) < τ(0)= 0, (1.5)

and 1{τ(−k)} is the indicator function at τ(−k).
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Let ‖ · ‖N (the norm of the space N) be defined by

‖ξ‖N = sup
θ∈(−∞,0]

∣
∣ξ(θ)

∣
∣ ∀ξ ∈N; (1.6)

(ii) the historical stock price space is �× L2
ρ with L2

ρ being the ρ-weighted Hilbert
space of functions φ : (−∞,0]→� with

∫ 0

−∞

∣
∣φ(θ)

∣
∣2
ρ(θ)dθ <∞. (1.7)

Throughout the end of this paper, let ρ : (−∞,0] → [0,∞) be the influence function
with relaxation property that satisfies the following conditions.

Condition 1.8. ρ is summable on (−∞,0], that is, 0 <
∫ 0
−∞ ρ(θ)dθ <∞.

Condition 1.9. For every λ≤ 0 one has

K(λ)= ess sup
θ∈(−∞,0]

ρ(θ + λ)
ρ(θ)

≤ K <∞, K(λ)= ess sup
θ∈(−∞,0]

ρ(θ)
ρ(θ + λ)

<∞. (1.8)

An element (x,ξ,ψ(0),ψ)∈ S will be referred to as a portfolio, where x ∈� represents
the investor’s holding in his savings account, ξ ∈ N represents his stock inventory, and
(ψ(0),ψ)∈�×L2

ρ stands for a profile of historical stock prices.

The solvency region �κ of the portfolio optimization problem is defined as

�κ =
{(
x,ξ,ψ(0),ψ

)∈ S |Gκ
(
x,ξ,ψ(0),ψ

)≥ 0
}∪ S+, (1.9)

where Gκ : S→� is the liquidating function defined by

Gκ
(
x,ξ,ψ(0),ψ

)

= x− κ+
∞∑

k=0

[
min

{
(1−μ)n(−k),(1 +μ)n(−k)

}
ψ(0)−n(−k)β

(
ψ(0)−ψ(τ(−k)

))]
,

(1.10)

and S+ =�+×N+×�+×L2
ρ,+ is the positive cone of the state space S.

Let (X(0−),N0−, S(0),S0)= (x,ξ,ψ(0),ψ)∈�×N×�+×L2
ρ,+ be the investor’s initial

portfolio immediately prior to t = 0, that is, the investor starts with x ∈� dollars in his
savings account, the initial stock inventory

ξ(θ)=
∞∑

k=0

n(−k)1{τ(−k)}(θ), θ ∈ (−∞,0), (1.11)

and the initial profile of historical stock prices (ψ(0),ψ) ∈ �+ × L2
ρ,+, where n(−k) > 0

(resp., n(−k) < 0) represents an open long (resp., short) position at τ(−k). Within the
solvency region �κ, the investor is allowed to consume from his savings account and can
make transactions between his savings and stock accounts under Rules 1.1–1.6 and ac-
cording to a consumption-trading strategy π = (C,�) defined below.



Mou-Hsiung Chang 5

Definition 1.10. The pair π = (C,�) is said to be a consumption-trading strategy if
(i) the consumption rate process C = {C(t), t ≥ 0} is a nonnegative G-progressively

measurable process such that

∫ T

0
C(t)dt <∞, P-a.s., ∀T > 0; (1.12)

(ii) � = {(τ(i),ζ(i)), i = 1,2, . . .} is a trading strategy with τ(i), i = 1,2, . . . , being a
sequence of trading times that are G-stopping times such that

0= τ(0)≤ τ(1) < ··· < τ(i) < ··· , lim
i→∞

τ(i)=∞ a.s., (1.13)

and for each i= 0,1, . . . ,

ζ(i)= (
. . . ,m(i− k), . . . ,m(i− 2),m(i− 1),m(i)

)
(1.14)

is an N-valued �(τ(i))-measurable random vector (instead of a random variable
in �) that represents the trading quantity at the trading time τ(i). In the above,
m(i) > 0 (resp., m(i) < 0) is the number of stock shares newly purchased (resp.,
short-sold) at the current time τ(i) and at the current price of S(τ(i)) and, for
k = 1,2, . . . , m(i− k) > 0 (resp., m(i− k) < 0) is the number of stock shares bought
back (resp., sold) at the current time τ(i) and the current price of S(τ(i)) in his
open short (resp., long) position at the previous time τ(i− k) and the base price
of S(τ(i− k)).

Note that G= {�(t), t ≥ 0} is the filtration generated by {S(t), t ≥ 0}, that is,

�(t)= σ(S(s), 0≤ s≤ t)(= σ((S(s),Ss
)
, 0≤ s≤ t)), ∀t ≥ 0. (1.15)

For each stock inventory ξ of the form expressed (1.4), Rules 1.1–1.6 also dictate that
the investor can purchase or short sell new shares and/or buy back (resp., sell) all or part
of what he owes (resp., owns). Therefore, the trading quantity {m(−k),k = 0,1, . . .}must
satisfy the constraint set �(ξ)⊂N defined by

�(ξ)=
{
ζ ∈N | ζ =

∞∑

k=0

m(−k)1{τ(−k)}, −∞ <m(0) <∞,

either n(−k) > 0, m(−k)≤ 0 & n(−k) +m(−k)≥ 0

or n(−k) < 0, m(−k)≥ 0 & n(−k) +m(−k)≤ 0 for k ≥ 1
}
.

(1.16)

Given the initial portfolio

(
X(0−),N0−,S(0),S0

)= (
x,ξ,ψ(0),ψ

)∈ S (1.17)

and applying a consumption-trading strategy π = (C,�) (see Definition 1.10), the port-
folio dynamics of {Z(t)= (X(t),Nt,S(t),St), t ≥ 0} can then be described as follows.
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Firstly, the savings account holdings {X(t), t ≥ 0} satisfy the following differential
equation between the trading times:

dX(t)= [
rX(t)−C(t)

]
dt, τ(i)≤ t < τ(i+ 1), i= 0,1,2, . . . , (1.18)

and the following jumped quantity at the trading time:

X
(
τ(i)

)= X(τ(i)− )− κ−
∞∑

k=0

m(i− k)
[

(1−μ)S
(
τ(i)

)−β(S(τ(i)
)− S(τ(i− k)

))]

× 1{n(i−k)>0,−n(i−k)≤m(i−k)≤0}

−
∞∑

k=0

m(i− k)
[

(1 +μ)S
(
τ(i)

)−β(S(τ(i)
)− S(τ(i− k)

))]

× 1{n(i−k)<0,0≤m(i−k)≤−n(i−k)}.
(1.19)

As a reminder,m(i) > 0 (resp.,m(i) < 0) means buying (resp., selling) new stock shares
at τ(i) and m(i− k) > 0 (resp., m(i− k) < 0) means buying back (resp., selling) some or
all of what he owed (resp., owned).

Secondly, the inventory of the investor’s stock account at time t ≥ 0, Nt ∈N does not
change between the trading times and can be expressed as the following equation:

Nt =Nτ(i) =
Q(t)∑

k=−∞
n(k)1τ(k) if τ(i)≤ t < τ(i+ 1), i= 0,1,2 . . . , (1.20)

where Q(t) = sup{k ≥ 0 | τ(k) ≤ t}. It has the following jumped quantity at the trading
time τ(i):

Nτ(i) =Nτ(i)− ⊕ ζ(i), (1.21)

where Nτ(i)− ⊕ ζ(i) : (−∞,0]→N is defined by

(
Nτ(i)− ⊕ ζ(i)

)
(θ)=

∞∑

k=0

n̂(i− k)1{τ(i−k)}
(
τ(i) + θ

)

=m(i)1{τ(i)}
(
τ(i) + θ

)

+
∞∑

k=1

[
n(i− k) +m(i− k)

(
1{n(i−k)<0,0≤m(i−k)≤−n(i−k)}

+1{n(i−k)>0,−n(i−k)≤m(i−k)≤0}
)]

1{τ(i−k)}
(
τ(i) + θ

)
, θ ∈ (−∞,0].

