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1. Introduction

The focus of this investigation is the class of abstract measure-dependent stochastic evo-
lution equations driven by fractional Brownian motion (fBm) of the general form

dx(t)= (Ax(t) + f
(
t,x(t),μ(t)

))
dt+ g(t)dBH(t), 0≤ t ≤ T ,

x(0)= x0,

μ(t)= probability distribution of x(t)

(1.1)

in a real separable Hilbert space U . (By the probability distribution of x(t), we mean
μ(t)(A)= P({ω ∈Ω : x(t,ω)∈ A}) for each A∈B(U), where B(U) stands for the Borel
class on U .) Here, A : D(A) ⊂ U → U is a linear (possibly unbounded) operator which
generates a strongly continuous semigroup {S(t) : t≥0} onU ; f : [0,T]×U×℘λ2 (U)→U
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(where ℘λ2 (U) denotes a particular subset of probability measures on U) is a given map-
ping; g : [0,T]→ L(V ,U) is a bounded, measurable mapping (where V is a real separa-
ble Hilbert space and L(V ,U) denotes the space of Hilbert-Schmidt operators from V
into U with norm ‖ · ‖L(V ,U)); {BH(t) : t ≥ 0} is a V-valued fBm with Hurst parameter
H ∈ (1/2,1); and x0 ∈ L2(Ω;U).

Stochastic partial functional differential equations naturally arise in the mathemati-
cal modeling of phenomena in the natural sciences (see [1–8]). It has been shown that
some applications, such as communication networks and certain financial models, ex-
hibit a self-similarity property in the sense that the processes {x(αt) : 0 ≤ t ≤ T} and
{αHx(t) : 0≤ t ≤ T} have the same law (see [4, 6]). Indeed, while the case when H = 1/2
generates a standard Brownian motion, concrete data from a variety of applications have
exhibited other values of H , and it seems that this difference enters in a non-negligible
way in the modeling of this phenomena. In fact, since BH(t) is not a semimartingale un-
less H = 1/2, the standard stochastic calculus involving the Itó integral cannot be used in
the analysis of related stochastic evolution equations. There have been several papers de-
voted to the formulation of stochastic calculus for fBm [9–11] and differential/evolution
equations driven by fBm [12–15] published in the past decade. We provide an outline
of only the necessary concomitant technical details concerning the construction of the
stochastic integral driven by an fBm in Section 2.

Often times, a more accurate model of such phenomena can be formulated by allow-
ing the nonlinear perturbations to depend, in addition, on the probability distribution
of the state process at time t. A prototypical example in the finite-dimensional setting
would be an interacting N-particle system in which (1.1) describes the dynamics of the
particles x1, . . . ,xN moving in a space U in which the probability measure μ is taken to be
the empirical measure μN (t) = (1/N)

∑N
k=1 δxk(t), where δxk(t) denotes the dirac measure.

Researchers have investigated related models concerning diffusion processes in the finite-
dimensional case (see [16–18]). Related infinite-dimensional problems in a Hilbert space
setting have recently been examined (see [19–21]).

The purpose of this work is to study the class of abstract stochastic evolution equa-
tions obtained by accounting for more general nonlinear perturbations (in the sense of
McKean-Vlasov equations, as described in [19]) in the mathematical description of phe-
nomena involving an fBm. In particular, the existence and convergence results we present
constitute generalizations of the theory governing standard models arising in the math-
ematical modeling of nonlinear diffusion processes [1, 16–19, 22], communication net-
works [4], Sobolev-type equations arising in the study of consolidation of clay [8], shear
in second-order fluids [23], and fluid flow through fissured rocks [24]. As a part of our
general discussion, we establish an approximation result concerning the effect of the de-
pendence of the nonlinearity on the probability law of the state process, as well as the
noise arising from the stochastic integral, for a special case of (1.1) arising often in appli-
cations.

The remainder of the paper is organized as follows. First, we make precise the necessary
notation and function spaces, and gather certain preliminary results in Section 2. The
main results are stated in Section 3 while their proofs form the contents of Section 4.
Finally, we conclude the paper with a discussion of three concrete examples in Section 5.
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2. Preliminaries

For details of this section, we refer the reader to [12, 25–29] and the references therein.
Throughout this paper, U is a real separable Hilbert space with norm ‖ · ‖U and in-
ner product 〈·,·〉U equipped with a complete orthonormal basis {ej | j = 1,2, . . .}. Also,
(Ω,�,P) is a complete probability space. For brevity, we suppress the dependence of all
random variables on ω throughout the manuscript.

We begin by making precise the definition of a U-valued fBm and related stochas-
tic integral used in this manuscript. The approach we use coincides with the one for-
mulated and analyzed in [10, 12]. Let {BHj (t)|t ≥ 0}∞j=1 be a sequence of independent,
one-dimensional fBms with Hurst parameter H ∈ (1/2,1) such that for all j = 1,2, . . . the
following hold:

(i) BHj (0)= 0,

(ii) E[BHj (t)−BHj (s)]2 = |t− s|2Hν j ,

(iii) E[BHj (1)]2 = ν j > 0,
(iv)

∑∞
j=1 ν j <∞.

In such case,
∑∞

j=1E‖BHj (t)ej‖2
U = t2H

∑∞
j=1 ν j <∞, so that the following definition is

meaningful.

Definition 2.1. For every t ≥ 0, BH(t)=∑∞
j=1B

H
j (t)ej is a U-valued fBm, where the con-

vergence is understood to be in the mean-square sense.
It has been shown in [12] that the covariance operator of {BH(t) : t ≥ 0} is a positive

nuclear operator Q such that

trQ(t,s)= 1
2

∞∑

j=1

ν j
[
t2H + s2H −|t− s|2H]. (2.1)

Next, we outline the discussion leading to the definition of the stochastic integral associ-
ated with {BH(t) : t ≥ 0} for bounded, measurable functions, as presented in [10, 12]. To
begin, assume that g : [0,T]→ L(V ,U) is a simple function, that is, there exists {gi : i =
1, . . . ,n} ⊆R such that

g(t)= gi ∀ti−1 ≤ t ≤ ti, (2.2)

where 0= t0 < t1 < ··· < tn−1 < tn = T and max1≤i≤n‖gi‖L(V ,U) = K .

Definition 2.2. The U-valued stochastic integral
∫ T

0 g(t)dBH(t) is defined by

∫ T

0
g(t)dBH(t)=

∞∑

j=1

(∫ T

0
g(t)dBHj (t)

)
ej =

∞∑

j=1

( n∑

i=1

gi
[
BHj
(
ti
)−BHj

(
ti−1

)]
)

ej . (2.3)

As argued in [12, Lemma 2.2], this integral is well defined since

E
∥
∥
∥
∥

∫ T

0
g(t)dBH(t)

∥
∥
∥
∥

2

U
≤ K2T2H

∞∑

j=1

ν j <∞. (2.4)
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Since the set of simple functions is dense in the space of bounded, measurable L(V ,U)-
valued functions, a standard density argument can be used to extend Definition 2.2 to the
case of a general bounded, measurable integrand.

