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1. Introduction

The object of our study will be the following system:

∀τ ∈ [t,T]⊂ [0,T],

Xτ = x+
∫ τ

t
AXσ dσ +

∫ τ

t
F
(
σ ,Xσ ,Yσ ,Zσ

)
dσ +

∫ τ

t
G
(
σ ,Xσ ,Yσ

)
dW(σ),

Yτ =Φ
(
XT
)

+
∫ T

τ
BYσ dσ −

∫ T

τ
Ψ
(
σ ,Xσ ,Yσ ,Zσ

)
dσ −

∫ T

τ
Zσ dW(σ).

(1.1)

In the above equation, X takes values in a real separable Hilbert space H , Y takes values
in a real separable Hilbert space K , and T is a nonnegative real number. The operators A
and B are generators of strongly continuous semigroups {etA} and {etB}, respectively, in
H and K . The functions F, G, Φ, and Ψ have values, respectively, in H , L(Ξ,H), K , and K
and they satisfy appropriate Lipschitz conditions.

It is very well known that already in the finite-dimensional case, the solvability of fully
coupled systems, that is the case of systems (1.1), is particularly delicate. Indeed, see [1]
and again [2], there are examples, when G is not invertible, in which there is no hope to
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get a solution in an arbitrarily large time interval. By the way, this class of systems has
been widely studied (in the finite-dimensional case) in [3–5]; see also [2] for a systematic
review on the subject and its applications to mathematical finance and stochastic control.

Coming back to our infinite-dimensional framework, we first recall that forward equa-
tions have been widely studied; see the books [6, 7] and the bibliography therein.

More recently, also backward stochastic equation, in infinite dimension of the form

Yτ = η+
∫ T

τ
BYσ dσ −

∫ T

τ
Ψ
(
σ ,Yσ ,Zσ

)
dσ −

∫ T

τ
Zσ dW(σ), (1.2)

where B is a linear unbounded operator, have been studied by several authors; see [8–
12]. In particular, we will exploit some techniques described in [10] where existence and
uniqueness results for (1.2) are obtained. Equations of this kind arise in the theory of
nonlinear filtering, stochastic control, (see [13]) and in mathematical finance, (see [14,
15]).

The first part of the present paper is devoted to prove existence and uniqueness—for
small enough time interval [T − δ,T]—of a mild solution {(Xτ ,Yτ ,Zτ) : τ ∈ [t,T]} of
the fully coupled system (1.1) in every [t,T] ⊂ [T − δ,T]. In proving such a result, we
have separated the case when B is dissipative from the case when B is any generator of a
C0-semigroup since different regularity results for the solution can be proved. In the case
when B is dissipative, also the regular dependence on the initial state is studied. The main
tool is a fixed-point technique performed in a suitable space of stochastic processes. To the
author’s knowledge, this is a first attempt to solve a fully coupled system in the infinite-
dimensional framework, allowing the unbounded operators to appear in both equations
of the system. In Section 4.4, we provide an example in which our theory applies.

Although our main motivation is the novelty of the mathematical problem, we also
give an example of an application to optimal control theory where the forward equation
takes value in a Hilbert space H while the backward equation is one-dimensional. Note
that even this simpler case was not covered by the existing literature.

We consider an infinite-dimensional stochastic control state equation of the form

dXu
τ =AXu

τ dτ +F
(
τ,Xu

τ

)
dτ +G

(
τ,Xu

τ

)
r
(
τ,Xu

τ ,uτ
)
dτ +G

(
τ,Xu

τ

)
dWτ , τ ∈ [t,T],

Xu
t = x ∈H ,

(1.3)

where r : [0,T]×H ×U → Ξ, with U a real separable Hilbert space. The cost functional
to be minimized is

J(t,x,u.)= E
∫ T

t
l
(
τ,Xu

τ ,uτ
)
dτ +EΦ

(
Xu
T

)
, (1.4)

where l : [0,T]×H ×U → R, over all admissible controls that will be processes {uτ ,τ ∈
[0,T]} taking values in U . In [16], authors solve the optimal control problem in its weak
formulation, that is, when the probability space and the noise process are allowed to
change.
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In this paper, under suitable assumptions on the Hamiltonian function Ψ, we will solve
the same optimal control problem considered in a strong formulation, that is, when the
probability space and the noise are prescribed.

We stress on the fact that in the existing literature, optimal control in strong formu-
lation was found only for constant and nondegenerate G (sometimes with more general
Hamiltonian); see [6, 7, 16–24]. Since we assume the coefficients just Lipschitz contin-
uous, following [21], we replace the approach based on the Hamilton-Jacobi-Bellman
equation with the analysis of a fully coupled forward-backward system.

We define the Hamiltonian function

Ψ(t,x,z)= inf
u∈U

{
l(t,x,u) + zr(t,x,u)

}
, t ∈ [0,T], x ∈H , z ∈ Ξ∗, (1.5)

and we assume that the infimum in (1.5) is attained at γ(t,x,z), then we introduce the
coupled system

dXτ=AXτ dτ+F
(
τ,Xτ

)
dτ +G

(
τ,Xτ

)
r
(
τ,Xτ ,γ

(
τ,Xτ ,Zτ

))
dτ +G

(
τ,Xτ

)
dWτ , τ∈[t,T],

Xt = x,

dYτ = Zτ dWτ − l
(
τ,Xτ ,γ

(
τ,Xτ ,Zτ

))
dτ τ ∈ [t,T],

YT =Φ
(
XT
)
.

(1.6)

We show that this system has a unique, global, predictable solution {(Xτ ,Yτ ,Zτ) : τ ∈
[t,T]} that takes value in H, R, and Ξ∗, respectively. Then we can conclude that uτ =
γ(τ,Xτ ,Zτ) is an optimal control (in the strong sense), the corresponding trajectory Xu

coincides with the solution X of (1.6), and the optimal cost V(t,x) is given by Yt. We
stress again the fact that in system (1.6), the forward equation is infinite-dimensional so
it cannot be treated with the finite-dimensional theory developed in [20], and since it is
strongly coupled this case cannot be covered by the theory studied in [16].

The paper is organized as follows. In Section 2, we set notation and assumption. In
Section 3, we provide some preliminary results. In Section 4, we prove the local existence
theorems, some regularity properties of the solution, and we provide an example. Finally
in Section 5, we apply the previous result to the above-mentioned control problem.

2. Notation and assumptions

We are given three separable real Hilbert spaces H , K , and Ξ, endowed with their inner
scalar products that we will denote by (·,·)H , (·,·)K , and (·,·)Ξ, respectively. L(Ξ,H),
L(H)= L(H ,H) and L(K)= L(K ,K), as usual are, respectively, the Banach spaces of lin-
ear and bounded operators from Ξ to H , from H to H , and from K to K endowed by the
usual norms.

L2(Ξ,H) denote the Hilbert space of Hilbert-Schmidt operators from Ξ to H , endowed
with the Hilbert-Schmidt norm, that is, |T|L2(Ξ,H) = (

∑∞
i=1 |Tei|2H)1/2 ({ei : i ∈ N} being

an orthonormal basis in Ξ).
The space L2(Ξ,K) is defined in the same way.
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The cylindrical Wiener process. We fix a probability basis (Ω,�,P). A cylindrical Wiener
process with value in Ξ is a family W(t), t ≥ 0, of linear mappings Ξ→ L2(Ω) such that

(i) for every h∈ Ξ, {W(t)h, t ≥ 0} is a real (continuous) Wiener process;
(ii) for every h,k ∈ Ξ and t ≥ 0, E(W(t)h ·W(t)k)= t(h,k)Ξ.

We denote by �t its natural filtration augmented with the set � of P-null sets of �. As
it is well known, the filtration �t satisfies the usual conditions. By E�t , or by E(· | Ft),
we denote the conditional expectation with respect to �t. Finally, by � we denote the
predictable σ-field on Ω× [0,T].

Some classes of stochastic processes. Let S be any separable Hilbert space, with scalar prod-
uct (·,·)S and let �(S) be its Borel σ-field. The following classes of processes will be used
in this work.

(1) L
p
�(Ω× (t,T);S), t ∈ [0,T], denotes the subset of Lp(Ω× (t,T);S), given by all

equivalence classes admitting a predictable version. This space is endowed with
the natural norm

|Y |p
L
p
�(Ω×(t,T);S)

= E
∫ T

t

∣∣Ys

∣∣p
S ds. (2.1)

(2) L
p
�(Ω;L2((t,T);S)), p ∈ [1,+∞], t ∈ [0,T], denotes the space of equivalence

classes of processes Y , admitting a predictable version such that the norm

|Y |p
L
p
�(Ω;L2((t,T);S))

= E
(∫ T

t

∣∣Ys

∣∣2
S ds
)p/2

(2.2)

is finite.
(3) C�([t,T];Lp(Ω;S)), p ∈ [1,+∞], t ∈ [0,T], denotes the space of S-valued pro-

cesses Y such that Y : [t,T] → Lp(Ω,S) is continuous and Y has a predictable
modification, endowed with the norm

|Y |pC�([t,T];Lp(Ω;S)) = sup
s∈[t,T]

E
∣∣Ys

∣∣p
S . (2.3)

Elements of C�([t,T];Lp(Ω;S)) are identified up to modification.
(4) L

p
�(Ω;C([t,T];S)), p ∈ [1,+∞], t ∈ [0,T], denotes the space of predictable pro-

cesses Y with continuous paths in S, such that the norm

|Y |p
L
p
�(Ω;C([t,T];S))

= E sup
s∈[t,T]

∣∣Ys

∣∣p
S (2.4)

is finite. Elements of this space are defined up to indistinguishability.
(5) Lp(Ω,�t,P;S), p ∈ [1,+∞], for all t ∈ [0,T], denotes the space of �t-measurable

random variables with values in H such that their pth moment is bounded.