(1.22)

Thirdly, since the investor is small, the unit stock price process {S(t), t ≥ 0} will not
be in anyway affected by the investor’s action in the market and is assumed to satisfy the
following nonlinear stochastic hereditary differential equation:

dS(t)= S(t)
[
f
(
St
)
dt+ g

(
St
)
dW(t)

]
, t ≥ 0, (1.23)
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with the initial historical price function (S(0),S0)= (ψ(0),ψ)∈�+×L2
ρ,+. Note that f (St)

and g(St) in (1.4) represent, respectively, the mean growth rate and the volatility rate of
the stock price at time t ≥ 0 and that they are dependent on the entire history of stock
prices St (St(θ), θ ∈ (−∞,0]) over the time interval (−∞, t].

Under the Lipschitz and linear growth conditions (see [1, Assumptions 2.4–2.6]) of
the functions (φ(0),φ) �→ φ(0) f (φ) and (φ(0),φ) �→ φ(0)g(φ) on the space �×L2

ρ, it can
be shown that (1.23) (see [2, 1, 3–5]) has a unique strong solution {S(t), t ∈ (−∞,∞)}
and that the �×L2

ρ-valued process {(S(t),St), t ≥ 0} is a strong Markovian with respect
to the filtration G.

Definition 1.11. If the investor starts with an initial portfolio

(
X(0−),N0−,S(0),S0

)= (
x,ξ,ψ(0),ψ

)∈�κ. (1.24)

The consumption-trading strategy π = (C,�) defined in Definition 1.10 is said to be ad-
missible at (x,ξ,ψ(0),ψ) if

ζ(i)∈�
(
Nτ(i)−

) ∀i= 1,2, . . . ,
(
X(t),Nt,S(t),St

)∈�κ, ∀t ≥ 0. (1.25)

The class of consumption-investment strategies admissible at (x,ξ,ψ(0),ψ)∈�κ will be
denoted by �κ(x,ξ,ψ(0),ψ).

The investor’s objective is to find an admissible consumption-trading strategy π∗ ∈
�κ(x,ξ,ψ(0),ψ) that maximizes the following expected utility from the total discounted
consumption:

Jκ
(
x,ξ,ψ(0),ψ;π

)= Ex,ξ,ψ(0),ψ;π

[∫∞

0
e−δt

Cγ(t)
γ

dt

]

(1.26)

among the class of admissible consumption-trading strategies �κ(x,ξ,ψ(0),ψ), where
Ex,ξ,ψ(0),ψ;π[···] is the expectation with respect to Px,ξ,ψ(0),ψ;π{···}, the probability mea-
sure induced by the controlled (by π) state process {(X(t),Nt,S(t),St), t ≥ 0} and condi-
tioned on the initial state

(
X(0−),N0−,S(0),S0

)= (
x,ξ,ψ(0),ψ

)
. (1.27)

In the above, δ > 0 denotes the discount factor, and 0 < γ < 1 indicates that the utility
functionU(c)= cγ/γ, for c > 0, is a function of HARA (hyperbolic absolute risk aversion)
type. The admissible (consumption-investment) strategy π∗ ∈ �κ(x,ξ,ψ(0),ψ) that
maximizes Jκ(x,ξ,ψ(0),ψ;π) is called an optimal (consumption-trading) strategy and the
function Vκ : �κ→�+ defined by

Vκ
(
x,ξ,ψ(0),ψ

)= sup
π∈�κ

(
x,ξ,ψ(0),ψ

) Jκ
(
x,ξ,ψ(0),ψ;π

)= Jκ
(
x,ξ,ψ(0),ψ;π∗

)
(1.28)

is called the value function of the hereditary portfolio optimization problem.
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The results obtained in [1] include derivations of the infinite dimensional quasivari-
ational Hamilton-Jacobi-Bellman (GVHJB) together with its boundary conditions. The
boundary conditions for the value function are given as follows.

Let ℵ ≡ {0,1,2, . . .}. The boundary ∂�κ of �κ can be decomposed as follows:

∂�κ =
⋃

I⊂ℵ

(
∂−,I�κ∪ ∂+,I�κ

)
, (1.29)

where

∂−,I�κ = ∂−,I ,1�κ∪ ∂−,I ,2�κ,

∂+,I�κ = ∂+,I ,1�κ∪ ∂+,I ,2�κ,

∂+,I ,1�κ =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)= 0, x ≥ 0,

n(−i) < 0∀i∈ I & n(−i)≥ 0∀i /∈ I
}

,

∂+,I ,2�κ =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)
< 0, x ≥ 0,

n(−i)= 0∀i∈ I & n(−i)≥ 0∀i /∈ I
}

,

∂−,I ,1�κ =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)= 0, x < 0,

n(−i) < 0∀i∈ I & n(−i)≥ 0∀i /∈ I
}

,

∂−,I ,2�κ =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)
< 0, x = 0,

n(−i)= 0∀i∈ I & n(−i)≥ 0∀i /∈ I
}
.

(1.30)

The interface (intersection) between ∂+,I ,1�κ and ∂+,I ,2�κ is denoted by

Q+,I =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)= 0, x ≥ 0,

n(−i)= 0∀i∈ I & n(−i)≥ 0∀i /∈ I
}
.

(1.31)

Whereas the interface between ∂−,I ,1�κ and ∂−,I ,2�κ is denoted by

Q−,I =
{(

0,ξ,ψ(0),ψ
) |Gκ

(
0,ξ,ψ(0),ψ

)= 0, x = 0,

n(−i)= 0∀i∈ I & n(−1)≥ 0∀i /∈ I
}
.

(1.32)

The QVHJBI (together with the boundary conditions) is derived in [1] and restated as
follows:

QVHJBI(∗)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max
{
�Φ,�κΦ−Φ

}= 0 on �◦
κ ,

�Φ= 0 on
⋃
I⊂ℵ ∂+,I ,2�κ,

	0Φ= 0 on
⋃
I⊂ℵ ∂−,I ,2�κ,

�κΦ−Φ= 0 on
⋃
I⊂ℵ ∂I ,1�κ,

(1.33)
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where

�Φ= (
A +Γ+ rx∂x − δ

)
Φ+ sup

c≥0

(
cγ

γ
− c∂xΦ

)

,

AΦ
(
ψ(0),ψ

)= 1
2
∂2
ψ(0)Φ

(
ψ(0),ψ

)
ψ2(0)g2(ψ) + ∂ψ(0)Φ

(
ψ(0),ψ

)
ψ(0) f (ψ),

	0Φ= (
A +Γ+ rx∂x − δ

)
Φ,

(1.34)

Γ(Φ)
(
φ(0),φ

)≡ lim
t↓0

Φ
(
φ(0), φ̃t

)−Φ
(
φ(0),φ

)

t
, (1.35)

with φ̃ : (−∞,∞)→� being defined by

φ̃(t)=
⎧
⎪⎨

⎪⎩

φ(0) for t ∈ [0,∞),

φ(t) for t ∈ (−∞,0).
(1.36)

Then for each θ ∈ (−∞,0] and t ∈ [0,∞),

φ̃t(θ)= φ̃(t+ θ)=
⎧
⎪⎨

⎪⎩

φ(0) for t+ θ ≥ 0,

φ(t+ θ) for t+ θ < 0.