We make use of several different function spaces throughout this paper. For one,
BL(U) is the space of all bounded linear operators on U while L2(Ω;U) stands for the
space of all U-valued random variables y for which E‖y‖2

U <∞. Also, C([0,T];U) stands
for the space of L2-continuous U-valued random variables y : [0,T]→U such that

‖y‖2
C([0,T];U) ≡ sup

0≤t≤T
E
∥
∥y(t)

∥
∥2
U <∞. (2.5)

The remaining function spaces coincide with those used in [19]; we recall them here for
convenience. First, B(U) stands for the Borel class onU and ℘(U) represents the space of
all probability measures defined on B(U) equipped with the weak convergence topology.
Define λ :U →R+ by λ(x)= 1 +‖x‖U , x ∈U , and consider the space

�(U)=
{

ϕ :U −→U | ϕ is continuous and

‖ϕ‖� = sup
x∈U

∥
∥ϕ(x)

∥
∥
U

λ2(x)
+ sup
x �=y∈U

∥
∥ϕ(x)−ϕ(y)

∥
∥
U

‖x− y‖U <∞
}

.

(2.6)

For p ≥ 1, we let

℘sλp(U)=
{
m :U −→R |m is a signed measure on U such that

‖m‖λp =
∫

U
λp(x)|m|(dx) <∞

}
,

(2.7)

where m=m+−m− is the Jordan decomposition of m, and |m| =m+ +m−. Then, define
the space ℘λ2 (U)= ℘sλ2 (U)∩℘(U) equipped with the metric ρ given by

ρ
(
σ1,σ2

)= sup
{∫

U
ϕ(x)

(
σ1− σ2

)
(dx) : ‖ϕ‖� ≤ 1

}
. (2.8)

It is known that (℘λ2 (U),ρ) is a complete metric space. The space of all continuous
℘λ2 (U)-valued functions defined on [0,T], denoted by �λ2 = �λ2 ([0,T];(℘λ2 (U),ρ)), is
complete when equipped with the metric

DT
(
σ1,σ2

)= sup
t∈[0,T]

ρ
(
σ1(t),σ2(t)

) ∀σ1,σ2 ∈�λ2 . (2.9)

In addition to the familiar Young, Hölder, and Minkowski inequalities, the inequality of
the form (

∑n
i=1 ai)

m ≤mn−1
∑n

i=1 a
m
i , where ai is a nonnegative constant (i= 1, . . . ,n) and

m,n∈N, will be used to establish various estimates.
We conclude this section with some comments regarding probability measures. The

probability measure P induced by a U-valued random variable X , denoted PX , is defined
by P ◦X−1 : B(U)→ [0,1]. A sequence {Pn} ⊂ ℘(U) is said to be weakly convergent to
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P if
∫
Ω f dPn →

∫
Ω f dP, for every bounded, continuous function f : U →R; in such case,

we write Pn
w−→ P. Next, a family {Pn} is tight if for each ε > 0, there exists a compact

set Kε such that Pn(Kε) ≥ 1− ε for all n. Bergström [25] established the equivalence of
tightness and relative compactness of a family of probability measures. Consequently, the
Arzelá-Ascoli theorem can be used to establish tightness.

Definition 2.3. Let P ∈ ℘(U) and 0≤ t1 < t2 < ··· < tk ≤ T . Define πt1,...,tk : C([0,T];U)→
Uk by πt1,...,tk (X)= (X(t1), . . . ,X(tk)). The probability measures induced by πt1,...,tk are the
finite dimensional joint distributions of P.

Proposition 2.4 [28, page 37]. If a sequence {Xn} ofU-valued random variables converges
weakly to a U-valued random variable X in the mean-square sense, then the sequence of
finite dimensional joint distributions corresponding to {PXn} converges weakly to the finite
dimensional joint distribution of PX .

The next theorem, in conjunction with Proposition 2.4, is the main tool used to prove
one of the convergence results in this paper.

Theorem 2.5. Let {Pn} ⊂ ℘(U). If the sequence of finite dimensional joint distributions
corresponding to {Pn} converges weakly to the finite dimensional joint distribution of P and
{Pn} is relatively compact, then Pn

w−→ P.

3. Statement of results

We consider mild solutions of (1.1) in the following sense.

Definition 3.1. A stochastic process x ∈ C([0,T];U) is a mild solution of (1.1) if
(i) x(t)= S(t)x0 +

∫ t
0 S(t− s) f (s,x(s),μ(s))ds+

∫ t
0 S(t− s)g(s)dBH(s) for all 0≤ t ≤ T ,

(ii) μ(t) is the probability distribution of x(t) for all 0≤ t ≤ T .

The following conditions on (1.1) are assumed throughout the manuscript unless oth-
erwise specified.

(A1) A : D(A) ⊂ U → U is the infinitesimal generator of a strongly continuous semi-
group {S(t) : t ≥ 0} on U such that ‖S(t)‖BL(U) ≤M exp(αt) for all 0 ≤ t ≤ T ,
for some M ≥ 1, α > 0;

(A2) f : [0,T]×U ×℘λ2 (U)→U satisfies the following:
(i) there exists a positive constant Mf such that

∥
∥ f
(
t,z1,σ1

)− f
(
t,z2,σ2

)∥∥2
U ≤Mf

[∥
∥z1− z2

∥
∥2
U + ρ2(σ1,σ2

)]
, (3.1)

globally on [0,T]×U ×℘λ2 (U);
(ii) there exists a positive constant Mf such that

∥
∥ f
(
t,z,σ

)∥∥2
U ≤Mf

[‖z‖2
U +‖σ‖2

λ2

]
(3.2)

globally on [0,T]×U ×℘λ2 (U) (cf. Equation (2.7));
(A3) g : [0,T]→ L(V ,U) is a bounded, measurable mapping;
(A4) {BH(t) : t ≥ 0} is a U-valued fBm;
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(A5) x0 ∈ L2(Ω;U) is (�0,B(U))-measurable, where {�t : 0≤ t ≤ T} is the fam-
ily of σ-algebras �t generated by {BH(s) : 0≤ s≤ t}.

(Henceforth, we write MS =max0≤t≤T ‖S(t)‖BL(U), which is finite by (A1).)
The following more general version of [12, Lemma 6], stated without proof, is critical

in establishing several estimates.

Lemma 3.2. Assume that g : [0,T]→ L(V ,U) satisfies (A3). Then, for all 0≤ t ≤ T ,

E
∥
∥
∥
∥

∫ t

0
S(t− s)g(s)dBH(s)

∥
∥
∥
∥

2

U
≤ Ct

∞∑

j=1

ν j , (3.3)

where Ct is a positive constant depending on t, MS, and the growth bound on g, and {ν j :
j ∈N} is defined as in the discussion leading to Definition 2.1.

Consider the solution map Φ : C([0,T];U)→ C([0,T];U) defined by

Φ(x)(t)= S(t)x0 +
∫ t

0
S(t− s) f (s,x(s),μ(s)

)
ds+

∫ t

0
S(t− s)g(s)dBH(s), 0≤ t ≤ T.

(3.4)

The first integral on the right-hand side of (3.4) is taken in the Bochner sense while the
second is defined in Section 2. The operator Φ satisfies the following properties.

Lemma 3.3. Assume that (A1)–(A5) hold. Then, Φ is a well defined, L2-continuous map-
ping.

The main existence-uniqueness result is as follows.

Theorem 3.4. If (A1)–(A5) hold, then (1.1) has a unique mild solution x on [0,T] with
corresponding probability law μ∈�λ2 , provided that TMfMS < 1.

Mild solutions of (1.1) depend continuously on the initial data and probability distri-
bution of the state process in the following sense.