Statement of the problem and general assumptions on the coefficients. We set the main as-
sumptions on the coefficients of system (1.1).
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Hypothesis 2.1. (i) A : D(A) ⊂ H → H is the infinitesimal generator of a C0 semigroup
{etA : t ≥ 0} in H . We define with MA a positive constant such that

sup
t∈[0,T]

∣∣etA∣∣L(H) ≤MA. (2.5)

(ii) B : D(B)⊂ K → K is the infinitesimal generator of a C0 semigroup {etB : t ≥ 0} in
K . We define with MB a positive constant such that

sup
t∈[0,T]

∣∣etB∣∣L(K) ≤MB. (2.6)

(iii) The mappings F : [0,T]×H ×K×L2(Ξ,K)→H andΨ : [0,T]×H ×K ×L2(Ξ,K)
→ K are measurable. Moreover, there exist positive constants L and C such that

∣∣F(σ ,x1, y1,z1
)−F

(
σ ,x2, y2,z2

)∣∣
H ≤ L

(∣∣x1− x2
∣∣
H +

∣∣y1− y2
∣∣
K +

∣∣z1− z2
∣∣
L2(Ξ,K)

)
,

∣∣Ψ(σ ,x1, y1,z1
)−Ψ

(
σ ,x2, y2,z2

)∣∣
K ≤ L

(∣∣x1− x2
∣∣
H +

∣∣y1− y2
∣∣
K +

∣∣z1− z2
∣∣
L2(Ξ,K)

)
,

∣∣F(σ ,x, y,z)
∣∣
H ≤ C

(
1 + |x|H + |y|K + |z|L2(Ξ,K)

)
,

∣∣Ψ(σ ,x, y,z)
∣∣
K ≤ C

(
1 + |x|H + |y|K + |z|L2(Ξ,K)

)
,

(2.7)

for every σ ∈ [0,T], for every x,x1,x2 ∈H , y, y1, y2 ∈ K , and z,z1,z2 ∈ L2(Ξ,K).
(iv) G : [0,T]×H ×K → L(Ξ,H) is a mapping such that for all v ∈ Ξ, Gv : [0,T]×H ×

K → H is measurable and esAG(t,x, y) ∈ L2(Ξ,H) for every s > 0, t ∈ [0,T], and every
x ∈H , y ∈ K . We assume that for some constant L > 0 and γ ∈ [0,1/2[,

∣∣esAG(σ ,x1, y1
)− esAG

(
σ ,x2, y2

)∣∣
L2(Ξ,H) ≤ s−γL

(∣∣x1− x2
∣∣
H +

∣∣y1− y2
∣∣
K

)
,

∣∣esAG(σ ,x, y)
∣∣
L2(Ξ,H) ≤ s−γL

(
1 + |x|H + |y|K

)
,

(2.8)

for every s > 0, σ ∈ [0,T], x,x1,x2 ∈H , y, y1, y2 ∈ K .
(v) Φ is a mapping H → K measurable such that for some constant L > 0,

∣∣Φ(x1
)−Φ

(
x2
)∣∣

K ≤ L
∣∣x1− x2

∣∣
H (2.9)

for every x1,x2 ∈H .

Remark 2.2. Note that from Hypothesis 2.1(v), it follows that there exists a constant C > 0
such that

∣∣Φ(x)
∣∣
K ≤ C

(
1 + |x|H

)
(2.10)

for every x ∈H .

Next we provide the definition of a mild solution for the system.
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Definition 2.3. Given ξ ∈ L2(Ω,�t;H) and T > 0, for all t ∈ [0,T], a mild solution of
problem (1.1), considered in [t,T], is a triple (X ,Y ,Z)∈ C�([t,T];L2(Ω;H))×C�([t,T];
L2(Ω;K))×L2

�(Ω× [t,T];L2(Ξ,K)) such that the following holds:

∀τ ∈ [t,T]⊂ [0,T],

Xτ = e(τ−t)Aξ +
∫ τ

t
e(τ−σ)AF

(
σ ,Xσ ,Yσ ,Zσ

)
dσ +

∫ τ

t
e(τ−σ)AG

(
σ ,Xσ ,Yσ

)
dW(σ),

Yτ = e(T−τ)BΦ
(
XT
)−

∫ T

τ
e(σ−τ)BΨ

(
σ ,Xσ ,Yσ ,Zσ

)
dσ −

∫ T

τ
e(σ−τ)BZσ dW(σ).

(2.11)

We will prove the following result.

Theorem 2.4. Assume Hypothesis 2.1 holds. Then there exists a positive T0 such that for all
T ≤ T0, for every t ∈ [0,T], and for every ξ ∈ L2(Ω,�t,P;H), problem (1.1) has a unique
mild solution (X ,Y ,Z) in [t,T].

Let us assume the following.

Hypothesis 2.5. We assume B : D(B)⊂ K → K to be a dissipative operator, that is,

(By, y)K ≤ 0 ∀y ∈D(B). (2.12)

Then the following regularity result holds.

Theorem 2.6. Assume Hypotheses 2.1 and 2.5 hold, then for every p ≥ 2, there exists a pos-
itive T1 ≤ T0 such that for every [t,T]⊂ [0,T1] and for every ξ ∈ Lp(Ω,�t,P;H), the mild
solution belongs to L

p
�(Ω;C([t,T];H))×L

p
�(Ω;C([t,T];K))×L

p
�(Ω;L2((t,T);L2(Ξ,K))).

3. Preliminary results

In this section, we provide some auxiliary results on backward stochastic equations that
we will need in the proof of Theorem 2.6 and in the proof of the regular dependence with
respect to the initial datum. Given η ∈ L2(Ω,�T ,P;K) and f ∈ L2

�(Ω× (0,T);K), let us
consider the following equation, for all t ∈ [0,T]:

dτYτ =−BYτ dτ + f (τ)dτ +Zτ dWτ , τ ∈ [t,T],

YT = η.
(3.1)

We introduce a weaker notion of solution, in analogy to the case of forward equations;
see [6, Chapter 6].

Definition 3.1. (Y ,Z) ∈ L2
�(Ω,C([t,T];K))× L2

�(Ω× (t,T);L2(Ξ,K)) is a weak solution
to problem (3.1) if for all ξ ∈D(B∗) and all τ ∈ [t,T],

〈
Yτ ,ξ

〉= 〈η,ξ〉K +
∫ T

τ

〈
Ys,B∗ξ

〉
K ds−

∫ T

τ

〈
f (s),ξ

〉
K ds−

∫ T

τ

〈
Zs,ξ

〉
K dWs P-a.s.

(3.2)
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Since we are dealing only with the backward equation, we can ask the mild solution to
be more regular; see also [25, Remark 4.7].

Definition 3.2. A mild solution to (3.1) is a couple of processes (Y ,Z) that belongs to
L2

�(Ω,C([t,T];K))×L2
�(Ω× (t,T);L2(Ξ,K)) such that for all τ ∈ [t,T],

Yτ = e(T−τ)Bη−
∫ T

τ
e(s−τ)B f (s)ds−

∫ T

τ
e(s−τ)BZs dWs P-a.s. (3.3)

The following result holds.

Lemma 3.3. For every t ∈ [0,T], (3.1) has a unique mild solution in [t,T]. Moreover, the
couple (Y ,Z) is a weak solution to problem (3.1).

Proof. The existence and uniqueness of the mild solution is proven in [25, Theorem 4.4],
see also [10, Lemma 2.1]. The proof of the second part of the statement follows exactly
with the same arguments used in [6, Chapter 5, Section 5.2] where the case of the forward
stochastic differential equation is treated. �

We are interested in proving the following regularity result.

Proposition 3.4. Let η ∈ Lp(Ω,�T ,P;K) and f ∈ L
p
�(Ω;L2((0,T);K)) with p ≥ 2. As-

sume Hypotheses 2.1(ii) and 2.5 hold, then the mild solution of problem (3.1), for every
t ∈ [0,T], has the following regularity:

(Y ,Z)∈ L
p
�

(
Ω;C

(
[t,T];K

))×L
p
�

(
Ω;L2((t,T);L2(Ξ,K)

))
. (3.4)

Moreover, the following estimates hold:

E sup
s∈[t,T]

∣∣Ys

∣∣p
K +E

(∫ T

t

∣∣Zs

∣∣2
L2(Ξ,K)ds

)p/2

≤ C
[
E|η|pK +E

(∫ T

t

∣∣ f (s)
∣∣
K ds

)p]
, (3.5)

where C is a constant that depends on p, MB, and T .

Proof. We will separate the proof into two parts and we will consider only the case when
t = 0, the procedure being identical for all t ∈ [0,T].
Step 1. Estimate for Y . Since Yτ = E[e(T−τ)Bη− ∫ Tτ e(s−τ)B f (s)ds | �τ], see [10, Lemma
2.1], one has that for every p ≥ 2,

E sup
τ∈[0,T]

∣∣Yτ

∣∣p
K

≤ Cp

[
E sup
τ∈[0,T]

∣∣E[e(T−τ)Bη |�τ
]∣∣p +E sup

τ∈[0,T]

∣∣∣∣E
[∫ T

τ
e(s−τ)B f (s)ds |�τ

]∣∣∣∣
p
]

≤ CpM
p
B

[
E|η|pK +E

(∫ T

0

∣∣ f (s)
∣∣
K ds

)p]
.

(3.6)

Here Cp depends only on p. Notice that in this step we do not need Hypothesis 2.5 that
instead plays a fundamental role in estimating the process Z.
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Step 2. Estimate for Z. We introduce the bounded operators Jn=̇n(nI − B)−1 for every
n∈N∗. It is very well known, see for instance [6, Appendix A], that

(i) for every x ∈ K , Jnx→ x in K ;
(ii) |Jn|L(K) ≤ 1;

(iii) for every n and every s∈ [0,T], esBJnx = JnesBx, for all x ∈ K .
Let us multiply each term in (3.1) by Jn and set Yn = JnY , f n = Jn f , ηn = Jnη, and Zn =
JnZ. One has that the following equation is verified by (Yn,Zn) for every τ ∈ [0,T]:

Yn
τ = e(T−τ)Bηn−

∫ T

τ
e(s−τ)B f n(s)ds−

∫ T

τ
e(s−τ)BZn

s dWs P-a.s. (3.7)

That is, (Yn,Zn) is the unique mild solution to

dτY
n
τ =−BYn

τ dτ + f n(τ)dτ +Zn
τ dWτ , τ ∈ [0,T],

Yn
T = ηn.

(3.8)

Moreover, by the previous lemma we know that (Yn,Zn) is the unique weak solution
of problem (3.8) and since Yn ∈D(B), we have that for every ξ ∈D(B∗),

〈
Yn
τ ,ξ
〉
K =

〈
ηn,ξ

〉
K +

∫ T

τ

〈
BYn

s ,ξ
〉
K ds−

∫ T

τ

〈
f n(s),ξ

〉
K ds−

∫ T

τ

〈
Zn
s ,ξ
〉
K dWs P-a.s.

(3.9)

Therefore extending by density (3.9) to all ξ ∈ K , we obtain that (Yn,Zn) is a strong
solution.

From Step 1, we also know that Yn ∈ Lp(Ω;C([0,T],K)) since |Yn
s |K ≤ |Ys|K . Now we

are in the position to apply the Itô formula to |Yn|2K . We introduce the following sequence
of stopping times:

τmn = inf
{
t :
∫ t

0

∣∣Zn
s

∣∣2
L2(Ξ,K) ≥m

}
∧T. (3.10)

Note that since Zn ∈ L2
�(Ω× (0,T);L2(Ξ,K)), then at every fixed n≥ 1,

lim
m→+∞τ

m
n = T P-a.s. (3.11)

For fixed m and n, we have

∣∣Yn
0

∣∣2
K +

∫ τmn

0

∣∣Zn
s

∣∣2
L2(Ξ,K)ds

= ∣∣Yn
τmn

∣∣2
K + 2

∫ τmn

0

〈
BYn

s ,Yn
s

〉
K ds− 2

∫ τmn

0

〈
f n(s),Yn

s

〉
K ds− 2

∫ τmn

0

〈
Zn
s dW(s),Yn

s

〉
K .

(3.12)
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Therefore, since B is dissipative, one has for some constant cp depending only on p that

∣∣Yn
0

∣∣2
K +

∫ τmn

0

∣∣Zn
s

∣∣2
L2(Ξ,K)ds

= ∣∣Yn
τmn

∣∣2
K + 2

∫ τmn

0

〈
BYn

s ,Yn
s

〉
K ds− 2

∫ τmn

0

〈
f n(s),Yn

s

〉
K ds− 2

∫ τmn

0

〈
Zn
s dW(s),Yn

s

〉
K

≤ cp

(
sup

s∈[0,T]

∣∣Yn
s

∣∣2
K +

(∫ τmn

0

∣∣Yn
s

∣∣
K

∣∣ f n(s)
∣∣
K ds

)
+
∣∣∣∣
∫ τmn

0

〈
Zn
s dW(s),Yn

s

〉
K

∣∣∣∣
)
.