	0Φ= (
A +Γ+ rx∂x − δ

)
Φ.

(1.37)

Furthermore, �κΦ is given by

�κΦ
(
x,ξ,ψ(0),ψ

)= sup
{
Φ
(
x̂, ξ̂, ψ̂(0), ψ̂

) | ζ ∈�(ξ)−{0},(x̂, ξ̂, ψ̂(0), ψ̂
)∈�κ

}
,

(1.38)

where the new portfolio immediately after a transaction, (x̂, ξ̂, ψ̂(0), ψ̂), is as defined as
follows:

x̂ = x− κ− (
m(0) +μ

∣
∣m(0)

∣
∣)ψ(0)

−
∞∑

k=1

[
(1 +μ)m(−k)ψ(0)−βm(−k)

(
ψ(0)−ψ(τ(−k)

))]

× 1{n(−k)<0,0≤m(−k)≤−n(−k)}

−
∞∑

k=1

[
(1−μ)m(−k)ψ(0)−βm(−k)

(
ψ(0)−ψ(τ(−k)

))]

· 1{n(−k)>0,−n(−k)≤m(−k)≤0},

(1.39)
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and for all θ ∈ (−∞,0],

ξ̂(θ)= (ξ ⊕ ζ)(θ)=m(0)1{τ(0)}(θ)

+
∞∑

k=1

(
n(−k) +m(−k)

× [
1{n(−k)<0,0≤m(−k)≤−n(−k)} + 1{n(−k)>0,−n(−k)≤m(−k)≤0}

])
1{τ(−k)}(θ),

(1.40)

and again
(
ψ̂(0), ψ̂

)= (
ψ(0),ψ

)
. (1.41)

If (x̂, ξ̂, ψ̂(0), ψ̂) /∈�κ for all ζ ∈�(ξ)−{0}, we set �κΦ(x,ξ,ψ(0),ψ)= 0.
In this paper, we obtain the verification theorem for the optimal consumption-trading

strategy π∗. This result is contained in Section 2. In Section 3, we also prove that the value
function Vκ : �κ→� is a viscosity solution of QVHBJI(∗).

2. The verification theorem

Let

�̃Φ=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�Φ on �◦
κ ∪

⋃

I⊂ℵ
∂+,I ,2�κ;

	0Φ on
⋃

I⊂ℵ
∂−,I ,2�κ.

(2.1)

Let 
(Γ) be the domain of the operator Γ defined in (1.35), that is, 
(Γ) is the set of
(Borel) measurable functions Φ : �κ →� such that the limit in (1.35) exists for each
fixed (x,ξ,ψ(0),ψ) ∈ �κ. Let C1,0,2,2

lip (�κ) be the collection of functions Φ : �κ →� that
are continuously differentiable with respect to its first variable x and twice continuously
differentiable and Fréchet differentiable with respect to its third variable ψ(0) and fourth
variable ψ and the second-order Fréchet derivative D2Φ(x,ξ,·,·) is said to be globally
Lipschitz on �× L2

ρ in operator norm ‖ · ‖†, that is, there exists a constant K > 0 such
that

∥
∥D2Φ

(
x,ξ,φ(0),φ

)−D2Φ
(
x,ξ,ϕ(0),ϕ

)∥∥†

≤ K∥∥(φ(0),φ
)− (

ϕ(0),ϕ
)∥∥, ∀(φ(0),φ

)
,
(
ϕ(0),ϕ

)∈�×L2
ρ.

(2.2)

We have the following verification theorem for the value function Vκ : �κ→� for our
hereditary portfolio optimization problem.

Theorem 2.1 (the verification theorem). (a) Let Uκ = �κ −
⋃
I⊂ℵ ∂I ,1�κ. Suppose there

exists a locally bounded nonnegative valued function Φ∈ C1,0,2,2
lip (�κ)∩
(Γ) such that

�̃Φ≤ 0 on Uκ, Φ≥�κΦ on Uκ. (2.3)

Then Φ≥Vκ on �κ.
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(b) Define D ≡ {(x,ξ,ψ(0),ψ)∈Uκ |Φ(x,ξ,ψ(0),ψ) >�κΦ(x,ξ,ψ(0),ψ)}. Suppose

�̃Φ
(
x,ξ,ψ(0),ψ

)= 0 on D (2.4)

and that ζ̂(x,ξ,ψ(0),ψ)= ζ̂Φ(x,ξ,ψ(0),ψ) exists for all (x,ξ,ψ(0),ψ)∈�κ by [1, Assump-
tion 4.2]. Let

c∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∂xΦ

)1/(γ−1)
on �◦

κ ∪
⋃

I⊂ℵ
∂+,I ,2�κ,

0 on
⋃

I⊂ℵ
∂−,I ,2�κ.

(2.5)

Define the impulse control �∗ = {(τ∗(i),ζ∗(i)), i= 1,2, . . .} inductively as follows.
First put τ∗(0)= 0 and inductively

τ∗(i+ 1)= inf
{
t > τ∗(i) | (X (i)(t),N (i)

t ,S(t),St
)
/∈D}, (2.6)

ζ∗(i+ 1)= ζ̂(X (i)(τ∗(i+ 1)−), N (i)
τ∗(i+1)−, S(τ∗(i+ 1)), Sτ∗(i+1)), (2.7)

{(X (i)(t),N (i)
t ,S(t),St), t ≥ 0} is the controlled state process obtained by applying the com-

bined control

π∗(i)= (
c∗,

(
τ∗(1),τ∗(2), . . . ,τ∗(i);ζ∗(1),ζ∗(2), . . . ,ζ∗(i)

))
, i= 1,2, . . . . (2.8)

Suppose π∗ = (C∗,�∗)∈�κ(x,ξ,ψ(0),ψ),

e−δtΦ(X∗(t),N∗
t ,S(t),St)−→ 0, as t −→∞ a.s. (2.9)

and that the family

{
e−δτΦ

(
X∗(τ),N∗

τ ,S(τ),Sτ
) | τ is a G− stopping time

}
(2.10)

is uniformly integrable. Then Φ(x,ξ,ψ(0),ψ)=Vκ(x,ξ,ψ(0),ψ) and π∗ obtained in (2.5)–
(2.7) is optimal.

Proof. (a) Suppose π = (C,�)∈�κ(x,ξ,ψ(0),ψ), where C = {C(t), t ≥ 0} is a consump-
tion rate process and � = {(τ(i),ζ(i)), i= 1,2, . . .} is a trading strategy. Denote the con-
trolled state processes (by π) with the initial state by (x,ξ,ψ(0),ψ) by

{
Z(t)= (

X(t),Nt,S(t),St
)
, t ≥ 0

}
. (2.11)

For R > 0 put

T(R)= R∧ inf
{
t > 0 | ∥∥Z(t)

∥
∥≥ R} (2.12)

and set

θ(i+ 1)= θ(i+ 1;R)= τ(i)∨ (
τ(i+ 1)∧T(R)

)
, (2.13)
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where ‖Z(t)‖ is the norm of Z(t) in �×N×�× L2
ρ in the product topology. Then by

the generalized Dynkin’s formula (see [1, Theorem 3.6]), we have

E
[
e−δθ(i+1)Φ

(
Z
(
θ(i+ 1)− ))]

= E
[
e−δτ(i)Φ

(
Z
(
τ(i)

))]
+
∫ θ(i+1)−

τ(i)
e−δt	C(t)Φ

(
Z(t)

)
dt
]

≤ E[e−δτ(i)Φ
(
Z
(
τ(i)

))]−E
[∫ θ(i+1)−

τ(i)
e−δt

Cγ(t)
γ

dt

]

, since �̃Φ≤ 0.