Proposition 3.5. Assume that (A1)–(A5) hold, and let x and y be the mild solutions of
(1.1) (as guaranteed to exist by Theorem 3.4) corresponding to initial data x0 and y0 with
respective probability distributions μx and μy . Then, there exists a positive constant M∗ such
that

E
∥
∥x(t)− y(t)

∥
∥2
U ≤M∗

[∥
∥x0− y0

∥
∥2
L2(Ω;U) +D2

T

(
μx,μy

)]
. (3.5)

We now formulate various convergence and approximation results. For the first such
result, let n≥ 1 and consider the Yosida approximation of (1.1) given by

dxn(t)= Axn(t)dt+nR(n;A) f
(
t,xn(t),μn(t)

)
dt+nR(n;A)g(t)dBH(t), 0≤ t ≤ T ,

xn(t)= nR(n;A)x0,
(3.6)

where μn(t) is the probability law of xn(t), and R(n;A)= (I − nA)−1 is the resolvent op-
erator of A. Assuming that (A1)–(A5) hold, one can invoke Theorem 3.4 to deduce that
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(3.6) has a unique mild solution xn ∈ C([0,T];U) with probability law μn ∈ �λ2 . The
following convergence result holds.

Theorem 3.6. Let x denote the unique mild solution of (1.1) on [0,T] as guaranteed by
Theorem 3.4. Then, the sequence of solutions of (3.6) converges to x inC([0,T];U) as n→∞.

The following corollary is needed to establish the weak convergence of probability
measures.

Corollary 3.7. The sequence of probability laws μn corresponding to the mild solutions xn
of (3.6) converges in �λ2 to the probability law μ corresponding to the mild solution x of (1.1)
as n→∞.

Remark 3.8. We observe for later purposes that Corollary 3.7 implies that

sup
n∈N

sup
0≤s≤T

∥
∥μn(s)

∥
∥2
λ2 <∞. (3.7)

In view of Theorem 3.6 and Corollary 3.7, the following continuity-type result can be
established as in [19]. The details are omitted.

Proposition 3.9. Assume that E‖x0‖4
U <∞. Then, for any function F : [0,T]×U → R

satisfying the following:
(i) for each N ∈N, there exists a positive continuous function kN (t) such that

∣
∣F(t,x)−F(t, y)

∣
∣≤ kN (t)‖x− y‖U ∀0≤ t ≤ T , ‖x‖U ≤N , ‖y‖U ≤N ; (3.8)

(ii) there exists a positive continuous function l(t) such that

∣
∣F(t,x)

∣
∣≤ l(t)λ2(x) ∀0≤ t ≤ T , x ∈U , (3.9)

it is the case that
∫ T

0

∫
U F(t,x)d(μn(t)−μ(t))dt→ 0 as n→∞.

We now consider the weak convergence of the probability measures induced by the
mild solutions of (3.6). Let Px denote the probability measure generated by the mild so-
lution x of (1.1) and Pxn the probability measure generated by xn as in (3.6). We have the
following.

Theorem 3.10. If (A1)–(A5) hold and x0 ∈ L4(Ω,U), then Pxn
w−→ Px as n→∞.

Next, we present a generalization of [12, Theorem 2] which allows for measure depen-
dence in the nonlinearity. Specifically, letm∈N and t ∈ [0,T] be given, and partition the
interval [0, t] using the points {tmj = (t/m)( j) : j = 0,1, . . . ,m}. For each j ∈ {1, . . . ,m},
consider the following recursively defined sequence:

xmj (s)= S(s− tmj
)
xmj
(
tmj
)

+
∫ s

tmj

S
(
s− τ) f (τ,xmj (τ),μmj (τ)

)
dτ, s∈ [tmj , tmj+1

)
,

xm0 (0)= x0,
(3.10)
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where

xmj
(
tmj
)= S(tmj − tmj−1

)
xmj−1

(
tmj
)

+
∫ tmj

tmj−1

S
(
tmj − τ

)
g(τ)dBH(τ). (3.11)

Arguing as in Theorem 3.4, one can show that (3.10) has a unique mild solution xmj ∈
C([tmj , tmj+1];U) with probability distribution {μmj (τ) : τ ∈ [tmj , tmj+1]}. As such, it is mean-
ingful to use (3.10) to define the sequence of processes {ym(s) : 0≤ s≤ t} by

ym(s)= S(s)x0 +
∫ s

0
S(s− τ) f

(
τ, ym(τ),μm(τ)

)
dτ

+
∫ tmm−1

0
S
(
s− tmm−1

)
g(τ)dBH(τ), 0≤ s≤ t,

(3.12)

where μm(s)= μjm(s), s∈ [tmj , tmj+1], j = 0,1, . . . ,m.

Lemma 3.11. For each 0≤ t ≤ T , there exists a positive constant Ct (independent ofm) such
that sup{E‖ym(s)‖2

U : 0≤ s≤ t, m∈N} ≤ Ct. Moreover, sup0≤t≤T Ct <∞.

Using this lemma, together with a standard Gronwall-type argument, yields the fol-
lowing approximation result.

Theorem 3.12. Let {x(t) : 0 ≤ t ≤ T} be the (unique) mild solution process of (1.1) with
probability law {μ(t) : 0≤ t ≤ T}. Then, for each 0≤ t ≤ T , limm→∞E‖ym(t)− x(t)‖2

U = 0.

Next, we formulate a result in which a deterministic initial-value problem is approx-
imated by a sequence of stochastic equations of a particular form of (1.1) arising fre-
quently in applications. Specifically, consider the deterministic initial-value problem

z′(t)= Az(t) +F
(
t,z(t)

)
, 0≤ t ≤ T ,

z(0)= z0,
(3.13)

and for each ε > 0, consider the stochastic initial-value problem

dxε(t)=
(
Aεxε(t) +

∫

U
F1ε(t,z)με(t)(dz) +F2ε

(
t,xε(t)

)
)
dt+ gε(t)dBH(t), 0≤ t ≤ T ,

xε(0)= z0,

με(t)= probability distribution of xε(t),
(3.14)

in U . Here, z0 ∈ D(Aε) = D(A) and Fiε : [0,T]×U → U (i = 1,2) are given mappings.
Regarding (3.13), we assume that A satisfies (A1) and that the following hold that.

(A6) F : [0,T]×U →U satisfies
(i) there exists a positive constantMF such that ‖F(t,z1)−F(t,z2)‖U ≤MF‖z1−

z2‖U globally on [0,T]×U ,



Eduardo Hernandez et al. 9

(ii) there exists a positive constant MF such that ‖F(t,z)‖U ≤MF‖z‖U glob-
ally on [0,T]×U , (A1) and (A6) guarantee the existence of a unique mild
solution z of (3.13) on [0,T] given by

z(t)= S(t)z0 +
∫ t

0
S(t− s)F(s,z(s)

)
ds, 0≤ t ≤ T. (3.15)

As for (3.14), we impose the following conditions on the data for each ε > 0:
(A7) Aε : D(Aε) = D(A)→ D(Aε) generates a strongly continuous semigroup {Sε(t) :

t ≥ 0} satisfying Sε(t) → S(t) strongly as ε → 0+, uniformly in t ∈ [0,T], and
sup0≤t≤T ‖Sε(t)‖BL(U) ≤MS (the same growth bound as for the semigroup gen-
erated by A);

(A8) F2ε : [0,T]×U →U is Lipschitz in the second variable (with the same Lipschitz
constant MF used for F in (A6)), and F2ε(t,u)→ F(t,u) as ε→ 0+ for all u ∈ U ,
uniformly in t ∈ [0,T];

(A9) F1ε : [0,T]×U →U is a continuous mapping such that
∫
U F1ε(t,z)με(t)(dz)→ 0

uniformly in t as ε→ 0+;
(A10) gε : [0,T]→ L(V ,U) is a bounded, measurable function such that gε(t)→ 0 as

ε→ 0+, uniformly in t ∈ [0,T].
Under these assumptions, the following result holds.