(3.13)

As a consequence of BDG inequality, for some constant κp depending on p, one has

E
∣∣∣∣
∫ τmn

0

〈
Zn
s dW(s),Yn

s

〉
K

∣∣∣∣
p/2

≤ κpE
(∫ τmn

0

∣∣Zn
s

∣∣2
L2(Ξ,K)

∣∣Yn
s

∣∣2
ds
)p/4

≤ κpE sup
s∈[0,T]

∣∣Yn
s

∣∣p/2
K

(∫ τmn

0

∣∣Zn
s

∣∣2
L2(Ξ,K)ds

)p/4

.

(3.14)

Therefore, one gets that there exists a constant Cp depending on p, such that

E
(∫ τmn

0

∣∣Zn
s

∣∣2
L2(Ξ,K)ds

)p/2

≤ CpE sup
s∈[0,T]

∣∣Yn
s

∣∣p
K +Cp

(∫ τmn

0

∣∣ f n(s)
∣∣
K ds

)p

+
1
2
E
(∫ τmn

0

∣∣Zn
s

∣∣2
L2(Ξ,K)ds

)p/2

.

(3.15)

Thus Fatou’s lemma and property (ii) of Jn imply that letting m tend to infinity,

E
(∫ T

0

∣∣Zn
s

∣∣2
L2(Ξ,K)ds

)p/2

≤ 2Cp

[
E sup
s∈[0,T]

∣∣Yn
s

∣∣p
K +E

(∫ T

0

∣∣ f n(s)
∣∣
K ds

)p]

≤ 2Cp

[
E sup
s∈[0,T]

∣∣Ys

∣∣p
K +E

(∫ T

0

∣∣ f (s)
∣∣
K ds

)p]
.

(3.16)

Since limn→+∞Zn
s (ω) = Zs(ω) P-a.s. for a.e. s ∈ [0,T], again by Fatou’s lemma we have

that letting n tend to infinity,

E
(∫ T

0

∣∣Zs

∣∣2
L2(Ξ,K)ds

)p/2

≤ 2CpE
[

sup
s∈[0,T]

∣∣Ys

∣∣p
K +E

(∫ T

0

∣∣ f (s)
∣∣
K ds

)p]
. (3.17)

Combining this last inequality with (3.6), we conclude the proof of the proposition. Sim-
ilar estimates in the finite-dimensional case, holding also for p ∈ (1,2) and more general
f , can be found in [26, Lemma 3.1]. �
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Now let us consider the following generalization to (3.3):

dτYτ =−BYτ dτ + f
(
τ,Yτ ,Zτ

)
dτ,+Zτ dWτ τ ∈ [t,T],

YT = η.
(3.18)

The definition of mild solution of (3.18) is the obvious extension of Definition 3.2. We
can prove the following.

Proposition 3.5. Besides Hypotheses 2.1(ii) and 2.5, assume that for some constant L > 0
such that

∣∣ f (s, y,z)− f
(
s, y1,z1

)∣∣≤ L
(∣∣y− y1

∣∣
K +

∣∣z− z1
∣∣
L2(Ξ,K)

)
(3.19)

for every s∈ [0,T], y, y1 ∈ K , and z,z1 ∈ L2(Ξ,K), and that

E
(∫ T

t

∣∣ f (s,0,0)
∣∣
K ds

)p

< +∞, (3.20)

then (3.18) has a unique mild solution in [t,T] such that

E sup
s∈[t,T]

∣∣Ys

∣∣p
K +E

(∫ T

t

∣∣Zs

∣∣2
L2(Ξ,K)ds

)p/2

≤ C
[
E|η|pK +E

(∫ T

t

∣∣ f (s,0,0)
∣∣
K ds

)p]
,

(3.21)

where C is a constant the depends on p, MB, and T .

Proof. Take t = 0 being the procedure identical for any t. We set

�= L
p
�

(
Ω;C

(
[0,δ];K

))×L
p
�

(
Ω;L2((0,δ);L2(Ξ,K)

))
, (3.22)

where δ > 0 will be chosen later in the proof. Let Γ : �→� be the map such that for any
(Y ,Z)∈�, Γ(Y ,Z)= (Y 1,Z1) is the mild solution to

Y 1
τ = e(T−τ)Bη−

∫ T

τ
e(s−τ)B f

(
s,Ys,Zs

)
ds−

∫ T

τ
e(s−τ)BZ1

s dWs P-a.s. (3.23)

that exists by Proposition 3.4. We will prove that Γ is a contraction in � for sufficiently
small δ. Let us denote (V 1,W1)= Γ(V ,W). By Proposition 3.4 and from the hypothesis
on f , we have that

E sup
s∈[0,δ]

∣∣Y 1
s −V 1

s

∣∣p
K +E

(∫ δ

0

∣∣Zs−Z1
s

∣∣2
L2(Ξ,K)ds

)p/2

≤ C
[
E
(∫ δ

0

∣∣ f (s,Ys,Zs
)− f

(
s,Vs,Ws

)∣∣
K ds

)p]

≤ CLp
[
δp−1E sup

s∈[0,δ]
v
∣∣Ys−Vs

∣∣p
K + δp/2E

(∫ δ

0

∣∣Zs−Ws

∣∣2
L2(Ξ,K)

)p/2]
,

(3.24)
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where the constant C depends on MB and p. Thus we can choose δ small enough such
that Γ is a contraction and we find a unique fixed point (Y ,Z) solution to our equation
in [0,δ]. Since δ depends only on MB, L, and p, we can repeat the same procedure in
[δ,2δ] and so on in order to cover the whole interval [0,T]. Thus we have obtained a
solution (Y ,Z) in [0,T], patching together the solutions obtained in every interval. The
uniqueness follows from the local uniqueness in each interval of length δ. It remains to
show the estimate. Since Γ is a contraction in [0,δ], we have

E sup
s∈[0,δ]

∣∣Ys

∣∣p
K +E

(∫ δ

0

∣∣Zs

∣∣2
L2(Ξ,K)ds

)p/2

≤ 2
∥∥Γ(0,0)

∥∥p
� ≤ 2C

[
E|η|pK +E

(∫ δ

0

∣∣ f (s,0,0)
∣∣
K ds

)p]
.

(3.25)

In the second interval [δ,2δ], the solution (Y ,Z) is again the fixed point of a contraction
map, thus

E sup
s∈[δ,2δ]

∣∣Ys|pK +E
(∫ 2δ

δ

∣∣Zs

∣∣2
L2(Ξ,K)ds

)p/2

≤ 2C
[
E
∣∣Yδ

∣∣p
K +E

(∫ 2δ

δ

∣∣ f (s,0,0)
∣∣
K ds

)p]

≤ C̃
[
E|η|pK +E

(∫ 2δ

0

∣∣ f (s,0,0)
∣∣
K ds

)p]
,

(3.26)

where C̃ is a constant depending on known parameters. Iterating this procedure in a finite
number of intervals until we cover the whole interval [0,T], we get estimate (3.21) and
we conclude the proof. �

4. Proofs of theorems

We will prove first Theorem 2.6 and then Theorem 2.4.

4.1. Proof of Theorem 2.6. We set

�T
t =̇Lp

�

(
Ω,C

(
[t,T],K

))×L
p
�

(
Ω;L2((t,T);L2(Ξ,K)

))
(4.1)

for an arbitrary p > 2/(1− 2γ), where γ was introduced in Hypothesis 2.1(iv). For sim-
plicity, we take t = 0, the procedure being identical for all t ∈ [0,T]. We define the map
Γ : �T

0 →�T
0 : (Y ,Z)→ (Y ,Z) in two steps.

(1) For ξ ∈ Lp(Ω,�t,P;H) fixed, we define the process {Xτ : τ ∈ [0,T]} that de-
pends on Y and Z as the solution to

Xτ = eτAξ +
∫ τ

0
e(τ−σ)AF

(
σ ,Xσ ,Yσ ,Zσ

)
dσ +

∫ τ

0
e(τ−σ)AG

(
σ ,Xσ ,Yσ

)
dW(σ), τ ∈ [0,T],

(4.2)

in [16, Proposition 3.2] it is shown that this equation has a unique solution X ∈
L
p
�(Ω;C([0,T];H)) at every fixed (Y ,Z)∈�T

0 .
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(2) Given X , that depends on (Y ,Z), we define (Y ,Z) as the solution to

Yτ = e(T−τ)BΦ
(
XT
)−

∫ T

τ
e(σ−τ)BΨ

(
σ ,Xσ ,Yσ ,Zσ

)
dσ −

∫ T

τ
e(σ−τ)BZσ dW(σ), τ ∈ [0,T].

(4.3)

The existence and uniqueness of a solution (Y ,Z) in �T
0 , at every fixed X ∈

L
p
�(Ω;C([0,T];H)), are proven in [16, Proposition 4.3].

We will prove that there exists a T1 that depends only on L, MA, and MB such that for
any T ≤ T1, the map Γ : �T

0 →�T
0 is a contraction.

We start from the forward equation, we have

E sup
s∈[0,T]

∣∣Xs−Us

∣∣p
H

≤ cp

[
E sup
τ∈[0,T]

∣∣∣∣
∫ τ

0
e(τ−σ)A(F(σ ,Xσ ,Yσ ,Zσ

)−F
(
σ ,Uσ ,Vσ ,Wσ

))
dσ
∣∣∣∣
p

+E sup
τ∈[0,T]

∣∣∣∣
∫ τ

0
e(τ−σ)A(G(σ ,Xσ ,Yσ

)−G
(
σ ,Uσ ,Vσ

))
dW(σ)

∣∣∣∣
p
]
.

(4.4)

By standard estimates, we obtain that

E sup
τ∈[0,T]

∣∣∣∣
∫ τ

0
e(τ−σ)A(F(σ ,Xσ ,Yσ ,Zσ

)−F
(
σ ,Uσ ,Vσ ,Wσ

))
dσ
∣∣∣∣
p

≤ c̃pT
p/2LpM

p
A

[
T(p−2)/2

(
E sup
s∈[0,T]

∣∣Xs−Us

∣∣p
H +E sup

s∈[0,T]

∣∣Ys−Vs

∣∣p
K

)

+E
(∫ T

0

∣∣Zσ −Wσ

∣∣2
)p/2

]
.

(4.5)

Using now the factorization method, see [6, Chapter 5] or [16, Proposition 3.2], we have
that

E sup
τ∈[0,T]

∣∣∣∣
∫ τ

0
e(τ−σ)A(G(σ ,Xσ ,Yσ

)−G
(
σ ,Uσ ,Vσ

))
dW(σ)

∣∣∣∣
p

≤ cpM
2p
A LpT p/2−1−γp

[
E sup
s∈[0,T]

∣∣Xs−Us

∣∣p
H +E sup

s∈[0,T]

∣∣Ys−Vs

∣∣p
K

]
.

(4.6)
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We can assume that T ≤ 1, therefore by combining these estimates we have that there
exists a constant γ = γ(p,MA,L) such that

(
1− γTp/2−1−γp)E sup

s∈[0,T]

∣∣Xs−Us

∣∣p
H

≤ γTp/2−1−γpE sup
s∈[0,T]

∣∣Ys−Vs

∣∣p
K + γTp/2E

(∫ T

0

∣∣Zσ −Wσ

∣∣2
)p/2

.