(2.14)

Equivalently, we have

E
[
e−δτ(i)Φ

(
Z
(
τ(i)

))]−E[e−δθ(i+1)Φ
(
Z
(
θ(i+ 1)−))]≥ E

[∫ θ(i+1)−

τ(i)
e−δt

Cγ(t)
γ

dt

]

.

(2.15)

Letting R→∞, using the Fatou’s lemma, and then summing from i= 0 to i= k gives

Φ
(
x,ξ,ψ(0),ψ

)
+

k∑

i=1

E
[
e−δτ(i)(Φ

(
Z
(
τ(i)

))−Φ
(
Z
(
τ(i−)

)))]

−E[e−δτ(k+1)Φ
(
Z
(
τ(k+ 1)−))]≥ E

[∫ θ(k+1)

0
e−δt

Cγ(t)
γ

dt

]

.

(2.16)

Now

Φ
(
Z
(
τ(i)

))≤�κΦ
(
Z
(
τ(i)−)) for i= 1,2, . . . (2.17)

and therefore

Φ
(
x,ξ,ψ(0),ψ

)
+

k∑

i=1

E
[
e−δτ(i)

(
�κΦ

(
Z
(
τ(i)−))−Φ

(
Z
(
τ(i)−))

)]

≥ E
[∫ θ(k+1)−

0
e−δt

Cγ(t)
γ

dt+ e−δτ(k+1)Φ
(
Z
(
τ(k+ 1)−))

]
.

(2.18)

It is clear that

�κΦ
(
Z
(
τ(i)−))−Φ

(
Z
(
τ(i)−))≤ 0 (2.19)

and hence

Φ
(
x,ξ,ψ(0),ψ

)≥ E
[∫ θ(k+1)−

0
e−δt

Cγ(t)
γ

dt+ e−δτ(k+1)Φ
(
Z
(
τ(k+ i)− ))

]

. (2.20)
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Letting k→∞, we get

Φ
(
x,ξ,ψ(0),ψ

)≥ E
[∫∞

0
e−δt

Cγ(t)
γ

dt

]

, (2.21)

since Φ is a locally bounded nonnegative function.
Hence

Φ
(
x,ξ,ψ(0),ψ

)≥ Jκ
(
x,ξ,ψ(0),ψ;π

) ∀π ∈�κ
(
x,ξ,ψ(0),ψ

)
. (2.22)

Therefore Φ(x,ξ,ψ(0),ψ)≥Vκ(x,ξ,ψ(0),ψ).
(b) Next assume that (2.4) also holds. Define π∗ = (C∗,�∗), where �∗ = {(τ∗(i),

ζ∗(i)), i = 1,2, . . .} by (2.5)–(2.7). Then repeat the argument in part (a) for π = π∗. By
(2.10), the inequalities (2.20)–(2.22) become equalities. So we conclude that

Φ
(
x,ξ,ψ(0),ψ

)

= E
[∫ τ∗(k+1)

0
e−δt

Cγ(t)
γ

dt+ e−δτ
∗(k+1)Φ

(
Z
(
τ∗(k+ 1)− ))

]

∀k = 1,2, . . . .

(2.23)

Letting k→∞ in (2.23), we get by (2.10)

Φ
(
x,ξ,ψ(0),ψ

)= Jκ
(
x,ξ,ψ(0),ψ;π∗

)
. (2.24)

Combining this with (2.22), we obtain

Φ
(
x,ξ,ψ(0),ψ

)≥ sup
π∈�κ

(
x,ξ,ψ(0),ψ

) Jκ
(
x,ξ,ψ(0),ψ;π

)

≥ Jκ
(
x,ξ,ψ(0),ψ;π∗

)=Φ
(
x,ξ,ψ(0),ψ

)
.

(2.25)

Hence Φ(x,ξ,ψ(0),ψ)= Vκ(x,ξ,ψ(0),ψ) and π∗ is optimal. This proves the verification
theorem. �

3. The viscosity solution

It is clear that the value function Vκ : �κ →�+ has discontinuity on the interfaces QI ,+

and QI ,− and hence it can not be a solution of QVHJBI(∗) in the classical sense. The
main purpose of this section is to show that it is a viscosity solution of the QVHJBI(∗).
See [6, 7] for connection of viscosity solutions of second-order elliptic equations with
stochastic classical control and classical-impulse control problems.

To give a definition of a viscosity solution, we first define the upper and lower semi-
continuity concept as follows.

Let Ξ be a metric space, and let Φ : Ξ→� be a Borel measurable function. Then the
upper semicontinuous (USC) envelop Φ : Ξ→� and the lower semicontinuous (LSC)
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envelop Φ : Ξ→� of Φ are defined, respectively, by

Φ(x)= limsup
y→x,y∈Ξ

Φ(y), Φ(x)= liminf
y→x,y∈Ξ

Φ(y). (3.1)

We let USC(Ξ) and LSC(Ξ) denote the set of USC and LSC functions on Ξ, respectively.
Note that in general, one has

Φ≤Φ≤Φ, (3.2)

and that Φ is USC if and only if Φ=Φ, Φ is LSC if and only if Φ=Φ. In particular, Φ is
continuous if and only if

Φ=Φ=Φ. (3.3)

Let 	(�× L2
ρ) and (�× L2

ρ)† be the space of bounded linear and bilinear functionals
equipped with the usual operator norms ‖ · ‖∗ and ‖ · ‖†, respectively.

To define a viscosity solution, let us consider the following equation:

F
(

A,Γ,∂x,Vκ,
(
x,ξ,ψ(0),ψ

))= 0 ∀(x,ξ,ψ(0),ψ
)∈�κ, (3.4)

where

F : (�×L2
ρ)† ×	

(�×L2
ρ

)×�×��κ ×�κ −→� (3.5)

is defined by

F =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{
Λ
(

A,Γ,∂x,Φ,
(
x,ξ,ψ(0),ψ

))
,
(
�κΦ−Φ

)(
x,ξ,ψ(0),ψ

)}
on �◦

κ ,

Λ
(

A,Γ,∂x,Φ,
(
x,ξ,ψ(0),ψ

))
on

⋃
I⊂ℵ ∂+,I ,2�κ,

Λ0(A,Γ,∂x,Φ,
(
x,ξ,ψ(0),ψ

))
on

⋃
I⊂ℵ ∂−,I ,2�κ,

(
�Φ−Φ

)((
x,ξ,ψ(0),ψ

))
on

⋃
I⊂ℵ ∂I ,1�κ,

Λ
(

A,Γ,∂x,Φ,
(
x,ξ,ψ(0),ψ

))=�Φ
(
x,ξ,ψ(0),ψ

)
,

Λ0(A,Γ,∂x,Φ,
(
x,ξ,ψ(0),ψ

))=	0Φ
(
x,ξ,ψ(0),ψ

)
.

(3.6)

Note that

F
(

A,Γ,∂x,Φ,
(
x,ξ,ψ(0),ψ

))=QVHJBI(∗),

F
(

A,Γ,∂x,Φ,
(
x,ξ,ψ(0),ψ

))

=max
{
Λ
(

A,Γ,∂x,Φ,
(
x,ξ,ψ(0),ψ

))
,
(
�κΦ−Φ

)(
x,ξ,ψ(0),ψ

)} ∀(x,ξ,ψ(0),ψ
)∈�κ,

F
(

A,Γ,∂x,Φ,
(
x,ξ,ψ(0),ψ

))= F(A,Γ,∂x,Φ,
(
x,ξ,ψ(0),ψ

))
.