Theorem 3.13. Let z and xε be the mild solutions of (3.13) and (3.14) on [0,T], respectively.
Then, there exist a positive constant σ and a positive function ψ(ε) (which decreases to 0 as
ε→ 0+) such that E‖xε(t)− z(t)‖2

U ≤ ψ(ε)exp(σt) for all t ∈ [0,T].

4. Proofs

Proof of Lemma 3.3. Let μ ∈ �λ2 be fixed and consider the solution map Φ defined in
(3.4).

Using the discussion in Section 2 and the properties of x, one can see that for any
x ∈ C([0,T];U), Φ(x)(t) is a well defined stochastic process for each 0≤ t ≤ T . In order
to verify the L2-continuity of Φ on [0,T], let z ∈ C([0,T];U) and consider 0 ≤ t∗ ≤ T
and |h| sufficiently small. Observe that

E
∥
∥Φ(z)

(
t∗ +h

)−Φ(z)
(
t∗
)∥∥2

U

≤ 4
[
E
∥
∥[S

(
t∗ +h− s)− S(t∗ − s)]x0

∥
∥2
U

+E
∥
∥
∥
∥

∫ t∗+h

0
S
(
t∗ +h− s) f (s,x(s),μ(s)

)
ds−

∫ t∗

0
S
(
t∗ − s) f (s,x(s),μ(s)

)
ds
∥
∥
∥
∥

2

U

+E
∥
∥
∥
∥

∫ t∗+h

0
S
(
t∗ +h− s)g(s)dBH(s)−

∫ t∗

0
S
(
t∗ − s)g(s)dBH(s)

∥
∥
∥
∥

2

U

]

= 4
3∑

i=1

[
Ii
(
t∗ +h

)− Ii
(
t∗
)]
.

(4.1)
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Since the semigroup property enables us to write

I1
(
t∗ +h

)− I1
(
t∗
)= E∥∥((S(t∗ +h

)− S(t∗))x0
)∥∥2

U = E
∥
∥(S(h)

(
S
(
t∗
)
x0
)− S(t∗)x0

)∥∥2
U ,

(4.2)

the strong continuity of S(t) implies that the right-hand side of (4.2) goes to 0 as |h| → 0.
Next, using the Hölder inequality with (A2) yields

E
∥
∥
∥
∥

∫ t∗+h

t∗
S
(
t∗ +h− s) f (s,x(s),μ(s)

)
ds
∥
∥
∥
∥

2

U

≤ 4
(
Mf

)2
M2

Sh
2
[

1 +‖x‖2
C([0,T];U) + sup

t∗≤s≤t∗+h

∥
∥μ(s)

∥
∥2
λ2

] (4.3)

which clearly goes to 0 as |h| → 0. Also,

E
∥
∥
∥
∥

∫ t∗

0

[
S(h)− I]S(t∗ − s) f (s,x(s),μ(s)

)
ds
∥
∥
∥
∥

2

U

≤ T
∫ t∗

0

∥
∥
∥
[
S(h)− I]S(t∗ − s)

∥
∥
∥

2

BL(U)
E
∥
∥ f
(
s,x(s),μ(s)

)∥∥2
U ds.

(4.4)

Subsequently, using (A2)(ii) together with the strong continuity of S(t), we can invoke
the dominated convergence theorem to conclude that the right-hand side of (4.4) goes to
0 as |h| → 0. Consequently, since I2(t∗ + h)− I2(t∗) is dominated by a sum of constant
multiples of the right-hand sides of (4.3) and (4.4), we conclude that I2(t∗ +h)− I2(t∗)→
0 as |h| → 0. It remains to show that I3(t∗ +h)− I3(t∗)→ 0 as |h| → 0. Observe that

I3
(
t∗ +h

)− I3
(
t∗
)

= E
∥
∥
∥
∥

∫ t∗+h

0
S
(
t∗ +h− s)g(s)dBH(s)−

∫ t∗

0
S
(
t∗ − s)g(s)dBH(s)

∥
∥
∥
∥

2

U

= E
∥
∥
∥
∥
∥

∞∑

j=1

∫ t∗+h

0
S
(
t∗ +h− s)g(s)ej dBHj (s)−

∞∑

j=1

∫ t∗

0
S
(
t∗ − s)g(s)ej dBHj (s)

∥
∥
∥
∥
∥

2

U

= E
∥
∥
∥
∥
∥

∞∑

j=1

∫ t∗+h

t∗
S
(
t∗ +h− s)g(s)ej dBHj (s)

+
∞∑

j=1

∫ t∗

0

[
S
(
t∗ +h− s)− S(t∗ − s)]g(s)ej dBHj (s)

∥
∥
∥
∥
∥

2

U

≤ 2E

[∥∥
∥
∥
∥

∞∑

j=1

∫ t∗+h

t∗
S
(
t∗ +h− s)g(s)ej dBHj (s)

∥
∥
∥
∥
∥

2

U

+

∥
∥
∥
∥
∥

∞∑

j=1

∫ t∗

0

[
S
(
t∗ +h− s)− S(t∗ − s)]g(s)ej dBHj (s)

∥
∥
∥
∥
∥

2

U

]

.

(4.5)
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For the moment, assume that g is a simple function as defined in (2.2). Observe that for
m∈N, arguing as in [12, Lemma 6] yields

E

∥
∥
∥
∥
∥

m∑

j=1

∫ t∗

0

[
S
(
t∗ +h− s)− S(t∗ − s)]g(s)ej dBHj (s)

∥
∥
∥
∥
∥

2

U

= E
∥
∥
∥
∥
∥

m∑

j=1

n−1∑

k=0

Shgkej
(
BHj
(
tk+1

)−BHj
(
tk
))
∥
∥
∥
∥
∥

2

U

= E
〈 m∑

j=1

n−1∑

k=0

Shgkej
(
BHj
(
tk+1

)−BHj
(
tk
))

,
m∑

j=1

n−1∑

k=0

Shgkej
(
BHj
(
tk+1

)−BHj
(
tk
))
〉

U

≤
m∑

j=1

n−1∑

k=0

∥
∥Sh

∥
∥2

BL(U)K
2E
(
BHj
(
tk+1

)−BHj
(
tk
)
,BHj

(
tk+1

)−BHj
(
tk
))
R

≤ sup
0≤s≤t∗

∥
∥Sh

∥
∥2

BL(U)K
2E
(
BHj
)2

= sup
0≤s≤t∗

∥
∥Sh

∥
∥2

BL(U)K
2(t∗

)2H
m∑

j=1

ν j ,

(4.6)

where Sh = S(t∗ − tk +h)− S(t∗ − tk). Hence,

E

∥
∥
∥
∥
∥

∞∑

j=1

∫ t∗

0

[
S
(
t∗ +h− s)− S(t∗ − s)]g(s)ej dBHj (s)

∥
∥
∥
∥
∥

2

U

≤ lim
m→∞E

∥
∥
∥
∥
∥

m∑

j=1

∫ t∗

0

[
S
(
t∗ +h− s)− S(t∗ − s)]g(s)ej dBHj (s)

∥
∥
∥
∥
∥

2

U

≤ lim
m→∞ sup

0≤s≤t∗
∥
∥Sh

∥
∥2

BL(U)K
2(t∗

)2H
m∑

j=1

ν j

= sup
0≤s≤t∗

∥
∥Sh

∥
∥2

BL(U)K
2(t∗

)2H
∞∑

j=1

ν j

(4.7)

and the right-hand side of (4.7) goes to 0 as |h| → 0. Next, observe that

E

∥
∥
∥
∥
∥

∞∑

j=1

∫ t∗+h

t∗
S
(
t∗ +h− s)g(s)ej dBHj (s)

∥
∥
∥
∥
∥

2

U

= E
∥
∥
∥
∥
∥

∞∑

j=1

∫ h

0
S
(
u
)
g
(
t∗ +h−u)ej dBHj

(
t∗ +h−u)

∥
∥
∥
∥
∥

2

U

.