(4.7)

Now we consider the backward equation.
We recall that, see [10] for instance, the following relation holds:

Yτ −Vτ = E
[
eB(T−τ)(Φ(XT

)−Φ
(
UT
)) |�τ

]

+E
[∫ T

τ
eB(s−τ)(Ψ(s,Xs,Ys,Zs

)−Ψ
(
s,Us,Vs,Ws

))
ds |�τ

]
.

(4.8)

Thus we deduce that there exists a constant γ1 = γ1(p,MB,L) such that for all T ≤ T1,

(
1− γ1T

p−1)E sup
s∈[0,T]

∣∣Ys−Vs

∣∣p
H

≤ γ1E sup
s∈[0,T]

∣∣Xs−Us

∣∣p
K + γ1T

p/2E
(∫ T

0

∣∣Zσ −Wσ

∣∣2
)p/2

.
(4.9)

It remains to estimate Z −W . First of all we notice that for every fixed X ,U ∈ L
p
�(Ω,

C([0,T],H)) by Proposition 3.5 there exists a unique mild solution of the following equa-
tions:

Yτ = e(T−τ)BΦ
(
XT
)−

∫ T

τ
e(σ−τ)BΨ

(
σ ,Xσ ,Yσ ,Zσ

)
dσ −

∫ T

τ
e(σ−τ)BZσ dW(σ), s∈ [0,T],

Vτ=e(T−τ)BΦ
(
UT
)−
∫ T

τ
e(σ−τ)BΨ

(
σ ,Uσ ,Vσ ,Wσ

)
dσ −

∫ T

τ
e(σ−τ)BWσ dW(σ), s∈[0,T].

(4.10)

Therefore estimate (3.5) with η=Φ(XT)−Φ(UT) and f (σ)=Ψ(σ ,Xσ ,Yσ ,Zσ)−Ψ(σ ,Uσ ,
Vσ ,Wσ) imply that there exists a constant γ2 = γ2(p,L), such that

E
(∫ T

0

∣∣Zσ−Wσ

∣∣2
dσ
)p/2

≤γ2

[
Tp−1E sup

s∈[0,T]

∣∣Ys−Vs

∣∣p
H +

(
1 +Tp−1)E sup

s∈[0,T]

∣∣Xs−Us

∣∣p
H

+Tp/2E
(∫ T

0

∣∣Zσ −Wσ

∣∣2
)p/2

]
.

(4.11)

Estimates (4.7), (4.9), and (4.11) imply that there exists a T1 > 0, depending on p, MA,
MB, and L, such that the map Γ is a contraction in �T

0 for all T ≤ T1. Thus for ev-
ery p > 2/(1− 2γ), there exists a unique solution to (1.1). This solution clearly belongs
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to L
p
�(Ω,C([0,T],K))× L

p
�(Ω;L2((0,T);L2(Ξ,K))) for all p ≥ 2. The uniqueness in this

bigger class of processes is a consequence of the next theorem, therefore we will chose
T1 ≤ T0, where T0 is given in Theorem 2.4. This concludes the proof.

4.2. Proof of Theorem 2.4. The proof of this theorem follows the same procedure of the
previous one. We set

�T
t = C�

(
[t,T];L2(Ω;K)

)×L2
�

(
(t,T)×Ω;L2(Ξ,K)

)
. (4.12)

One has to prove that the map Γ, considered now as a map from �T
t into itself, is a

contraction for a sufficiently small T , that again depends only on L, MA, and MB. For
simplicity, we start from t = 0.

We obtain by standard estimates that

(
1− 6TM2

AL
2− 4M2

AL
2T1−2γ) sup

τ∈[0,T]
E
∣∣Xτ −Uτ

∣∣2
H

≤ (6TM2
AL

2 + 4M2
AL

2T1−2γ) sup
s∈[0,T]

E
∣∣Ys−Vs

∣∣2
K + 6TM2

AL
2E
∫ T

0

∣∣Zs−Ws

∣∣2
L2(Ξ,K)ds.

(4.13)

Now thanks again to (4.8), we have that

(
1− 6TM2

BL
2) sup

τ∈[0,T]
E
∣∣Yτ −Vτ

∣∣2
K

≤ (2M2
BL

2 + 6TM2
BL

2) sup
τ∈[0,T]

E
∣∣Xτ −Uτ

∣∣2
H + 6TM2

BL
2E
∫ T

0

∣∣Zs−Ws

∣∣2
L2(Ξ,K)ds.

(4.14)

It remains to treat the term E
∫ T

0 |Zs −Ws|2L2(Ξ,K)ds. Since we have to deal with the con-
volution term, we follow the technique introduced by Hu and Peng in [10] that is based
on the martingale representation theorem. We have the following representation for the
processes Z and W :

Zs = e(T−s)BV(s)−
∫ T

s
e(σ−s)BK(s,σ)dσ P-a.s. and for a.e. s∈ [0,T],

Ws = e(T−s)BṼ(s)−
∫ T

s
e(σ−s)BK̃(s,σ)dσ P-a.s. and for a.e. s∈ [0,T],

(4.15)
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where V ,Ṽ ∈ L2
�(Ω× (0,T);K) and K , K̃ ∈ L2

�(Ω× (0,T)× (0,T);K) are related to Φ
and Ψ, respectively, as follows:

∫ T

τ
V(s)dWs =Φ

(
XT
)−E(Φ(XT

) |�τ
)
,

∫ T

τ
Ṽ(s)dWs =Φ

(
UT
)−E(Φ(UT

) |�τ
)
,

τ ∈ [0,T],

∫ s

τ
K(r,s)dWr =Ψ

(
s,Xs,Ys,Zs

)−E(Ψ(s,Xs,Ys,Zs
) |�τ

)
, 0≤ τ ≤ s≤ T ,

∫ s

τ
K̃(r,s)dWr =Ψ

(
s,Us,Vs,Ws

)−E(Ψ(s,Us,Vs,Ws
) |�τ

)
, 0≤ τ ≤ s≤ T.

(4.16)

One can deduce the following estimates:

E
∫ T

0

∣∣Zs−Ws

∣∣2
L2(Ξ,K)ds≤ 2

[
E
∫ T

0

∣∣e(T−s)B[V(s)− Ṽ(s)
]∣∣2

L2(Ξ,K)ds

+E
∫ T

0

∣∣∣∣
∫ T

s
e(σ−s)B[K(s,σ)− K̃(s,σ)

]
dσ
∣∣∣∣

2

L2(Ξ,K)
ds
]

≤ 8M2
B

[
L2E

∣∣XT −UT

∣∣2
H +T

∫ T

0
E
∣∣Ψ(σ ,Xσ ,Yσ ,Zσ

)

−Ψ
(
σ ,Uσ ,Vσ ,Wσ

)∣∣2
K dσ

]

≤8M2
BL

2
[(

1+3T2) sup
τ∈[0,T]

E
∣∣Xτ−Uτ

∣∣2
H +3T2 sup

τ∈[0,T]
E
∣∣Yτ−Vτ

∣∣2
H

+ 3TE
∫ T

0

∣∣Zs−Ws

∣∣2
L2(Ξ,K)ds

]
.

(4.17)

We have finally obtained

(
1− 24M2

BTL
2)E

∫ T

0

∣∣Zs−Ws

∣∣2
L2(Ξ,K)ds

≤ 8M2
BL

2
[(

1 + 3T2) sup
τ∈[0,T]

E
∣∣Xτ −Uτ

∣∣2
H + 3T2 sup

τ∈[0,T]
E
∣∣Yτ −Vτ

∣∣2
K

]
.

(4.18)

By the three inequalities (4.13), (4.14), and (4.18) there exists a positive number T0 that
depends on L, MA, and MB, such that the map Γ is a contraction in �T

0 for every T ≤ T0,
and this concludes the proof of the theorem.

4.3. Regular dependence on the parameters. In this paragraph, we study the differen-
tiability of the solution to the forward-backward system with respect to the initial state.
More precisely, we will prove that under appropriate assumptions, the solution is Gâteaux
differentiable with respect to x. We introduce the following class of functions.
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Definition 4.1. We say that a mapping F : X → V belongs to the class 	1(X ;V) if it is
continuous, Gâteaux differentiable on X , and∇F : X → L(X ,V) is strongly continuous.

We need to generalize this definition to functions depending on several variables.

Definition 4.2. We say that a mapping F : X ×Y → V belongs to the class 	1,0(X ×Y ;V)
if it is continuous, Gâteaux differentiable with respect to x on X ×Y , and∇xF : X ×Y →
L(X ,V) is strongly continuous.

We make further assumptions on the coefficients.

Hypothesis 4.3. We assume that for every t ∈ [0,T],
(i) F(t,·,·,·)∈	1,1,1(H ×K ×L2(Ξ,K);H);

(ii) for every s > 0, esAG(t,·, y) ∈ 	1(H ;L2(Ξ,H)) for every y ∈ K and esAG(t,x,·) ∈
	1(K ;L2(Ξ,K)) for every x ∈H ;

(iii) Ψ(t,·,·,·)∈	1,1,1(H ×K ×L2(Ξ,K);K);
(iv) Φ∈	1(H ;K).

As in [16, paragraph 3.2], we set

S(τ)= eτA for τ ≥ 0, S(τ)= I for τ < 0, (4.19)

and we consider the system

Xτ = S(τ − t)x+
∫ τ

0
1[t,T](σ)S(τ − σ)F

(
σ ,Xσ ,Yσ ,Zσ

)
dσ

+
∫ τ

0
1[t,T](σ)S(τ− σ)G

(
σ ,Xσ ,Yσ

)
dWσ ,

Yτ = e(T−τ)BΦ
(
XT
)−

∫ T

τ
e(σ−τ)BZσ dWσ −

∫ T

τ
e(σ−τ)BΨ

(
σ ,Xσ ,Yσ ,Zσ

)
dσ , τ ∈ [0,T],

(4.20)

under assumptions 2.1 and 2.5, system (4.20) for every p ≥ 2 has a unique solution
(X ,Y ,Z) ∈ L

p
�(Ω;C([0,T];H))× L

p
�(Ω;C([0,T];K))× L

p
�(Ω;L2((0,T);L2(Ξ,K))) for a

sufficiently small T . Moreover, the restriction to the time interval [t,T] is the unique
solution to (1.1).

From now on, we will denote by (X(τ, t,x),Y(τ, t,x),Z(τ, t,x)), τ ∈ [0,T] the solution
to (4.20).

Proposition 4.4. Assume Hypotheses 2.1, 2.5, and 4.3 hold. Then, for every p ≥ 2, one has
the following.

(1) The map (t,x)→ (X(·, t,x),Y(·, t,x),Z(·, t,x))

belongs to 	0,1([0,T]×H ;L
p
�

(
Ω;C

(
[0,T];H

))×L
p
�

(
Ω;C

(
[0,T];K

))

×L
p
�

(
Ω;L2((0,T);L2(Ξ,K)

)))
.