(3.7)
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Definition 3.1. (i) A function Φ∈USC(�κ) is said to be a viscosity subsolution of (3.4)
if for every function Ψ ∈ C1,0,2,2

lip (�κ)∩
(Γ) and for every (x,ξ,ψ(0),ψ) ∈ �κ such that
Ψ≥Φ on �κ and Ψ(x,ξ,ψ(0),ψ)=Φ(x,ξ,ψ(0),ψ),

F
(

A,Γ,∂x,Ψ,
(
x,ξ,ψ(0),ψ

))≥ 0. (3.8)

(ii) A function Φ ∈ LSC(�κ) is a viscosity supersolution of (3.4) if for every function
Ψ ∈ C1,0,2,2

lip (�κ)∩
(Γ) and for every (x,ξ,ψ(0),ψ) ∈ �κ such that Ψ ≤ Φ on �κ and
Ψ(x,ξ,ψ(0),ψ)=Φ(x,ξ,ψ(0),ψ),

F
(

A,Γ,∂x,Ψ,
(
x,ξ,ψ(0),ψ

))≤ 0. (3.9)

(iii) A locally bounded function Φ : �κ→� is a viscosity solution of (3.4) if Φ is viscosity
subsolution and Φ is a viscosity supersolution of (3.4).

The following properties of the intervention operator �κ can be established similar to
[7, Lemmas 3.2, 3.3, and Corollary 3.4] with some modifications to fit our situation.

Lemma 3.2. The following statements hold true regarding �κ defined by (1.38).
(i) If Φ : �κ→� is USC, then �κΦ is USC.

(ii) If Φ : �κ→� is continuous, then �κΦ is continuous.
(iii) Let Φ : �κ→�. Then �κΦ≤�κΦ.
(iv) Let Φ : �κ→� be such that Φ≥�κΦ. Then Φ≥�κΦ.
(v) Suppose Φ : �κ →� is USC and Φ(x,ξ,ψ(0),ψ) > �κΦ(x,ξ,ψ(0),ψ) + ε for some

(x,ξ,ψ(0),ψ)∈�κ and ε > 0. Then

Φ
(
x,ξ,ψ(0),ψ

)
>�κΦ

(
x,ξ,ψ(0),ψ

)
+ ε. (3.10)

Proof. We only need to prove (i). The conclusions (ii)–(v) are consequences of (i). Their
proofs are very similar to that of [7, Lemmas 3.2–3.3 and Corollary 3.4] and are therefore
omitted here. Let (x,ξ,ψ(0),ψ) ∈ �κ with I = {i ∈ ℵ | n(−i) < 0} and Ic = ℵ− I = {i ∈
ℵ | n(−i)≥ 0}. Define

�
(
x,ξ,ψ(0),ψ

)= {(
x̂, ξ̂, ψ̂(0), ψ̂

)∈�κ | ζ ∈�(ξ)− {
0
}}

=�+
(
x,ξ,ψ(0),ψ

)⋃
�−

(
x,ξ,ψ(0),ψ

)
,

(3.11)

where

�+
(
x,ξ,ψ(0),ψ

)= {(
x̂, ξ̂, ψ̂(0), ψ̂

)∈�κ |m(0)≥ 0,

0≤m(−i)≤−n(−i) for i∈ I −{0};
&−n(−i)≤m(−i)≤ 0 for i∈ Ic−{0}},

�−
(
x,ξ,ψ(0),ψ

)= {
(x̂, ξ̂, ψ̂(0), ψ̂)∈�κ |m(0) < 0,

0≤m(−i)≤−n(−i) for i∈ I −{0};
&−n(−i)≤m(−i)≤ 0 for i∈ Ic−{0}},

(3.12)
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and x̂ and ξ̂ are as defined in (1.39)-(1.40), and (ψ̂(0), ψ̂) = (ψ(0),ψ) due to the conti-
nuity and the uncontrollability (by the investor) of the stock prices. We claim that for
each (x,ξ,ψ(0),ψ)∈�◦

κ both �+(x,ξ,ψ(0),ψ) and �−(x,ξ,ψ(0),ψ) are compact subsets
of �κ. To see this, we consider the following two cases.

Case 1. Gκ(x,ξ,ψ(0),ψ)≥ 0.

In this case, �+(x,ξ,ψ(0),ψ) intersects with the hyperplane ∂I−{0},1�κ (since m(0) >
0). By the facts that 0≤m(−i)≤−n(−i) for i∈ I −{0} and n(−i)= 0 for all but finitely
many i∈ ℵ as required in (1.4). Therefore, �+(x,ξ,ψ(0),ψ) is compact.

Case 2. Gκ(x,ξ,ψ(0),ψ) < 0.

In this case, �+(x,ξ,ψ(0),ψ) is bounded by the set

{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)}= 0 (3.13)

and the boundary of�+×N+×�×L2
ρ,+.

From Cases 1 and 2, �+(x,ξ,ψ(0),ψ) is a compact subset of �κ. We can also prove the
compactness of �−(x,ξ,ψ(0),ψ) in a similar manner. Since Φ is USC on �(x,ξ,ψ(0),ψ),
there exists

(
x∗,ξ∗,ψ∗(0),ψ∗

)∈�
(
x,ξ,ψ(0),ψ

)
(3.14)

such that

�κΦ
(
x,ξ,ψ(0),ψ

)= sup
{
Φ
(
x̂, ξ̂, ψ̂(0), ψ̂

) | ζ ∈�(ξ)− {
0
}}=Φ

(
x∗,ξ∗,ψ∗(0),ψ∗

)
.

(3.15)

Fix (x(0),ξ(0),ψ(0)(0),ψ(0))∈�κ and let {(x(n),ξ(n),ψ(n)(0),ψ(n))}∞n=1 be a sequence in �κ

such that

(
x(n),ξ(n),ψ(n)(0),ψ(n))−→ (

x(0),ξ(0),ψ(0)(0),ψ(0)) as n−→∞. (3.16)

To show that �κΦ is USC, we must show that

�κΦ
(
x(0),ξ(0),ψ(0)(0),ψ(0)

)
≥ limsup

n→∞
�κΦ

(
x(n),ξ(n),ψ(n)(0),ψ(n)

)

= limsup
n→∞

Φ
(
x(n)∗,ξ(n)∗,ψ(n)∗(0),ψ(n)∗

)
.

(3.17)

Let (x̃, ξ̃, ψ̃(0), ψ̃) be a cluster point of

{(
x(n)∗,ξ(n)∗,ψ(n)∗(0),ψ(n)∗

)}∞
n=1

, (3.18)

that is, (x̃, ξ̃, ψ̃(0), ψ̃) is the limit of some of convergent subsequence

{(
x(nk)∗,ξ(nk)∗,ψ(nk)∗(0),ψ(nk)∗

)}∞
k=1

of
{(
x(n)∗,ξ(n)∗,ψ(n)∗(0),ψ(n)∗

)}∞
n=1

.

(3.19)
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Since

(
x(n),ξ(n),ψ(n)(0),ψ(n)

)
−→

(
x(0),ξ(0),ψ(0)(0),ψ(0)

)
, (3.20)

we see that

�
(
x(n),ξ(n),ψ(n)(0),ψ(n)

)
−→�

(
x(0),ξ(0),ψ(0)(0),ψ(0)

)
(3.21)

in Hausdorff distance. Hence, since

(
x(nk)∗,ξ(nk)∗,ψ(nk)∗(0),ψ(nk)∗

)
∈�

(
x(nk),ξ(nk),ψ(nk)(0),ψ(nk)

)
(3.22)

for all k, we conclude that

(
x̃, ξ̃, ψ̃(0), ψ̃

)= lim
k→∞

(
x(nk)∗,ξ(nk)∗,ψ(nk)∗(0),ψ(nk)∗

)
∈�

(
x(0),ξ(0),ψ(0)(0),ψ(0)

)
.