(4.8)

Using the property E(BHj (s)− BHj (t))2 = |t − s|2Hν j with s = t∗ + h and t = t∗, we can
argue as above to conclude that the right-hand side of (4.8) goes to 0 as |h| → 0. Conse-
quently, I3(t∗ +h)− I3(t∗)→ 0 as |h| → 0 when g is a simple function. Since the set of all
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such simple functions is dense in L(V ,U), a standard density argument can be used to
extend this conclusion to a general bounded, measurable function g. This establishes the
L2-continuity of Φ.

Finally, we assert that Φ(C([0,T];U))⊂ C([0,T];U). Indeed, the necessary estimates
can be established as above, and when used in conjunction with Lemma 3.2, one can
readily verify that sup0≤t≤T E‖Φ(x)(t)‖2

U <∞ for any x ∈ C([0,T];U). Thus, we conclude
that Φ is well defined, and the proof of Lemma 3.3 is complete. �

Proof of Theorem 3.4. Let μ∈�λ2 be fixed and consider the operator asΦ defined in (3.4).
We know thatΦ is well defined and L2-continuous from Lemma 3.3. We now prove thatΦ
has a unique fixed point in C([0,T ;U]). Indeed, for any x, y ∈ C([0,T ;U]), (3.4) implies
that

E
∥
∥(Φx)(t)− (Φy)(t)

∥
∥2
U ≤ E

∥
∥
∥
∥

∫ t

0
S(t− s)[ f (s,x(s),μ(s)

)− f
(
s, y(s),μ(s)

)]
ds
∥
∥
∥
∥

2

U

≤ (TMfMS
)2‖x− y‖2

C([0,T];U), 0≤ t ≤ T.
(4.9)

Consequently, for a given μ∈�λ2 and T > 0, Φ has a unique fixed point xμ ∈ C([0,T];U),
provided that TMfMS < 1. In such case, we conclude that xμ is a mild solution of (1.1).

To complete the proof, we must show that μ is, in fact, the probability law of xμ. To this
end, let �(xμ)= {�(xμ(t)) : t ∈ [0,T]} represent the probability law of xμ and define the
map Ψ : �λ2 → �λ2 by Ψ(μ) = L(xμ). It is not difficult to see that �(xμ(t)) ∈ ℘λ2 (U) for
all t ∈ [0,T] since xμ ∈ C([0,T];U). Concerning the continuity of the map t �→�(xμ(t)),
we first comment that an argument similar to the one used to establish Lemma 3.3 can
be used to show that for sufficiently small |h| > 0,

lim
h→0

E
∥
∥xμ(t+h)− xμ(t)

∥
∥2
U = 0 ∀0≤ t ≤ T. (4.10)

Consequently, since for all t ∈ [0,T] and ϕ∈�λ2 , it is the case that

∣
∣
∣
∣

∫

U
ϕ(x)

(
�
(
xμ(t+h)

)−�
(
xμ(t)

))
(dx)

∣
∣
∣
∣=

∣
∣E
[
ϕ
(
xμ(t+h)

)−ϕ(xμ(t)
)]∣∣

≤ ‖ϕ‖λ2E
∥
∥xμ(t+h)− xμ(t)

∥
∥
U ,

(4.11)

and hence

ρ
(
�
(
xμ(t+h)

)
,�
(
xμ(t)

))

= sup
‖ϕ‖λ2≤1

∫

U
ϕ(x)

(
�
(
xμ(t+h)

)−�
(
xμ(t)

))
(dx)−→ 0 as |h| −→ 0

(4.12)

for any 0≤ t ≤ T . Thus, t �→�(xμ(t)) is a continuous map, so that �(xμ)∈�λ2 , thereby
showing that Ψ is well defined. In order to show that Ψ has a unique fixed point in �λ2 ,
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let μ,ν∈�λ2 and let xμ, xν be the corresponding mild solutions of (1.1). A standard com-
putation yields

E
∥
∥xμ(t)− xν(t)

∥
∥2
U

≤ T(MfMS
)2
D2
T(μ,ν) +

(
TMfMS

)2
∫ t

0
E
∥
∥xμ(s)− xν(s)

∥
∥2
U ds, 0≤ t ≤ T.

(4.13)

Applying Gronwall’s lemma and then taking the supremum over [0,T] yields

∥
∥xμ− xν

∥
∥2
C([0,T];U) ≤ σTD

2
T(μ,ν), (4.14)

where σT = (TMfMS)2 exp((TMfMS)2). Now, choose T small enough to ensure that σT <
1; denote such a T by T0. Then, since

ρ
(
�
(
xμ(t)

)
,�
(
xν(t)

))≤ E∥∥xμ(t)− xν(t)
∥
∥
U ∀0≤ t ≤ T (4.15)

(which follows directly from (4.11) and (4.12)), we have

∥
∥Ψ(μ)−Ψ(ν)

∥
∥2
λ2 =D2

T0

(
Ψ(μ),Ψ(ν)

)≤ sup
t∈[0,T0]

E
∥
∥xμ(t)− xν(t)

∥
∥2
U

= ∥∥xμ− xν

∥
∥2
C([0,T0];U) < σT0D

2
T0

(μ,ν),
(4.16)

so that Ψ is a strict contraction on �λ2 ([0,T0];(℘λ2 (U),ρ)). Thus, (1.1) has a unique
mild solution on [0,T0] with probability distribution μ ∈ �λ2 ([0,T0];(℘λ2 (U),ρ)). The
solution can then be extended, by continuity, to the entire interval [0,T] in finitely many
steps, thereby completing the proof of the theorem. �

Proof of Proposition 3.5. Computations similar to those used leading to the contractivity
of the solution map in Theorem 3.4 can be used, along with Gronwall’s lemma, to estab-
lish this result. The details are omitted. �

Proof of Theorem 3.6. Observe that

E
∥
∥xn(t)− x(t)

∥
∥2
U

≤ 8

[

E
∥
∥(nR(n;A)− I)S(t)x0

∥
∥2
U

+M2
ST
∫ t

0
E
∥
∥nR(n;A) f

(
s,xn(s),μn(s)

)− f
(
s,x(s),μ(s)

)∥∥2
U ds

+E
∥
∥
∥
∥

∫ t

0
S(t− s)[nR(n;A)− I]g(s)dBH(s)

∥
∥
∥
∥

2

U

]

= 8

[

E
∥
∥(nR(n;A)− I)S(t)x0

∥
∥2
U +

5∑

i=4

Ii(t)

]

, 0≤ t ≤ T.