(4.21)
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(2) Let∇xX ,∇xY , and∇xZ be the partial Gâteaux derivatives, for every direction h∈
H , the directional derivative processes (∇xX(τ, t,x)h,∇xY(τ, t,x)h,∇xZ(τ, t,x)h),
τ ∈ [0,T], solve, P-a.s., the system

∇xX(τ, t,x)h

= e(τ−t)Ah

+
∫ τ

t
e(τ−σ)A∇xF

(
σ ,X(σ , t,x),Y(σ , t,x),Z(σ , t,x)

)∇xX(σ , t,x)hdσ

+
∫ τ

t
e(τ−σ)A∇yF

(
σ ,X(σ , t,x),Y(σ , t,x),Z(σ , t,x)

)∇xY(σ , t,x)hdσ

+
∫ τ

t
e(τ−σ)A∇zF

(
σ ,X(σ , t,x),Y(σ , t,x),Z(σ , t,x)

)∇xZ(σ , t,x)hdσ

+
∫ τ

t
e(τ−σ)A∇xG

(
σ ,X(σ , t,x),Y(σ , t,x)

)∇xX(σ , t,x)hdWσ

+
∫ τ

t
e(τ−σ)A∇yG

(
σ ,X(σ , t,x),Y(σ , t,x)

)∇xY(σ , t,x)hdWσ , τ ∈ [t,T],

∇xX(τ, t,x)h= h, τ ∈ [0, t),

(4.22)

∇xY(τ, t,x)h

= e(T−τ)B∇xΦ
(
X(T , t,x)

)∇xX(T , t,x)h−
∫ T

τ
e(σ−τ)B∇xZ(σ , t,x)hdWσ

−
∫ T

τ
e(σ−τ)B∇xΨ

(
σ ,X(σ , t,x),Y(σ , t,x),Z(σ , t,x)

)∇xX(σ , t,x)hdσ

−
∫ T

τ
e(σ−τ)B∇yΨ

(
σ ,X(σ , t,x),Y(σ , t,x),Z(σ , t,x)

)∇xY(σ , t,x)hdσ

−
∫ T

τ
e(σ−τ)B∇zΨ

(
σ ,X(σ , t,x),Y(σ , t,x),Z(σ , t,x)

)∇xZ(σ , t,x)hdσ , τ ∈ [0,T].

(4.23)

(3) The following estimate holds for every h∈H :

E sup
τ∈[0,T]

∣∣∇xX(τ, t,x)h
∣∣p
H

+E sup
τ∈[0,T]

∣∣∇xY(τ, t,x)h
∣∣p
K +E

(∫ T

0

∣∣∇xZ(τ, t,x)h
∣∣2
L2(Ξ,K)

)p/2

≤ c|h|pH ,

(4.24)

where c > 0 depends on p, MA, MB, L, and T .
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Proof. We start by recalling how the solution to (4.20) is built. We set again �T
0 = L

p
�(Ω;

C([0,T];K))× L
p
�(Ω;L2((0,T);L2(Ξ,K))) for some p > 2. For every x ∈ H , t ∈ [0,T],

and (Y 1,Z1)∈�T
0 , we define a map X → Γ1(X ;Y 1,Z1, t,x) : L

p
�(Ω;C([0,T];H))→ L

p
�(Ω;

C([0,T];H)) as follows:

Γ1
(
X ;Y 1,Z1, t,x

)
(τ)= S(τ − t)x+

∫ τ

0
1[t,T](σ)S(τ − σ)F

(
σ ,Xσ ,Y 1

σ ,Z1
σ

)
dσ

+
∫ τ

0
1[t,T](σ)S(τ − σ)G

(
σ ,Xσ ,Y 1

σ

)
dWσ.

(4.25)

This map is a contraction and we denote byΛ1(Y 1,Z1, t,x)={Λ1(s;Y 1,Z1, t,x) : s∈[0,T]}
its (unique) fixed point. We introduce a second map (X ,η)→ Γ2(X ,η) : L

p
�(Ω;C([0,T];

H))× Lp(Ω,�T ,P;K)→�T
0 defined as follows: Γ2(X ,η)= (Y ,Z) is the unique solution

to

Y(τ,X ,η)= e(T−τ)Bη−
∫ T

τ
e(σ−τ)BΨ

(
σ ,Xσ ,Y(σ ,X ,η),Z(σ ,X ,η)

)
dσ

−
∫ T

τ
e(σ−τ)BZ(σ ,X ,η)dWσ.

(4.26)

Finally the map Γ is expressed in terms of Γ1 and Γ2 as follows:

Γ
(
Y 1,Z1, t,x

)= Γ2
(
Λ1(Y 1,Z1, t,x

)
,Φ
(
Λ1(T ;Y 1,Z1, t,x

)))
. (4.27)

Then the solution to (4.20) is the unique solution to (Y 1,Z1)= Γ(Y 1,Z1, t,x). Therefore,
since we want to prove that the fixed point Y(t,x), Z(t,x) of Γ(·,·, t,x) is differentiable
with respect to x, we apply the parameter depending contraction principle; see [27] or
[16, Proposition 2.4]. Thus we have to prove that Γ ∈ 	1,0,1(�T

0 × [0,T]×H ;�T
0 ). In

order to carry on with this program we will proceed as follows:
(1) we prove that Γ2 is 	1,1(Lp(Ω;C([0,T];H))×Lp(Ω,�T ,P;K);�T

0 );
(2) we show that (Y 1,Z1, t,x) → Λ1(Y 1,Z1, t,x) is 	1,0,1(�T

0 × [0,T] × H ;L
p
�(Ω;

C([0,T];H)));
(3) finally we apply the chain rule, see for instance [16, Lemma 2.1], and we conclude

the proof.
We will just sketch the proof of each step being very similar to [16, Propositions 3.3

and 4.8].
(1) First of all we note that Proposition 3.5 applies to (4.26) and from the hypothesis

on Ψ, we have that, for fixed η and X ,

E sup
s∈[0,T]

∣∣Ȳ(s,X ,η)
∣∣p
K +E

(∫ T

0

∣∣Z(s,X ,η)
∣∣2

ds
)p/2

≤ C1

(
E|η|p +E

(∫ T

0

∣∣Ψ(s,X ,0,0)
∣∣
K

)p)

≤ C2
(
E|η|p + 1 +‖X‖pLp(Ω;C([0,T];H))

)
,

(4.28)
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where the positive constants C1 and C2 depend on MB, T , C, and p. We introduce the fol-
lowing equation, for any N ∈ L

p
�(Ω;C([0,T];H)) and ζ ∈ Lp(Ω,�T ,P;K) and (Y ,Z) ∈

�T
0 fixed:

Ŷ(τ,X ,η) +
∫ T

τ
e(σ−τ)BẐ(σ ,X ,η)dWσ

=−
∫ T

τ
e(σ−τ)B∇xΨ(σ ,X ,Y ,Z)Nσ dσ

−
∫ T

τ
e(σ−τ)B∇yΨ(σ ,X ,Y ,Z)Ŷ(σ ,X ,η)dσ

−
∫ T

τ
e(σ−τ)B∇zΨ(σ ,X ,Y ,Z)Ẑ(σ ,X ,η)dσ + ζ.

(4.29)

From Proposition 3.5, it follows that this equation has a unique solution (Ŷ , Ẑ) such that

E sup
s∈[0,T]

∣∣Ŷs

∣∣p
K +E

(∫ T

0

∣∣Ẑs

∣∣2
L2(Ξ,K)ds

)p/2

≤ κ
[
E|ζ|pK +‖N‖p

L
p
�(Ω;C([0,T];H))

]
, (4.30)

where κ is a constant the depends on p, MB, L, and T . From the hypothesis on the
coefficients one can deduce—using the same arguments exploited in [16, Proposition
4.8]—that (X ,N ,Y ,Z,ζ)→ (Ŷ(X ,N ,Y ,Z,ζ), Ẑ(X ,N ,Y ,Z,ζ)) is continuous form L

p
�(Ω;

C([0,T];H))× L
p
�(Ω;C([0,T];H))×�T

0 × Lp(Ω,�T ;K)→�T
0 . It remains to show that

the directional derivatives of (Y(X ,η),Z(X ,η)) in direction (N ,ζ) coincide with the pro-
cesses (Ŷ(X ,N ,Y(X ,η),Z(X ,η),ζ), Ẑ(X ,N ,Y(X ,η),Z(X ,η),ζ)). For every ε > 0, the pro-
cesses

Y ε = 1
ε
[
Y(X + εN ,η+ εζ)−Y(X ,η)

]− Ŷ
(
X ,N ,Y(X ,η),Z(X ,η),ζ

)
,

Zε = 1
ε
[
Z(X + εN ,η+ εζ)−Z(X ,η)

]− Ẑ
(
X ,N ,Y(X ,η),Z(X ,η),ζ

) (4.31)

solve the following equation:

Y ε(τ)=−
∫ T

τ
e(σ−τ)Bνε(σ)dσ −

∫ T

τ
e(σ−τ)BZε(σ)dWσ (4.32)

with

νε(σ)=1
ε
[
Ψ
(
σ ,X(σ) + εN(σ),Y

ε
(σ),Z

ε
(σ)
)]−∇xΨ

(
σ ,X(σ),Y(σ),Z(σ)

)
Nσ

+
1
ε
[
Ψ
(
σ ,X(σ),Y

ε
(σ),Z

ε
(σ)
)−Ψ

(
σ ,X(σ),Y(σ),Z(σ)

)]

−∇yΨ
(
σ ,X ,Y(σ),Z(σ)

)
Ŷ(σ)−∇zΨ

(
σ ,X ,Y(σ),Z(σ)

)
Ẑ(σ).

(4.33)
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Thus by Proposition 3.4, there exists a positive constant κ1 depending on MB, T , p such
that

E sup
s∈[0,T]

∣∣Y εs
∣∣p
K +E

(∫ T

0

∣∣Zεs
∣∣2
L2(Ξ,K)ds

)p/2

≤ κ1
∥∥νε
∥∥p
L
p
�(Ω;C([0,T];H))

. (4.34)

Then following [16, Proposition 4.8], one can prove that

lim
ε→0

∥∥νε
∥∥
L
p
�(Ω;C([0,T];H)) = 0. (4.35)

Note that from estimates (4.28), (4.30), and the continuity of (Ŷ(X ,N ,Y ,Z,ζ), Ẑ(X ,N ,Y ,
Z,ζ)) with respect to its parameters, we are in the position to apply [16, Lemma 2.2] and
we conclude the first step.

(2) Since Λ1(Y 1,Z1,x, t) is the fixed point of Γ1(·,Y 1,Z1,x, t), we can proceed ap-
plying the parameter depending contraction principle. The proof of a very similar re-
sult can be found in [16, Proposition 3.3], so will be omitted here. Thus we have that
Λ1(Y 1,Z1,x, t)—for every (Y 1,Z1)∈�T

0 —is Gâteaux differentiable and∇xΛ1 solves the
following equation—we omit the dependence on the variables Y 1 and Z1 for the sake of
clearness:

∇xΛ
1(τ; t,x)h

= e(τ−t)Ah

+
∫ T

t
e(τ−σ)A∇xF

(
σ ,Λ1(σ ; t,x),Y 1(σ , t,x),Z1(σ , t,x)

)∇xΛ
1(σ ; t,x)hdσ

+
∫ T

t
e(τ−σ)A∇yF

(
σ ,Λ1(σ ; t,x),Y 1(σ , t,x),Z1(σ , t,x)

)∇xY
1(σ , t,x)hdσ

+
∫ T

t
e(τ−σ)A∇zF

(
σ ,Λ1(σ ; t,x),Y 1(σ , t,x),Z1(σ , t,x)

)∇xZ
1(σ , t,x)hdσ

+
∫ T

t
e(τ−σ)A∇xG

(
σ ,Λ1(σ ; t,x),Y 1(σ , t,x)

)∇xΛ
1(σ ; t,x)hdWσ

+
∫ T

t
e(τ−σ)A∇yG

(
σ ,Λ1(σ ; t,x),Y 1(σ , t,x)

)∇xY
1(σ , t,x)hdWσ , τ ∈ [t,T],

∇xΛ
1(τ; t,x)h= h, τ ∈ [0, t).