(3.23)

Therefore,

�κΦ
(
x(0),ξ(0),ψ(0)(0),ψ(0)

)
≥Φ

(
x̃, ξ̃, ψ̃(0), ψ̃

)

≥ limsup
k→∞

Φ
(
x(nk)∗,ξ(nk)∗,ψ(nk)∗(0),ψ(nk)∗

)

= limsup
n→∞

�κΦ
(
x(n),ξ(n),ψ(n)(0),ψ(n)

)
.

(3.24)

Theorem 3.3. Suppose δ > rγ. Then the value function Vκ : �κ→�+ defined by (1.28) is a
viscosity solution of the QVHJBI(∗).

The theorem can be proved by verifying the following two propositions: the first of
which shows that the value function is a viscosity supersolution of the QVHJBI(∗) and
the second shows that the value function is a viscosity subsolution of the QVHJBI(∗).

Proposition 3.4. The lower semicontinuous envelop Vκ : �κ →�+ of the value function
Vκ is a viscosity supersolution of the QVHJBI(∗). �

Proof. Let Φ : �κ →� be any smooth function with Φ ∈ C1,0,2,2
lip (�)∩
(Γ) on a neigh-

borhood � of �κ and let (x,ξ,ψ(0),ψ)∈�κ be such that Φ≤ Vκ on �κ and Φ(x,ξ,ψ(0),
ψ)=Vκ(x,ξ,ψ(0),ψ). We need to prove that

F
(

A,Γ,∂x,Φ,
(
x,ξ,ψ(0),ψ

))= F(A,Γ,∂x,Φ,
(
x,ξ,ψ(0),ψ

))≤ 0. (3.25)
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Note that by Lemma 3.2(iv),

�κVκ ≤Vκ =⇒�κVκ =�κΦ≤Vκ =Φ on �κ. (3.26)

In particular, this inequality holds on
⋃
I⊂ℵ ∂I ,1�κ. Therefore, we only need to show that

�Φ≤ 0 on �◦
κ ∪

⋃

I⊂ℵ
∂+,I ,2�κ, 	0Φ≤ 0 on

⋃

I⊂ℵ
∂−,I ,2�κ. (3.27)

For ε > 0, let B(ε)= B(ε; (x,ξ,ψ(0),ψ)) be the open ball in �κ centered at (x,ξ,ψ(0),ψ)
and with radius ε > 0. Let

π(ε)= (
Cε,�ε)∈�κ

(
x,ξ,ψ(0),ψ

)
(3.28)

be the admissible strategy beginning with a constant consumption rate C(t)= c ≥ 0 and
no transactions up to the first time τ(ε) at which the controlled state process {(X(t),Nt,
S(t),St), t ≥ 0} exits from the set B(ε). Note that τ(ε) > 0 P-a.s. since there is no transac-
tion and the controlled state process {(X(t),Nt,S(t),St), t ≥ 0} is continuous on B(ε).

Choose (x(n),ξ(n),ψ(n)(0),ψ(n))∈ B(ε) such that
(
x(n),ξ(n),ψ(n)(0),ψ(n))−→ (

x,ξ,ψ(0),ψ
)
,

Vκ(x(n),ξ(n),ψ(n)(0),ψ(n))−→Vκ(x,ξ,ψ(0),ψ) as n−→∞. (3.29)

Then by the Bellman’s dynamic programming principle (DPP) (see [1, Proposition 4.1]),
we have for all n,

Vκ

(
x(n),ξ(n),ψ(n)(0),ψ(n)

)

≥ E(n)

[∫ τ(ε)

0
e−δt

cγ

γ
dt+ e−δτ(ε)Vκ

(
X
(
τ(ε)

)
,Nτ(ε),S

(
τ(ε)

)
,Sτ(ε)

)
]

≥ E(n)

[∫ τ(ε)

0
e−δt

cγ

γ
dt+ e−δτ(ε)Φ

(
X
(
τ(ε)

)
,Nτ(ε),S

(
τ(ε)

)
,Sτ(ε)

)]

,

(3.30)

where E(n)[···] is the short notation of Ex
(n),ξ(n),ψ(n)(0),ψ(n);π(ε)[···], the conditional expec-

tation given the initial state (x(n),ξ(n),ψ(n)(0),ψ(n)) and the strategy π(ε). In particular,
for all 0≤ t ≤ τ(ε),

0=Vκ
(
x,ξ,ψ(0),ψ

)−Φ
(
x,ξ,ψ(0),ψ

)

= lim
n→∞

[
Vκ

(
x(n),ξ(n),ψ(n)(0),ψ(n)

)
−Φ

(
x(n),ξ(n),ψ(n)(0),ψ(n))

]

≥ lim
n→∞E

(n)

[∫ t

0
e−δs

cγ

γ
ds+ e−δtVκ

(
X(t),Nt,S(t),St

)−Φ
(
x(n),ξ(n),ψ(n)(0),ψ(n)

)
]

= E
[∫ t

0
e−δs

cγ

γ
ds+ e−δtΦ

(
X(t),Nt,S(t),St

)−Φ
(
x,ξ,ψ(0),ψ

)
]

.

(3.31)
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Dividing both sides of the inequality by t and letting t→ 0, we have from Dynkin’s for-
mula [1, Theorem 3.6] that

0≥ lim
t→0

1
t
E

[∫ t

0
e−δs

cγ

γ
ds+ e−δtΦ

(
X(t),Nt,S(t),St

)−Φ
(
x,ξ,ψ(0),ψ

)
]

= cγ

γ
+ lim

t→0

1
t
E
[
e−δtΦ

(
X(t),Nt,S(t),St

)−Φ
(
x,ξ,ψ(0),ψ

)]

= cγ

γ
+ 	cΦ

(
x,ξ,ψ(0),ψ

)
,

(3.32)

where

	cΦ
(
x,ξ,ψ(0),ψ

)= (
A +Γ− δ + rx∂x − c

)
Φ
(
x,ξ,ψ(0),ψ

)
. (3.33)

We conclude from the above that

	cΦ
(
x,ξ,ψ(0),ψ

)
+
cγ

γ
≤ 0 (3.34)

for all c ≥ 0 such that π(ε)∈�κ(x,ξ,ψ(0),ψ) for ε > 0 small enough. This implies that

�Φ
(
x,ξ,ψ(0),ψ

)≡ sup
c≥0

(

	cΦ
(
x,ξ,ψ(0),ψ

)
+
cγ

γ

)

≤ 0. (3.35)

If (x,ξ,ψ(0),ψ)∈�◦
κ ∪

⋃
I⊂ℵ ∂+,I ,2�κ, then this is clearly the case for all c ≥ 0, and there-

fore QVHJBI(∗) implies that �Φ(x,ξ,ψ(0),ψ)≤ 0. If (x,ξ,ψ(0),ψ)∈⋃
I⊂ℵ ∂−,I ,2�κ, then

the only such admissible c is c = 0. Therefore, we get 	0Φ(x,ξ,ψ(0),ψ)≤ 0 as required.
This proves the proposition. �

Proposition 3.5. Suppose δ > rγ. Then upper semicontinuous envelop Vκ : �κ→� of the
value function Vκ is a viscosity subsolution of the QVHJBI(∗).

Proof. We adopt the method (with appropriate modifications for the infinite dimensional
case) provided in [7].