(4.17)
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Standard computations imply that

I4(t)≤ 2M2
ST
∫ t

0

[
E
∥
∥(nR(n;A)− I) f (s,xn(s),μn(s)

)∥∥2
U

+ 2M2
f

(
E
∥
∥xn(s)− x(s)

∥
∥2
U + ρ2(μn(s),μ(s)

))]
ds, 0≤ t ≤ T.

(4.18)

Further, the triangle inequality and (A2), together, imply

∫ t

0

[
E
∥
∥(nR(n;A)− I) f (s,xn(s),μn(s)

)∥∥2
U ds

≤ 2
∫ t

0
E
∥
∥nR(n;A)− I∥∥2

BL(U)

[
2M2

f

(
E
∥
∥xn(s)− x(s)

∥
∥2
U + ρ2(μn(s),μ(s)

))

+E
∥
∥ f
(
s,x(s),μ(s)

)∥∥2
U

]
ds, 0≤ t ≤ T.

(4.19)

The boundedness of E‖ f (s,x(s),μ(s)‖2
U independent of n, together with the strong con-

vergence of nR(n;A)− I to 0, enables us to infer that the right-hand side of (4.19) goes to
0 as n→∞. Next, using Lemma 3.2 yields

I5(t)≤M2
SE
∥
∥
∥
∥

∫ t

0

[
nR(n;A)− I]g(s)dBH(s)

∥
∥
∥
∥

2

U
≤
(

sup
0≤t≤T

Ct

∞∑

j=1

ν j

)
∥
∥nR(n;A)− I∥∥2

BL(U).

(4.20)

Using (4.18)–(4.20) in (4.17) gives rise to an inequality of the form

E
∥
∥xn(t)− x(t)

∥
∥2
U ≤ β1E

∥
∥x0

∥
∥2
U +β2

∫ t

0
E
∥
∥xn(s)− x(s)

∥
∥2
U ds, 0≤ t ≤ T , (4.21)

where βi (i = 1,2) are constant multiples of the quantity ‖nR(n;A)− I‖2
BL(U). Conse-

quently, applying Gronwall’s lemma and then taking the supremum over 0≤ t ≤ T yields

∥
∥xn− x

∥
∥2
C([0,T];U) ≤ β1

[
1 +E

∥
∥x0

∥
∥2
U

]
exp

(
β2T

) ∀n≥ 1. (4.22)

Since the right-hand side of (4.22) goes to 0 as n→∞, the conclusion of the theorem
follows. �

Proof of Corollary 3.7. This follows from the fact that

D2
T

(
μn,μ

)= sup
0≤t≤T

ρ2(μn(t),μ(t)
)≤ sup

0≤t≤T
E
∥
∥xn(t)− x(t)

∥
∥2
U

≤ ∥∥xn− x
∥
∥2
C([0,T];U) −→ 0 as n−→∞.

(4.23)

�

Proof of Theorem 3.10. Throughout the proof, Ci denotes a suitable positive constant in-
dependent of n. We will show that {Pxn}∞n=1 is relatively compact using the Arzela-Ascoli
theorem.

First, we can show that {xn} is uniformly bounded in C([0,T];U), that is,
supn∈N sup0≤t≤T E‖xn(t)‖2

U <∞. The mild solution xn of (3.6) is given by the variation
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of parameters formula

xn(t)= S(t)nR(n;A)x0 +
∫ t

0
S(t− s)nR(n;A) f

(
s,xn(s),μn(s)

)
ds

+
∫ t

0
S(t− s)nR(n;A)g(s)dBH(s)

= S(t)nR(n;A)x0 +
7∑

i=6

Ii(t).

(4.24)

Let t ∈ [0,T]. We consider each of the three terms on the right-hand side of (4.24) sepa-
rately. First, since nR(n;A) is contractive for each n, it follows that

E
∥
∥S(t)nR(n;A)x0

∥
∥2
U ≤M2

SE
∥
∥x0

∥
∥2
U. (4.25)

Routine arguments involving (A2) and Remark 3.8 yield

E
∥
∥I6(t)

∥
∥2
U ≤ 2TM2

SM
2
f

[
TC1 +

∫ t

0
E
∥
∥xn(s)

∥
∥2
U ds

]
. (4.26)

Arguing as in Lemma 3.3, using the contractivity of nR(n;A), yields

E
∥
∥
∥
∥

∫ t

0
S(t− s)nR(n;A)g(s)dBH(s)

∥
∥
∥
∥

2

U
= E

∥
∥
∥
∥
∥

∞∑

j=1

∫ t

0
S(t− s)nR(n;A)g(s)ej dBHj (s)

∥
∥
∥
∥
∥

2

U

≤ C2.

(4.27)

Combining (4.25)–(4.27), we obtain that

E
∥
∥xn(t)

∥
∥2
U ≤ C3 +C4

∫ t

0
E
∥
∥xn(s)

∥
∥2
U ds, 0≤ t ≤ T. (4.28)

Applying Gronwall’s lemma now yields the uniform boundedness of {xn} in C([0,T];U).
Next, we establish the equicontinuity of {xn}. We will show that for every n∈N and

for fixed 0≤ s≤ t ≤ T , E‖xn(t)− xn(s)‖4
U → 0 (independently of n) as t− s→ 0. Indeed,

for 0≤ s≤ t ≤ T , using the semigroup properties yields

E
∥
∥(S(t)− S(s)

)
nR(n;A)x0

∥
∥4
U ≤ E

(∫ t

s

∥
∥S(τ)AnR(n;A)x0

∥
∥
U dτ

)4

≤M4
SM

4
AE
∥
∥x0

∥
∥4
U(t− s)4.

(4.29)
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Also,

E
∥
∥I6(t)− I6(s)

∥
∥4
U

≤ E
(∫ s

0

∥
∥[S(t− τ)− S(s− τ)

]
nR(n;A) f

(
τ,xn(τ),μn(τ)

)∥∥
U dτ

+
∫ t

s

∥
∥S(t− τ)nR(n;A) f

(
τ,xn(τ),μn(τ)

)∥∥
U dτ

)4

≤ 4E

[(∫ s

0

∥
∥[S(t− τ)− S(s− τ)

]
nR(n;A) f

(
τ,xn(τ),μn(τ)

)∥∥
U dτ

)4

+
(∫ t

s

∥
∥S(t− τ)nR(n;A) f

(
τ,xn(τ),μn(τ)

)∥∥
U dτ

)4
]

≤ 4E

[

T1/4
∫ s

0

∥
∥[S(t− τ)− S(s− τ)

]
nR(n;A) f

(
τ,xn(τ),μn(τ)

)∥∥4
U dτ

+
(∫ t

s

∥
∥S(t− τ)nR(n;A) f

(
τ,xn(τ),μn(τ)

)∥∥
U dτ

)4
]

≤ 4

[

T1/4
∫ s

0
E
(∫ t−τ

s−τ

∥
∥S(u)AnR(n;A) f

(
τ,xn(τ),μn(τ)

)∥∥
Udu

)4

dτ

+E
(∫ t

s

∥
∥S(t− τ)nR(n;A) f

(
τ,xn(τ),μn(τ)

)∥∥
Udτ

)4
]

≤ 4

[

T1/4(t− s)4
∫ s

0

∫ t−τ

s−τ
E
∥
∥S(u)AnR(n;A) f

(
τ,xn(τ),μn(τ)

)∥∥4
Ududτ

+E
(∫ t

s

∥
∥S(t− τ)nR(n;A) f

(
τ,xn(τ),μn(τ)