(4.36)

Moreover, one has that for every h∈H ,

E sup
τ∈[0,T]

∣∣∇xΛ
1(τ; t,x)h

∣∣p
H ≤ C|h|pH . (4.37)



Giuseppina Guatteri 21

(3) Let us consider the fixed point X(s, t,x) = Λ1(s;Y ,Z, t,x) corresponding to the
couple Y , Z that is the fixed point of the map Γ. We can choose Nσ = ∇xX(σ , t,x)h
and ζ =∇xΦ(X(T , t,x))∇xX(T , t,x)h for every h∈H , then (∇xX(σ , t,x)h,∇xY(σ , t,x)h,
∇xZ(σ , t,x)h) is the unique solution to system (4.22)-(4.23) and combining estimates
(4.30) and (4.37), we get estimate (4.24).

This concludes the proof. �

4.4. Example. Let Z be the one-dimensional lattice of integers. We introduce an infinite
collection of forward-backward systems,

dXn(t)= anX
n(t)−

∑
j:| j−n|≤1

[
Xn(t)−X j(t)−Y j(t)

]
dt+dWn(t), n∈ Z, t ∈ [0,T],

dYn(t)=−bnYn(t) +
∑

j:| j−n|≤1

[
Yn(t)−Y j(t)−X j(t)

]
dt+Zn(t)dWn(t),

Xn(0)= xn, Yn(T)= φ
(
Xn(T)

)
, n∈N.

(4.38)

Let l2(Z) be the set of square summable sequences of real numbers, to fit our assumption
2.1 we assume that the following hold.

Hypothesis 4.5. (1) Wn are independent real Wiener processes.
(2) {an}n∈N is a sequence of real numbers such that

{
x ∈ l2(Z) :

∑
n∈Z

a2
nx

2
n < +∞

}
(4.39)

is dense in l2(Z).
(3) {bn}n∈N is a sequence of real numbers such that

{
x ∈ l2(Z) :

∑
n∈Z

b2
nx

2
n < +∞

}
(4.40)

is dense in l2(Z).

We can thus formulate problem (4.38) as a forward-backward system:

dXt =AXt +F
(
Xt,Yt

)
dt+dWt, t ∈ [0,T],

dYt = BYt +Ψ
(
Xt,Yt

)
dt+ZdWt, t ∈ [0,T],

X0 = x, YT =Φ
(
XT
)
.

(4.41)

We set H = K = l2(Z), W(t) = {Wn(t)}n∈N, then W(t) is a cylindrical Wiener process
with values in l2(Z). We define A and B by

A(x)= (anxn)n∈N, B(y)= (− bnyn
)
n∈N (4.42)
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with domains, respectively,

D(A)=
{
x ∈ l2(Z) :

∑
n∈Z

a2
nx

2
n < +∞

}
, D(B)=

{
y ∈ l2(Z) :

∑
n∈Z

b2
ny

2
n < +∞

}
,

(4.43)

these two operators are sectorial with dense domain, and B is negative, thus they obvi-
ously fulfill Hypothesis 2.1. The function F : H × K → H is given by F(t,x, y) =
−(
∑

j:| j−n|≤1[xn − x j − y j])n∈Z and Ψ : H × K → K is defined as Ψ(t,x, y) =
(
∑

j:| j−n|≤1[yn− x j − y j])n∈Z, and it is immediate to check that these functions are Lips-
chitz continuous functions.

In this case, Theorem 2.6 applies and there exists a T1 such that for any T ≤ T1 and
any p ≥ 2, for any x ∈ l2(Z), there exists a unique solution in L

p
�(Ω;C([t,T];H))×L

p
�(Ω;

C([t,T];K))×L
p
�(Ω;L2((t,T);L2(Ξ,K))).

5. Application of forward-backward systems to stochastic optimal control

5.1. Setting of the problem, assumptions, and auxiliary results. Let U be a real and
separable Hilbert space and 
 a subset of U .

Let Hypothesis 2.1 be in force and consider a controlled process Xu in H on a time
interval [t,T] ⊂ [0,T], governed by the following Itô stochastic differential equation of
the form

dXu
τ =AXu

τ dτ +F
(
τ,Xu

τ

)
dτ +G

(
τ,Xu

τ

)
r
(
τ,Xu

τ ,uτ
)
dτ +G

(
τ,Xu

τ

)
dWτ , τ ∈ [t,T],

Xu
t = x ∈H.

(5.1)

An admissible control is defined as a predictable process that takes value in 
 and that is
square integrable with respect to dP× dt. We recall that the cost functional to be mini-
mized is

J(t,x,u.)= E
∫ T

t
l
(
τ,Xu

τ ,uτ
)
dτ +EΦ

(
Xu
T

)
, (5.2)

where l : [0,T]×H ×U →R and Φ is defined in Hypothesis 2.1(v). Then the value func-
tion is the following:

V(t,x)= inf
u.
J(t,x,u.), t ∈ [0,T], x ∈H , (5.3)

where as usual the infimum is taken over all admissible controls. We introduce the Hamil-
tonian function

Ψ(t,x,z)= inf
u∈U

{
l(t,x,u) + zr(t,x,u)

}
t ∈ [0,T], x ∈H , z ∈ Ξ∗. (5.4)

We stress the fact that the probability basis (Ω,�,P), where the Wiener process Wt ap-
pearing in (5.1) is defined, is prescribed so we are considering the control problem in its
strong formulation.
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Besides Hypothesis 2.1, we assume also that the following hold.

Hypothesis 5.1. (1) The maps r : [0,T]×H ×U → Ξ and l : [0,T]×H ×U →R are Borel
measurable and there exists a constant C > 0 such that

∥∥r(t,x,u)− r(t,x′,u′)
∥∥
Ξ +

∣∣l(t,x,u)− l(t,x′,u′)
∣∣≤ C

(‖x− x′‖H +‖u−u′‖U
)
,

∣∣eσAG(t,x)
∣∣
L(Ξ,H) +

∣∣r(t,x,u)
∣∣
Ξ +

∣∣l(t,0,0)
∣∣≤ C,

l(t,0,u)≥−C
(5.5)

for every σ > 0, t ∈ [0,T], x,x′ ∈H , u,u′ ∈U .
(2) There exists a Borel measurable function γ : [0,T]×H ×Ξ∗ →U such that

Ψ(t,x,z)= l
(
t,x,γ(t,x,z)

)
+ zr

(
t,x,γ(t,x,z)

)
, t ∈ [0,T], x ∈H , z ∈ Ξ∗ (5.6)

and such that for some constant C > 0,

∥∥γ(t,x,z)− γ(t,x′,z′)
∥∥
U ≤ C

(‖x− x′‖H +‖z− z′‖Ξ∗
)
,

∥∥γ(t,0,0)
∥∥
U ≤ C

(5.7)

for every t ∈ [0,T], x,x′ ∈H , z,z′ ∈ Ξ∗.

Note that Hypothesis 5.1(1) implies that for every admissible control u. the functional
J(t,x,u.) takes values in (−∞,+∞] and is not identically +∞. See also [20, Section 2.1]
for more details. In the rest of the section, Hypotheses 2.1 and 5.1 will always be in force.

Lemma 5.2. There exists a constant c > 0, depending only on known parameters, such that

∣∣Ψ(t,0,0)
∣∣≤ c,

∣∣Ψ(t,x,z)−Ψ(t,x′,z′)
∣∣≤ c|z− z′|+ c|x− x′|(1 + |z|+ |z′|),

(5.8)

for every t ∈ [0,T], x,x′ ∈H , and z,z′ ∈ Ξ∗.

For the proof see [20, Lemma 2.3].
Now let us consider a standard Wiener space W̃ , defined on a complete probability

space (Ω̃,�̃, P̃). For 0≤ t ≤ τ ≤ T , we denote by �̃t (resp., �̃[t,τ]) the σ-algebra generated

by W̃s, s∈ [0, t] (resp., s∈ [t,τ]), completed by the null sets of �̃. For fixed t ∈ [0,T] and
x ∈H , we consider the equation

X̃τ = e(τ−t)Ax+
∫ τ

t
e(τ−σ)AF

(
σ , X̃σ

)
dσ +

∫ τ

t
e(τ−σ)AG

(
σ , X̃σ

)
dW̃σ , τ ∈ [t,T], (5.9)

by [16, Proposition 3.2] there exists a unique solution X̃τ such that

E sup
τ∈[t,T]

∥∥X̃τ

∥∥2
H ≤ C

(
1 +‖x‖2

H

)
. (5.10)
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This property and Lemma 5.2 imply that

E
∫ T

t

∥∥Ψ(σ , X̃σ ,0
)∥∥2

H < +∞. (5.11)

Thus, following again [16, Proposition 4.3], we have that the system that comprehends
(5.9) and

Ỹτ =Φ
(
X̃T
)

+
∫ T

τ
Ψ
(
σ , X̃σ , Z̃σ

)
dσ −

∫ τ

t
Z̃σ dW̃σ , τ ∈ [t,T], (5.12)

has a unique mild solution {(X̃τ(t,x), Ỹτ(t,x), Z̃τ(t,x)),τ ∈ [t,T]}, we will use this nota-
tion when we want to stress the dependence on the data. We set J∗(t,x) = Ỹt(t,x), note
that J∗(t,x) is a deterministic value and depends only on the law of Ỹ , that is, only on t, x,
F, G, Ψ, Φ. Using an infinite-dimensional version of Girsanov theorem, see [6, Theorem
10.14], one has the following.

Proposition 5.3. For every t ∈ [0,T] and x ∈ H , and for every admissible control u ∈
L2

�(Ω× [0,T];
), we have that J∗(t,x)≤ J(t,x,u). Moreover, the following relation holds,
for every control u and every x ∈H :

J∗(t,x)= J(t,x,u) +E
∫ T

t

[
Ψ
(
σ ,Xu

σ ,Zu
σ

)−Zu
σ r
(
σ ,Xu

σ ,uσ
)

− l
(
σ ,Xu

σ ,uσ
)]
dσ P-a.s. for a.e. t ∈ [0,T],

(5.13)

where {(Xu
τ (t,x),Yu

τ (t,x),Zu
τ (t,x)), τ ∈ [t,T]} is the solution to

Xu
τ = e(τ−t)Ax+

∫ τ

t
e(τ−σ)AF

(
σ ,Xu

σ

)
dσ +

∫ τ

t
e(τ−σ)AG

(
σ ,Xu

σ

)
r
(
σ ,Xu

σ ,uσ
)
dσ

+
∫ τ

t
e(τ−σ)AG

(
σ ,Xu

σ

)
dWσ , τ ∈ [t,T],

Yu
τ =Φ

(
Xu
T

)
+
∫ T

τ

[
Ψ
(
σ ,Xu

σ ,Zu
σ

)−Zu
σ r
(
σ ,Xu

σ ,uσ
)]
dσ −

∫ T

τ
Zu
σ dWσ τ ∈ [t,T].