Suppose π = (C,�) ∈ �κ(x,ξ,ψ(0),ψ). Since τ(1) is a G-stopping time, the event
{τ(1) = 0} is �(0)-measurable. By the zero-one law (see [8, Theorem 7.17] and
[9, Lemma 9.2.6]), one has

either τ(1)= 0 P-a.s. or τ(1) > 0 P-a.s. (3.36)

We first assume τ(1) > 0 P-a.s. Then by the Markovian property, the cost functional
Jκ(x,ξ,ψ(0),ψ;π) (see [10, Lemma 5.3]) satisfies the following relation: for P-a.s. ω,

e−δτJκ
(
X(τ),Nτ ,S(τ),Sτ ;π

)= E
[∫∞

τ
e−δ(s+τ)C

γ(s)
γ

ds |�(τ)

]

(ω). (3.37)
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Hence

Jκ
(
x,ξ,ψ(0),ψ;π

)= Ex,ξ,ψ(0),ψ;π

[∫ τ

0
e−δs

Cγ(s)
γ

ds+ e−δτJκ
(
X(τ),Nτ ,S(τ),Sτ ;π

)
]

(3.38)

for all G-stopping times τ ≤ τ(1). It is clear that

Vκ
(
x,ξ,ψ(0),ψ

)≥�κVκ
(
x,ξ,ψ(0),ψ

) ∀(x,ξ,ψ(0),ψ
)∈�κ. (3.39)

We will prove that Vκ, the upper semicontinuous envelop of Vκ : �κ →�+, is a viscosity
subsolution of QVHJBI(∗). To this end, let Φ : �κ →� be any smooth function with
Φ ∈ C1,0,2,2

lip (�)∩
(Γ) on a neighborhood � of �κ and let (x,ξ,ψ(0),ψ) ∈ �κ be such

that Φ≥Vκ on �κ and Φ(x,ξ,ψ(0),ψ)=Vκ(x,ξ,ψ(0),ψ). We need to prove that

F
(

A,Γ,∂x,Φ,
(
x,ξ,ψ(0),ψ

))≥ 0. (3.40)

We consider the following two cases separately.

Case 3. Vκ(x,ξ,ψ(0),ψ)≤�κVκ(x,ξ,ψ(0),ψ).

Then by inequality (3.8),

F
(

A,Γ,∂x,Φ, (x,ξ,ψ(0),ψ
))≥ 0, (3.41)

and hence the above inequality holds at (x,ξ,ψ(0),ψ) for Φ=Vκ in this case.

Case 4. Vκ(x,ξ,ψ(0),ψ) >�κVκ(x,ξ,ψ(0),ψ).

In this case, it suffices to prove that �Φ(x,ξ,ψ(0),ψ)≥ 0. We argue by contradiction.
Suppose (x,ξ,ψ(0),ψ)∈�κ and �Φ(x,ξ,ψ(0),ψ) < 0. Then from the definition of �, we
deduce that ∂xΦ(x,ξ,ψ(0),ψ) > 0. Hence by continuity, ∂xΦ > 0 on a neighborhood G of
(x,ξ,ψ(0),ψ). But then

�Φ= (
A +Γ− δ)Φ+

(
rx− ĉ)∂xΦ+

ĉγ

γ
(3.42)

with ĉ = ĉ = (∂xΦ)1/(γ−1) for all (x̃, ξ̃, ψ̃(0), ψ̃)∈G∩�κ.
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Hence �Φ is continuous on G∩�κ and so there exists a (bounded) neighborhood
G(λ) of (x,ξ,ψ(0),ψ) such that

G(λ)=G(x,ξ,ψ(0),ψ;λ
)

=
{(
x̃, ξ̃, ψ̃(0), ψ̃

) | |x− x̃| < λ,‖ξ − ξ̃‖N < λ,‖(ψ(0),ψ
)− (

ψ̃(0), ψ̃
)‖ < λ

} (3.43)

for some λ > 0 and

�Φ
(
x̃, ξ̃, ψ̃(0), ψ̃) <

1
2

�Φ(x,ξ,ψ(0),ψ) < 0 ∀(x̃, ξ̃, ψ̃(0), ψ̃
)∈G(λ)∩�κ. (3.44)

Now, since Vκ(x,ξ,ψ(0),ψ) >�κVκ(x,ξ,ψ(0),ψ), let η be any number such that

0 < η <
(
Vκ−�κVκ

)(
x,ξ,ψ(0),ψ

)
. (3.45)

Since Vκ(x,ξ,ψ(0),ψ) >�κVκ(x,ξ,ψ(0),ψ) +η, we can by Lemma 3.2(v) find a sequence
{(x(n),ξ(n),ψ(n)(0),ψ(n))}∞n=1 ⊂G(λ)∩�κ such that

(
x(n),ξ(n),ψ(n)(0),ψ(n)

)
−→ (

x,ξ,ψ(0),ψ
)
,

Vκ

(
x(n),ξ(n),ψ(n)(0),ψ(n)

)
−→Vκ

(
x,ξ,ψ(0),ψ

)
as n−→∞

(3.46)

and for all n≥ 1

�κVκ

(
x(n),ξ(n),ψ(n)(0),ψ(n)

)
< Vκ

(
x(n),ξ(n),ψ(n)(0),ψ(n)

)
−η. (3.47)

Choose ε ∈ (0,η). Since Vκ(x,ξ,ψ(0),ψ)=Φ(x,ξ,ψ(0),ψ), we can choose K > 0 (a posi-
tive integer) such that for all n≥ K

∣
∣
∣Vκ

(
x(n),ξ(n),ψ(n)(0),ψ(n)

)
−Φ

(
x(n),ξ(n),ψ(n)(0),ψ(n)

)∣∣
∣ < ε. (3.48)

In the following, we fix n≥ K and put

(
x̃, ξ̃, ψ̃(0), ψ̃

)=
(
x(n),ξ(n),ψ(n)(0),ψ(n)

)
. (3.49)
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Let π̃ = (C̃,�̃) with �̃ = {(τ̃(i), ζ̃(i)), i= 1,2, . . .} be an ε-optimal control for (x̃, ξ̃, ψ̃(0),
ψ̃), in the sense that

Vκ
(
x̃, ξ̃, ψ̃(0), ψ̃

)≤ Jκ
(
x̃, ξ̃, ψ̃(0), ψ̃; π̃

)
+ ε. (3.50)

We claim that τ̃(1) > 0 P-a.s. If this were false, then τ̃(1) = 0 P-a.s. by the zero-one law
(see (3.36)).

Then the state process {Zπ̃(t) ≡ (Xπ̃(t),Nπ̃
t ,Sπ̃(t),Sπ̃t ), t ≥ 0} makes an immediate

jump from (x̃, ξ̃, ψ̃(0), ψ̃) to some point (x̂, ξ̂, ψ̂(0), ψ̂) ∈ �κ according to (1.39)–(1.41),
and hence by its definition (see (1.26))

Jκ
(
x̃, ξ̃, ψ̃(0), ψ̃; π̃)= Ex,ξ,ψ(0),ψ;π̃[Jκ

(
x̂, ξ̂, ψ̂(0), ψ̂; π̃

)]
. (3.51)

Denoting the conditional expectation given the initial state (x̃, ξ̃, ψ̃(0), ψ̃) and the strategy
π̃ by Ẽ[···], we have

Vκ
(
x̃, ξ̃, ψ̃(0), ψ̃

)≤ Jκ
(
x̃, ξ̃, ψ̃(0), ψ̃; π̃

)
+ ε = Ẽ[Jκ(x̂, ξ̂, ψ̂(0), ψ̂; π̃)

]
+ ε

≤ Ẽ[Vκ
(
x̂, ξ̂, ψ̂(0), ψ̂

)]
+ ε ≤�κ

[
Vκ

(
x̃, ξ̃, ψ̃(0), ψ̃

)]
+ ε,

(3.52)

which contradicts (3.45). We therefore conclude that τ̃(1) > 0 P-a.s. Fix R > 0 and define
the G-stopping time τ by