)∥∥
Udτ

)4
]

≤ 16(t− s)5M4
SMAMf

4(
T5/4 + 1

)
(

1 +‖x‖4
C([0,T];U) +

(

sup
0≤t≤T

∥
∥μn(t)

∥
∥
λ2

)4)

≤ C5(t− s)5,
(4.30)

E
∥
∥I7(t)− I7(s)

∥
∥4
U

≤ E
∥
∥
∥
∥
∥

∞∑

j=1

[∫ t

0
S(t− τ)nR(n;A)g(τ)ej dBHj (τ)

−
∫ s

0
S(s− τ)nR(n;A)g(τ)ej dBHj (τ)

]∥∥
∥
∥
∥

4

U

≤ E
∥
∥
∥
∥
∥

∞∑

j=1

∫ s

0

[
S(t− τ)− S(s− τ)

]
nR(n;A)g(τ)ej dBHj (τ)

∥
∥
∥
∥
∥

4

U

+E

∥
∥
∥
∥
∥

∞∑

j=1

∫ t

s
S(t− τ)nR(n;A)g(τ)ej dBHj (τ)

∥
∥
∥
∥
∥

4

U

.

(4.31)
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One can argue as in Lemma 3.3 to show that the first term on the right-hand side of
(4.31) goes to 0 as (t− s)→ 0. Likewise, an application of Lemma 3.2 shows that the sec-
ond term also goes to 0 as (t− s)→ 0. Thus, the estimates (4.29)–(4.31) then yield the
equicontinuity of {xn}. Therefore, we conclude that the family {Pxn}∞n=1 is relatively com-
pact by Arzela-Ascoli, and therefore tight (cf. Section 2). Hence, by Proposition 2.4, the
finite dimensional joint distributions of Pxn converge weakly to P and so, by Theorem 2.5,
Pxn

w−−→ Px, as n→∞. �

Proof of Lemma 3.11. A standard Gronwall argument involving (A2)(ii) and Lemma 3.2
can be used to establish this result. �

Proof of Theorem 3.12. Since

ym(t)− x(t)=
∫ t

0
S(t− τ)

[
f
(
τ, ym(τ),μm(τ)

)− f
(
τ,x(τ),μ(τ)

)]
dτ

+
∫ t

tmm−1

S
(
t− tmm−1

)
g(τ)dBH(τ)

(4.32)

for all 0≤ t ≤ T , using (A2)(i), Lemma 3.2, and the observations in the proof of Corollary
3.7 yields

E
∥
∥ym(t)− x(t)

∥
∥2
U

≤ 2M2
SM

2
f T
∫ t

0

[
E
∥
∥ym(τ)− x(τ)

∥
∥2
U + ρ2(μm(τ),μ(τ)

)]
dτ +M2

SC
2
t

(
t− tmm−1

) ∞∑

j=1

ν j

≤ 4M2
SM

2
f T
∫ t

0
E
∥
∥ym(τ)− x(τ)

∥
∥2
Udτ +M2

SC
2
t

(
t− tmm−1

) ∞∑

j=1

ν j .

(4.33)

So, an application of Gronwall’s lemma yields

E
∥
∥ym(t)− x(t)

∥
∥2
U ≤

(

M2
SC

2
t

∞∑

j=1

ν j

)
(
t− tmm−1

)
exp

(
4M2

SM
2
f t
)
, 0≤ t ≤ T , m∈N.

(4.34)

Observe that as m→∞ the right-hand side of (4.34) goes to 0 since t− tmm−1 → 0 as m→
∞. This completes the proof. �

Proof of Theorem 3.13. We estimate each term of the representation formula for E‖xε(t)−
z(t)‖2

U separately. First, (A7) guarantees the existence of a positive constant K1 and a pos-
itive function α1(ε) (which decreases to 0 as ε→ 0) such that for sufficiently small ε > 0,

E
∥
∥Sε(t)z0− S(t)z0

∥
∥2
U ≤ K1α1(ε), 0≤ t ≤ T. (4.35)

Next, we estimate E‖∫ t0(Sε(t − s)F2ε(s,xε(s))− S(t − s)F(s,z(s)))ds‖2
U . To this end, note

that the continuity of F, together with (A6), enables us to infer the existence of K2 > 0
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and α2(ε) (as above) such that for sufficiently small ε > 0,

∫ t

0
E
∥
∥[Sε(t− s)− S(t− s)]F(s,z(s)

)∥∥2
U ds≤ K2α2(ε) (4.36)

for all 0≤ t ≤ T . Also, observe that Young’s inequality and (A8), together, imply

∫ t

0
E
∥
∥Sε(t− s)

[
F2ε
(
s,xε(s)

)−F(s,z(s)
)]∥∥2

U ds

≤M2
S

∫ t

0
E
∥
∥F2ε

(
s,xε(s)

)−F2ε
(
s,z(s)

)
+F2ε

(
s,z(s)

)−F(s,z(s)
)∥∥2

U ds

≤ 4M2
S

∫ t

0

[
M2

FE
∥
∥xε(s)− z(s)

∥
∥2
U +E

∥
∥F2ε

(
s,z(s)

)−F(s,z(s)
)∥∥2

U

]
ds.

(4.37)

Note that (A8) guarantees the existence of K3 > 0 and α3(ε) (as above) such that for suf-
ficiently small ε > 0, E‖F2ε(s,z(s))− F(s,z(s))‖2

U ≤ K3α3(ε) for all 0 ≤ t ≤ T . So, we can
continue the inequality (4.37) to conclude that

∫ t

0
E
∥
∥Sε(t− s)

[
F2ε
(
s,xε(s)

)−F(s,z(s)
)]∥∥2

U ds≤ 4M2
F

∫ t

0
E
∥
∥xε(s)− z(s)

∥
∥2
U ds+ 4TK3α3(ε).

(4.38)

Using (4.37) and (4.38), together with the Hölder, Minkowski, and Young inequalities,
yields

E
∥
∥
∥
∥

∫ t

0

(
Sε(t− s)F2ε

(
s,xε(s)

)− S(t− s)F(s,z(s)
))
ds
∥
∥
∥
∥

2

U

≤ 4T1/2
[
K2α2(ε) + 4TK3α3(ε) + 4M2

SM
2
F

∫ t

0
E
∥
∥xε(s)− z(s)

∥
∥2
U ds

]
.