(5.14)

For the proofs see [20, Proposition 2.5].
Note that the procedure described above allow to solve the problem considered in a

weak formulation; see [16, Theorem 7.2]. Next results will allow us to solve the problem
in the strong formulation.
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Proposition 5.4. Suppose that for some (t,x)∈ [0,T]×H , the system

Xτ = e(τ−t)Ax+
∫ τ

t
e(τ−σ)AF

(
σ ,Xσ

)
dσ +

∫ τ

t
e(τ−σ)AG

(
σ ,Xσ

)
r
(
σ ,Xσ ,γ

(
σ ,Xσ ,Zσ

))
dσ

+
∫ τ

t
e(τ−σ)AG

(
σ ,Xσ

)
dWσ , τ ∈ [t,T],

Yτ =Φ(XT) +
∫ T

τ
l
(
σ ,Xσ ,γ

(
σ ,Xσ ,Zσ

))
dσ −

∫ T

τ
Zσ dWσ , τ ∈ [t,T],

(5.15)

has a solution {(Xτ(t,x),Yτ(t,x),Zτ(t,x)) : τ ∈ [t,T]}. Then setting uτ = γ(τ,Xτ(t,x),
Zτ(t,x)), τ ∈ [t,T], the process u is optimal for the control problem starting from x at time
t with optimal cost J(t,x,u)= J∗(t,x)=V(t,x)= Yt(t,x).

Proof. It is clear that uτ = γ(τ,Xτ(t,x),Zτ(t,x)) is an admissible control. Finally, Hypoth-
eses 5.1(2) and (5.13), evaluated at u, imply that u is optimal, that is, J(t,x,u)= J∗(t,x)=
V(t,x). Note that system (5.15) rewritten with respect to W̃τ =Wτ +

∫ τ
τ∧t r(σ ,Xσ(t,x),

γ(Xσ(t,x),Zσ(t,x)))dσ coincides with (5.9)–(5.12), thus Yt(t,x) = Ỹt(t,x) = J∗(t,x) =
V(t,x). �

Remark 5.5. Note that the uniqueness of the solution of the system is not required in
the last statement since, morally speaking, only the law of Yτ—that depends only on the
coefficients T , F, G, Ψ, Φ—plays a role.

5.2. Global unique solvability for a class of forward-backward systems. Let us fix T > 0
and for every t ∈ [0,T] and x ∈H , consider

Xτ = e(τ−t)Ax+
∫ τ

t
e(τ−σ)AF

(
σ ,Xσ

)
dσ +

∫ τ

t
e(τ−σ)AG

(
σ ,Xσ

)
r
(
σ ,Xσ ,γ

(
σ ,Xσ ,Zσ

))
dσ

+
∫ τ

t
e(τ−σ)AG

(
σ ,Xσ

)
dWσ , τ ∈ [t,T],

Yτ =Φ(XT) +
∫ T

τ
l
(
σ ,Xσ ,γ

(
σ ,Xσ ,Zσ

))
dσ −

∫ T

τ
Zσ dWσ , τ ∈ [t,T].

(5.16)

Exploiting the result proved in Theorem 2.6 and the interpretation of Yt(t,x) given in
Proposition 5.4, one has the following.

Theorem 5.6. For every t ∈ [0,T] and x ∈H and every p ≥ 2, there exists a unique mild
solution of the forward-backward system (5.16) in L

p
�(Ω;C([t,T];H))× L

p
�(Ω;C([t,T];

K))×L
p
�(Ω;L2((t,T);L2(Ξ,K))).
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Proof. First of all, we note that changing if necessary the constant, one can find a positive
L > 0 such that

∣∣Φ(x)−Φ(x̃)
∣∣≤ L‖x− x̃‖H ,∣∣V(t,x)−V(t, x̃)
∣∣≤ L‖x− x̃‖H

(5.17)

for every x, x̃ ∈H and all t ∈ [0,T].
In order to prove the second inequality, we recall that the function V(t,x) coincides

with Ỹt(t,x), where {(X̃τ(t,x), Ỹτ(t,x), Z̃τ(t,x)); τ ∈ [t,T]} is the solution of system (5.9)–
(5.12) starting in t at x. First we have that for every τ ∈ [0,T] and x, x̃ ∈H , one has

Ẽ
∥∥X̃τ(t,x)− X̃τ

(
t, x̃
)∥∥2

H ≤ c‖x− x̃‖2
H. (5.18)

Indeed, for any admissible u,

X̃τ(t,x)− X̃τ(t, x̃)= e(τ−t)Ax− e(τ−t)Ax̃+
∫ τ

t
e(τ−σ)A[F(σ , X̃σ(t,x)

)−F
(
σ , X̃σ(t, x̃)

)]
dσ

+
∫ τ

t
e(τ−σ)A[G(σ , X̃σ(t,x)

)−G
(
σ , X̃σ(t, x̃)

)]
dW̃σ .

(5.19)

Thus,

Ẽ
∥∥X̃τ(t,x)− X̃τ(t, x̃)

∥∥2
H

≤ c2

{
M2

A‖x− x̃‖2
H +TM2

AL
2
∫ τ

t
Ẽ
∥∥X̃σ(t,x)− X̃σ(t, x̃)

∥∥2
H dσ

+ Ẽ
∫ τ

t

∥∥e(τ−σ)A[G(σ , X̃σ(t,x))−G
(
σ , X̃σ(t, x̃)

)]∥∥2
L2(Ξ,H)dσ

}

≤ c2

{
M2

A‖x− x̃‖H +TM2
AL

2
∫ τ

t
Ẽ
∥∥X̃σ(t,x)− X̃σ(t, x̃)

∥∥2
H dσ

+L2
∫ τ

t
Ẽ
∥∥X̃σ(t,x)− X̃σ(t, x̃)

∥∥2
H(τ − σ)−2γ dσ

}
.

(5.20)

Thus, by Gromwall’s lemma, there is a constant c depending on T , L, MA such that for
every τ ∈ [0,T],

Ẽ
∥∥X̃τ(t,x)− X̃τ(t, x̃)

∥∥2
H ≤ c‖x− x̃‖2

H. (5.21)
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Now, applying the Itô formula to |Ỹτ(t,x)− Ỹτ(t, x̃)|2, one gets that

Ẽ
∣∣Ỹτ(t,x)− Ỹτ(t, x̃)

∣∣2
+

1
2
Ẽ
∫ T

τ

∣∣Z̃σ(t,x)− Z̃σ(t, x̃)
∣∣2
dσ

≤ L2Ẽ
∥∥X̃T(t,x)− X̃T(t, x̃)

∥∥2
H +L2

∫ T

τ
Ẽ
∥∥X̃σ(t,x)− X̃σ(t, x̃)

∥∥2
Hdσ

+ 3L2
∫ T

τ
Ẽ
∣∣Ỹσ(t,x)− Ỹσ(t, x̃)

∣∣2
dσ.

(5.22)

Thus again by the Gromwall lemma and (5.18), there exists a positive constant L, such
that

Ẽ
∣∣Ỹτ(t,x)− Ỹτ(t, x̃)

∣∣2 ≤ L2|x− x̃|2, τ ∈ [t,T]. (5.23)

For τ = t in particular, one has

∣∣Ỹt(t,x)− Ỹt(t, x̃)
∣∣= ∣∣V(t,x)−V(t, x̃)

∣∣≤ L|x− x̃| (5.24)

for every x, x̃ in H .
Now we can conclude the proof in three steps.

Local existence. From Theorem 2.6, we know that for every p ≥ 2, there exists a δ > 0 such
that for every t ≥ T − δ, system (5.16) has a unique solution {(Xτ(t,x),Yτ(t,x),Zτ(t,x)),
τ ∈ [t,T]} with values in L

p
�(Ω;C([t,T];H)) × L

p
�(Ω;C([t,T];K)) × L

p
�(Ω;L2((t,T);

L2(Ξ,K))).

Global existence. Assume that t ∈ [T − 2δ,T − δ[: indeed if t ≥ T − δ, there is nothing to
prove, while if t < T − 2δ, then we can proceed repeating the construction below and after
a finite number of steps we obtain the required solution in [t,T] for arbitrary t ∈ [0,T].
We proceed in some steps.

(1) For every τ ∈ [T − δ,T], consider the system

X1
τ =e(τ−(T−δ))Ax+

∫ τ

T−δ
e(τ−σ)AF

(
σ ,X1

σ

)
dσ +

∫ τ

T−δ
e(τ−σ)AG

(
σ ,X1

σ

)
r
(
σ ,X1

σ ,γ
(
σ ,X1

σ ,Z1
σ

))
dσ

+
∫ τ

T−δ
e(τ−σ)AG

(
σ ,X1

σ

)
dWσ , τ ∈ [T − δ,T],

Y 1
τ =Φ

(
X1
T

)
+
∫ T

τ
l
(
σ ,X1

σ ,γ
(
σ ,X1

σ ,Z1
σ

))
dσ −

∫ T

τ
Z1
σ dWσ τ ∈ [T − δ,T].

(5.25)

Thus, by Theorem 2.6, there exists a unique solution {(X1
τ (t,x),Y 1

τ (t,x),Z1
τ (t,x)),

τ ∈ [T − δ,T]} and applying Proposition 5.4, one has that Y 1
T−δ(T − δ,x) =

V(T − δ,x) for all x ∈H .
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(2) Consider for τ ∈ [t,T − δ] the following forward-backward system with initial
condition x and final condition V :

Xτ = e(τ−t)Ax+
∫ τ

t
e(τ−σ)AF

(
σ ,Xσ

)
dσ +

∫ τ

t
e(τ−σ)AG

(
σ ,Xσ

)
r
(
σ ,Xσ ,γ

(
σ ,Xσ ,Zσ

))
dσ

+
∫ τ

t
e(τ−σ)AG

(
σ ,Xσ

)
dWσ , τ ∈ [t,T − δ],

Yτ =V
(
T − δ,XT−δ

)
+
∫ T−δ

τ
l
(
σ ,Xσ ,γ

(
σ ,Xσ ,Zσ

))
dσ −

∫ T−δ

τ
Zσ dWσ , τ ∈ [t,T − δ].

(5.26)

By Theorem 2.6, this system has a unique solution {(Xτ(t,x),Yτ(t,x),Zτ(t,x)),
τ ∈ [t,T − δ]} since V is Lipschitz continuous with the same Lipschitz constant
of φ by previous considerations.

(3) Finally we conclude solving again the system of step (1) with boundary condition
XT−δ(t,x) and Φ that

X1
τ = e(τ−(T−δ))AXT−δ(t,x) +

∫ τ

T−δ
e(τ−σ)AF

(
σ ,X1

σ

)
dσ

+
∫ τ

T−δ
e(τ−σ)AG

(
σ ,X1

σ

)
r
(
σ ,X1

σ ,γ
(
σ ,X1

σ ,Z1
σ

))
dσ

+
∫ τ

T−δ
e(τ−σ)AG

(
σ ,X1

σ

)
dWσ , τ ∈ [T − δ,T],

Y 1
τ =Φ

(
X1
T

)
+
∫ T

τ
l
(
σ ,X1

σ ,γ
(
σ ,X1

σ ,Z1
σ

))
dσ −

∫ T

τ
Z1
σ dWσ , τ ∈ [T − δ,T].