τ = τ(ε)= τ̃(1)∧R∧ inf
{
t > 0 | Zπ̃(t) /∈G(λ)

}
. (3.53)

By the Dynkin’s formula (see [1, Theorem 3.6]), we have

Ẽ
[
e−δτΦ(Zπ̃(τ))

]
=Φ

(
x̃, ξ̃, ψ̃(0), ψ̃

)
+ Ẽ

[∫ τ

0
e−δt	c̃Φ

(
Zπ̃(t)

)
dt

]

+ Ẽ
[
e−δτ

(
Φ(Zπ̃(τ)

)−Φ
(
Zπ̃(τ−)

))]
(3.54)

or

Ẽ
[
e−δτΦ

(
Zπ̃(τ−)

)]=Φ
((
x̃, ξ̃, ψ̃(0), ψ̃

))
+ Ẽ

[∫ τ

0
e−δt	c̃Φ

(
Zπ̃(t)

)
dt

]

. (3.55)



Mou-Hsiung Chang 23

Since Vκ ≥�κVκ,

Vκ
(
x̃, ξ̃, ψ̃(0), ψ̃

)

≤ Jκ
(
x̃, ξ̃, ψ̃(0), ψ̃

)
; π̃) + ε

= Ẽ
[∫ τ

0
e−δt

C̃γ(t)
γ

dt+ Jκ
(
Zπ̃(τ); π̃

)
]

+ ε

≤ Ẽ
[∫ τ

0
e−δt

C̃γ(t)
γ

dt+ e−δτVκ
(
Zπ̃(τ)

)
]

+ ε

= Ẽ
[∫ τ

0
e−δt

C̃γ(t)
γ

dt+ e−δτ
{
Vκ

(
Zπ̃(τ−)

)
χ{τ<τ̃(1)} + �κVκ

(
Zπ̃(τ−)

)
χ{τ=τ̃(1)}

}]
+ ε

≤ Ẽ
[∫ τ

0
e−δt

C̃γ(t)
γ

dt+ e−δτVκ
(
Zπ̃(τ−)

)
]

+ ε

= Ẽ
[∫ τ

0
e−δt

C̃γ(t)
γ

dt+ e−δτΦ
(
Zπ̃(τ−)

)]
+ ε

=Φ(x̃, ξ̃, ψ̃(0), ψ̃) + Ẽ
[∫ τ

0
e−δt

(
	c̃Φ

(
Zπ̃(t)

)
+
C̃γ(t)
γ

)
dt
]

≤Vκ(x̃, ξ̃, ψ̃(0), ψ̃) + Ẽ
[∫ τ

0
e−δt�Φ

(
Zπ̃(t)

)
dt
]

+ 2ε.

(3.56)

We conclude from this that

Ẽ

[∫ τ

0
e−δt�Φ

(
Zπ̃(t)

)
dt

]

≥−2ε. (3.57)

Note that one can deduce from (3.44) that

Ẽ

[∫ τ

0
e−δt�Φ

(
Zπ̃(t)

)
dt

]

≤ 1
2δ

�Φ
(
x̃, ξ̃, ψ̃(0), ψ̃

)(
1− Ẽ[e−δτ]). (3.58)

We claim the following. �

Lemma 3.6.

0 < E(n)[e−δτ(ε)] < 1 when n→∞, ε −→ 0. (3.59)

Note that if Lemma 3.6 is true, then inequality (3.57) contradicts inequality (3.44) if ε
is small enough. This contradiction proves that �Φ(x,ξ,ψ(0),ψ)≥ 0 and hence

F
(

A,Γ,
(
∂x,∂ψ(0)

)
,Φ,

(
x,ξ,ψ(0),ψ

))≥ 0. (3.60)

Therefore, to complete the proof of Proposition 3.5 we must verify Lemma 3.6.



24 Journal of Applied Mathematics and Stochastic Analysis

Proof of Lemma 3.6. First note that for t < τ, we have

dX(t)= (
rX(t)− C̃(t)

)
dt, for 0≤ t < τ ≤ τ̃(1). (3.61)

Consequently, for t < τ we have by (1.18)

X(t)= X(0)ert − ert
∫ t

0
e−rsC̃(s)ds≥ X(0)− λ, (3.62)

and hence, with some constant K <∞,

∫ τ

0
e−δt

C̃γ(t)
γ

dt ≤ 1
γ

[∫ τ

0
e−δtC̃γ(t)dt

]γ[∫ τ

0
e(rγ−δ)/(1−γ)dt

]1−γ

≤ K(X(0)
(
1− e−rτ)+ λe−rτ

)γ
,

(3.63)

since rγ− δ < 0. Combining this with (3.38), we get

Vκ
(
x̃, ξ̃, ψ̃(0), ψ̃

)− εJκ
(
x̃, ξ̃, ψ̃(0), ψ̃; π̃

)

≤ E
[∫ τ

0
e−δt

C̃γ(t)
γ

dt+ e−δτVκ
(
Zπ̃(τ)

)] (3.64)

≤ E
[
K
(
x− (x− λ)e−rτ

)γ]
+E

[
e−δτVκ

(
Zπ̃(τ−)

)
χ{τ̃(1)>τ}

]

+E
[
e−δτ

(
Vκ

(
Zπ̃(τ)

)−Vκ
(
Zπ̃(τ−)

)
χ{τ̃(1)≤τ}

]
(3.65)

≤ E
[
K
(
x− (x− λ)e−rτ)γ

]
+E

[
e−δτVκ

(
Zπ̃(τ−)

)
χ{τ̃(1)>τ}

]

+E
[
e−δτ�κVκ

(
Zπ̃(τ−)

)
χ{τ̃(1)≤τ}

] (3.66)

≤ E
[
K(x− (x− λ)e−rτ)γ

]
+E

[
e−δτχ{τ̃(1)>τ}

]
× sup

(x̃,ξ̃,ψ̃(0),ψ̃)∈G(λ)

Vκ(x̃, ξ̃, ψ̃(0), ψ̃)

+E
[
e−δτχ{τ̃(1)≤τ}

]
× sup

(x̃,ξ̃,ψ̃(0),ψ̃)∈G(λ)

�κVκ
(
x̃, ξ̃, ψ̃(0), ψ̃

)
.

(3.67)

Now if there exists a sequence εk → 0 and a subsequence

{(
x(nk),ξ(nk),ψ(nk)(0),ψ(nk))} of

{(
x(n),ξ(n),ψ(n)(0),ψ(n))} (3.68)

such that

E(nk)[e−δτ(εk)]−→ 1 when k→∞, (3.69)

then

E
[
e−δτχ{τ̃(1)>τ}

]
−→ 0 when k −→∞, (3.70)
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so by choosing (x,ξ,ψ(0),ψ)= (x(nk),ξ(n),ψ(n)(0),ψ(n)), τ = τ(εk) and letting k→∞, we
obtain

Vκ
(
x,ξ,ψ(0),ψ

)≤ Kλγ + sup
(x,ξ,ψ(0),ψ)∈G(λ)

�κVκ
(
x,ξ,ψ(0),ψ

)
. (3.71)

Hence by Lemma 3.2 and inequality (3.64)

Vκ
(
x,ξ,ψ(0),ψ

)≤ lim
λ→0

(
Kλγ + sup

(x,ξ,ψ(0),ψ)∈G(λ)
�κVκ

(
x,ξ,ψ(0),ψ

))

=�κVκ
(
x,ξ,ψ(0),ψ

)≤�κVκ
(
x,ξ,ψ(0),ψ

)
< Vκ

(
x,ξ,ψ(0),ψ

)−η.
(3.72)

This contradicts inequality (3.45). This contradiction proves the proposition and com-
pletes the proof that Vκ is a viscosity subsolution. �
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