(5.27)

Note that XT−δ(t,x) ∈ Lp(Ω,�T−δ ,P,H) therefore satisfies the hypothesis of
Theorem 2.6 and we find a solution {(X1

τ (T−δ,XT−δ(t,x)),Y 1
τ (T−δ,XT−δ(t,x)),

Z1
τ (T − δ,XT−δ(t,x))), τ ∈ [T − δ,T]} to the system. Thus the triplet of processes

Xτ =
⎧⎪⎨
⎪⎩
Xτ(t,x), τ ∈ [t,T − δ],

X1
τ

(
T − δ,XT−δ

)
, τ ∈ [T − δ,T],

Yτ =
⎧⎪⎨
⎪⎩
Yτ(t,x), τ ∈ [t,T − δ],

Y 1
τ

(
T − δ,XT−δ

)
, τ ∈ [T − δ,T],

Zτ =
⎧⎪⎨
⎪⎩
Zτ(t,x), τ ∈ [t,T − δ],

Z1
τ

(
T − δ,XT−δ

)
, τ ∈ [T − δ,T],

(5.28)

is a solution to system (5.16) in [t,T] with boundary conditions x and Φ for any
p ≥ 2.
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Global uniqueness. It is a consequence of the local uniqueness.
Let us assume that t ∈ [T − 2δ,T − δ) and that there are two different solutions in

[t,T] with initial datum ξ and final datum φ. We denote the two solutions by (X1(t,x),
Y 1(t,x),Z1(t,x)) and (X2(t,x),Y 2(t,x),Z2(t,x)). Clearly, (X1(t,x),Y 1(t,x),Z1(t,x)) and
(X2(t,x),Y 2(t,x),Z2(t,x)) are solutions of the system in [T − δ,T] with respect to the ini-
tial datum X1

T−δ(t,x) [X2
T−δ(t,x)] and final datum φ. The uniqueness proved in Theorem

2.6 implies thatY 1
T−δ=V(T−δ,X1

T−δ) andY 2
T−δ=V(T−δ,X2

T−δ). Thus (X1(t,x),Y 1(t,x),
Z1(t,x)) and (X2(t,x),Y 2(t,x),Z2(t,x)) are both solutions in [t,T − δ] with respect to x
and V , therefore again by Theorem 2.6 and the Lipschitz continuity of V , the two so-
lutions coincide in [t,T − δ]. This implies in particular that X1

T−δ(t,x)= X2
T−δ(t,x), thus

the two solutions have to coincide also in [T − δ,T] having the same initial condition and
the same final datum, again by Theorem 2.6. �

We are now in the position to solve the control problem.

Proposition 5.7. For every t∈[0,T] and x∈H , let {(Xτ(t,x),Yτ(t,x),Zτ(t,x)),τ∈[t,T]}
be the solution to system (5.16) in [t,T] with boundary conditions x and Φ. Set

uτ = γ
(
τ,Xτ(t,x),Zτ(t,x)

)
, τ ∈ [t,T], (5.29)

then u is an optimal control for the control problem starting from x at time t. If Xu is the
corresponding solution, then P-a.s., Xu

τ = Xτ(t,x) for τ ∈ [t,T]. Finally, the optimal cost
V(t,x)= J(t,x,u) is equal to Yt(t,x).

Proof. Let us consider the forward equation corresponding to u:

Xτ = e(τ−t)Ax+
∫ τ

t
e(τ−σ)AF

(
σ ,Xσ

)
dσ +

∫ τ

t
e(τ−σ)AG

(
σ ,Xσ

)
r
(
σ ,Xσ ,uτ

)
dσ

+
∫ τ

t
e(τ−σ)AG

(
σ ,Xσ

)
dWσ , τ ∈ [t,T].

(5.30)

This equation, thanks to the regularity of the coefficients, has a unique solution, therefore
Xu must coincide with the first component {Xτ(t,x), τ ∈ [t,T]} of the solution of sys-
tem (5.16). By Theorem 5.6, system (5.16) admits a unique solution {(Xτ(t,x),Yτ(t,x),
Zτ(t,x)), τ ∈ [t,T]}, thus we can apply Proposition 5.4 to conclude the proof. �

Remark 5.8. Following [19, Proposition 3.2], one can find a Borel measurable function
ζ : [0,T]×H → Ξ∗, such that

ζ
(
τ,Xτ(t,x)

)= Zτ(t,x) P-a.s. for a.e. τ ∈ [t,T]. (5.31)

Thus setting u(t,x)= γ(t,x,ζ(t,x)) for every t ∈ [0,T] and x ∈H , one has

uτ = γ
(
τ,Xτ(t,x),Zτ(t,x)

)= u
(
τ,Xτ(t,x)

)
(5.32)
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and Xτ(t,x) solves the following closed-loop equation:

Xτ = e(τ−t)Ax+
∫ τ

t
e(τ−σ)AF

(
σ ,Xσ

)
dσ +

∫ τ

t
e(τ−σ)AG

(
σ ,Xσ

)
r
(
σ ,Xσ ,u

(
σ ,Xσ

))
dσ

+
∫ τ

t
e(τ−σ)AG

(
σ ,Xσ

)
dWσ , τ ∈ [t,T].

(5.33)

Moreover, if F, G, Ψ, and Φ satisfy Hypothesis 4.3 with K = R, then the feedback law is
expressed in terms of the value function,

Zτ(t,x)=∇xV
(
τ,Xτ(t,x)

)
G
(
τ,Xτ(t,x)

)
P-a.s. for a.e. τ ∈ [t,T]. (5.34)

This relation is true for system (5.9)–(5.12) corresponding to u; see [16]. Then noting
that Zτ(t,x)= Zu

τ (t,x) P-a.s. for a.e. τ ∈ [t,T], we obtain relation (5.34).

Example 5.9. We consider the controlled stochastic differential equation with delay inRn:

dx(τ)=
[∫ 0

−1
x(τ + θ)a(dθ) + f

(
τ,x(τ)

)
+ σ
(
τ,x(τ)

)
r
(
τ,x(τ),u(τ)

)]
dτ

+ σ
(
τ,x(τ)

)
dWτ , τ ∈ [0,T],

x(0)= μ0, x(θ)= ν0(θ), for a.e. θ ∈ (−1,0),

(5.35)

and a cost functional of the form

J
(
0,μ0,ν0,u

)= E
∫ T

0

(
τ,x(τ),u(τ)

)
dτ +Eφ

(
x(T)

)
, (5.36)

that we minimize over all predictable controls u with values in U ⊂RN .
We assume the following:

(1) μ0 ∈Rn, ν0 ∈ L2((−1,0);Rn);
(2) {Wt : t ≥ 0} is a cylindrical Wiener process in Rd defined on a complete proba-

bility space (Ω,�,P), (�t)t≥0 is its natural filtration completed with the null sets
of �;

(3) U is a Borel and bounded subset of RN , say U = [−δ,δ]N , for some δ > 0 and u
is a (�t)t≥0-predictable process with values in U ;

(4) a is an L(Rn,Rn)-valued finite measure on [−1,0];
(5) f : [0,T]×Rn→Rn is measurable and there exists a constant L > 0 such that

∣∣ f (t,0)
∣∣≤ L,

∣∣ f v(t,x1
)− f

(
t,x2

)∣∣≤ L
∣∣x1− x2

∣∣, t ∈ [0,T], x1,x2 ∈Rn; (5.37)

(6) σ : [0,T]×Rn → L(Rd,Rn) is measurable and there exists a positive constant L
such that

∣∣σ(t,x)
∣∣≤ L,

∣∣σ(t,x1
)− σ

(
t,x2

)∣∣≤ L
∣∣x1− x2

∣∣, t ∈ [0,T], x,x1,x2 ∈Rn; (5.38)
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(7) r : [0,T]×Rn×U →Rd is measurable and for some constant C > 0,

∣∣r(t,x,u)
∣∣≤ C, t ∈ [0,T], u∈U , x ∈Rn,

∣∣r(t,x1,u1
)− r

(
t,x2,u2

)∣∣
≤ C

(∣∣x1− x2
∣∣+

∣∣u1−u2
∣∣), t ∈ [0,T], u,u1,u2 ∈U , x1,x2 ∈Rn;

(5.39)

(8) let (t,x,u)= 0(t,x) + |u|2, r(t,x,u)= Bu with 0 : [0,T]×Rn→R measurable,
such that 0(·,0) is bounded, 0(t,·) is Lipschitz continuous uniformly with re-
spect to t, and B ∈ L(RN ,Rd). Then the infimum over all u ∈ U of (t,x,u) +
zr(t,x,γ(t,x,u)) is attained at a unique point:

γ(z)=

⎧⎪⎪⎨
⎪⎪⎩
−
(

1
2

)
B∗z∗ if

∣∣B∗z∗∣∣≤ 2δ,

−δ∣∣B∗z∗∣∣−1
B∗z∗ if

∣∣B∗z∗∣∣ > 2δ,
(5.40)

and clearly γ is a Lipschitz continuous function;
(9) φ :Rn→R verifies, for some constant L > 0,

∣∣φ(x1)−φ(x2)
∣∣≤ L

∣∣x1− x2
∣∣, x1,x2 ∈Rn. (5.41)

Following [7, Chapter 10], see also [28], we set H =Rn×L2((−1,0);Rn),

�(A)=
{(

μ
ν

)
∈H : ν∈W1,2((−1,0);Rn

)
, ν(0)= μ

}
,

A

(
μ
ν

)
=

⎛
⎜⎜⎝

∫ 0

−1
ν(θ)a(dθ)

dν

dθ

⎞
⎟⎟⎠ .

(5.42)

It is known that A generates a strongly continuous semigroup in H ; see again [7]. More-
over, if we set, for t ∈ [0,T], μ∈Rn, ν∈ L2((−1,0);Rn), u∈U ,

x0 =
(
μ0

ν0

)
, F

(
t,

(
μ
ν

))
=
(
f (t,μ)

0

)
, G

(
t,

(
μ
ν

))
=
(
σ(t,μ)

0

)
,

R

(
t,

(
μ
ν

)
,u

)
= r(t,μ,u), l

(
t,

(
μ
ν

)
,u

)
= (t,μ,u), Φ

(
μ
ν

)
= φ(μ),

(5.43)

then (5.35) is equivalent (see [7, 28]) to

dXτ =
(
AXτ +F

(
τ,Xτ

)
+G

(
τ,Xτ

)
R
(
τ,Xτ ,uτ

))
dτ +G

(
τ,Xτ

)
dWτ , τ ∈ [0,T],

X0 = x0,
(5.44)
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where Xτ =
(

x(τ)
xτ (·)

)
, with xτ(θ) = x(τ + θ), for every θ ∈ [−1,0]. The cost functional be-

comes

J
(
0,x0,u

)= E
∫ T

0
l
(
τ,Xτ ,uτ

)
dτ +EΦ

(
XT
)
. (5.45)

Moreover, it is easy to verify that Hypotheses 2.1 and 5.1 hold. Thus Proposition 5.7
can be applied to obtain the existence of the optimal control in strong formulation and
the feedback.
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