(4.39)

Next, (A9) guarantees the existence of K4 > 0 and α4(ε) (as above) such that for suffi-
ciently small ε > 0,

E
∥
∥
∥
∥

∫

U
F1ε(s,z)με(s)(dz)

∥
∥
∥
∥

2

U
≤ K4α4(ε) ∀0≤ s≤ T. (4.40)

As such, we have

E
∥
∥
∥
∥

∫ t

0
Sε(t− s)

∫

U
F1ε(s,z)με(s)(dz)ds

∥
∥
∥
∥

2

U
ds

≤M2
ST
∫ t

0
E
∥
∥
∥
∥

∫

U
F1ε(s,z)με(s)(dz)

∥
∥
∥
∥

2

U
≤M2

ST
2K4α4(ε)

(4.41)

for all 0≤ t ≤ T .
It remains to estimate E‖∫ t0 Sε(t− s)gε(s)dBH(s)‖2

U . Note that (A10) implies the exis-
tence of K5 > 0 and α5(ε) (as above) such that for sufficiently small ε > 0,

E
∥
∥gε(t)

∥
∥2

L(V ;U) ≤ K5α5(ε), 0≤ t ≤ T. (4.42)
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First, assume that gε is a simple function. Observe that form∈N, we proceed in a manner
similar to the one used to establish (4.6) to obtain that

E

∥
∥
∥
∥
∥

m∑

j=1

∫ t

0
Sε(t− s)gε(s)ej dBHj (s)

∥
∥
∥
∥
∥

2

U

= E
∥
∥
∥
∥
∥

m∑

j=1

n−1∑

k=0

Sε
(
t− tk

)
gkej

(
BHj
(
tk+1

)−BHj
(
tk
))∥∥2

U

= E
〈 m∑

j=1

n−1∑

k=0

Sε
(
t− tk

)
gkej

(
BHj
(
tk+1

)−BHj
(
tk
))

,

m∑

j=1

n−1∑

k=0

Sε
(
t− tk

)
gkej

(
BHj
(
tk+1

)−BHj
(
tk
))
〉

U

≤
m∑

j=1

n−1∑

k=0

∥
∥Sε
(
t− tk

)∥∥2
BL(U)K5α5(ε)E

(
BHj
(
tk+1

)−BHj
(
tk
)
,BHj

(
tk+1

)−BHj
(
tk
))
R

≤ sup
0≤s≤t

∥
∥Sε
(
t− tk

)∥∥2
BL(U)K5α5(ε)E

(
BHj
)2

= sup
0≤s≤t

∥
∥Sε
(
t− tk

)∥∥2
BL(U)K5α5(ε)t2H

m∑

j=1

ν j .

(4.43)

Hence,

E
∥
∥
∥
∥

∫ t

0
Sε(t− s)gε(s)dBH(s)

∥
∥
∥
∥

2

U

= E
∥
∥
∥
∥
∥

∞∑

j=1

∫ t

0
Sε
(
t− s)gε(s)ej dBHj (s)

∥
∥
∥
∥
∥

2

U

≤ lim
m→∞E

∥
∥
∥
∥
∥

m∑

j=1

∫ t

0
Sε
(
t− s)gε(s)ej dBHj (s)

∥
∥
∥
∥
∥

2

U

≤ lim
m→∞

(

sup
0≤s≤t

∥
∥Sε
(
t− tk

)∥∥2
BL(U)K5α5(ε)t2H

m∑

j=1

ν j

)

≤
(

M2
S t

2H
∞∑

j=1

ν j

)

K5α5(ε), 0≤ t ≤ T.

(4.44)

Since the set of all such simple functions is dense in L(V ,U), a standard density argument
can be used to establish estimate (4.44) for a general bounded, measurable function gε.
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Now, using (4.35)–(4.44), we conclude that there exist positive constants Ki (i =
1, . . . ,5) such that

E
∥
∥xε(t)− z(t)

∥
∥2
U ≤

5∑

i=1

Kiαi(ε) + 4M2
SM

2
F

∫ t

0
E
∥
∥xε(s)− z(s)

∥
∥2
U ds, 0≤ t ≤ T , (4.45)

so that an application of Gronwall’s lemma implies

E
∥
∥xε(t)− z(t)

∥
∥2
U ≤Ψ(ε)exp

(
σt
)
, 0≤ t ≤ T , (4.46)

where σ= 4M2
SM

2
F and Ψ(ε)=∑5

i=1Kiαi(ε). This completes the proof. �

5. Examples

Example 5.1. Let � be a bounded domain in RN with smooth boundary ∂�. Consider
the following initial boundary value problem:

∂x(t,z)=
(
Δzx(t,z) +F1

(
t,z,x(t,z)

)

+
∫

L2(�)
F2(t,z, y)μ(t,z)(dy)

)
∂t+ g(t,z)dBH(t),

a.e. on (0,T)×�,

x(t,z)= 0, a.e. on (0,T)× ∂�,

x(0,z)= x0(z), a.e. on �,

(5.1)

where x : [0,T] × D → R, F1 : [0,T] ×� × R → R, F2 : [0,T] ×� × L2(�) → L2(�),
μ(t,·) ∈ ℘λ2 (L2(�)) is the probability law of x(t,·), g : [0,T]×� → L(R,L2(�)), and
{BH(t) : 0≤ t ≤ T} is a real fBm. We impose the following conditions:

(A11) F1 satisfies the Caratheodory conditions (i.e., measurable in (t,z) and continuous
in the third variable) such that

(i) |F1(t, y,z)| ≤MF1 [1 + |z|] for all 0≤ t ≤ T , y ∈�, z∈R, and some MF1 >0,
(ii) |F1(t, y,z1)−F1(t, y,z2)| ≤MF1|z1− z2| for all 0≤ t ≤ T , y ∈�, z1,z2 ∈R,

and some MF1 > 0;
(A12) F2 satisfies the Caratheodory conditions and

(i) ‖F2(t, y,z)‖L2(�) ≤MF2 [1 +‖z‖L2(�)] for all 0 ≤ t ≤ T , y ∈ �, z ∈ L2(�),
and some MF2 > 0,

(ii) F2(t, y,·) : L2(�)→ L2(�) is in � for each 0≤ t ≤ T , y ∈�;
(A13) g : [0,T]×D→ L(R,L2(�)) is a bounded, measurable function.

We have the following theorem.

Theorem 5.2. Assume that (A11)–(A13) hold. IfMSMf T < 1, then (5.1) has a unique mild
solution x ∈ C([0,T];L2(�)) with probability law {μ(t,·) : 0≤ t ≤ T}.
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Proof. Let U = L2(�) and V =RN . Define the operator

Ax(t,·)= Δzx(t,·), x ∈H2(�)∩H1
0 (�). (5.2)

It is known that A generates a strongly continuous semigroup {S(t)} on L2(�) (see [11]),
so that (A1) is satisfied. Define f : [0,T]×U ×℘λ2 (U)→ U , g : [0,T]×U → L(V ,U),
and x0 ∈ L2(Ω;U), respectively, by

f
(
t,x(t),μ(t)

)
(z)= F1

(
t,z,x(t,z)

)
+
∫

L2(�)
F2(t,z, y)μ(t,z)(dy), (5.3)

g(t)(z)= g(t,z) ∀0≤ t ≤ T , z ∈D,

x0(0)(z)= x0(z) ∀z ∈D.
(5.4)

Using these identifications, (5.1) can be written in the abstract form (1.1). Clearly, (A3)–
(A5) are satisfied. We now show that f (as defined in (5.3)) satisfies (A2). To this end,
observe that from (A11)(i),

∥
∥F1

(
t,·,x(t,·))∥∥L2(�) ≤MF1

[∫

D

[
1 +

∣
∣x(t,z)

∣
∣]2

dz
]1/2

≤ 2MF1

[
m(�) +

∥
∥x(t,·)∥∥2

L2(�)

]1/2

≤ 2MF1

[√
m(�) +

∥
∥x
∥
∥
C([0,T];L2(D))

]

≤M∗
F1

[
1 +‖x‖C([0,T];L2(D))

]
,

(5.5)

for all 0≤ t ≤ T and x ∈ C([0,T];L2(D)), where

M∗
F1
=
⎧
⎪⎨

⎪⎩

2MF1

√
m(�) if m(�) > 1,

2MF1 if m(�)≤ 1.
(5.6)

(Here, m denotes Lebesgue measure in RN .) Also, from (A11)(ii), we obtain that

∥
∥F1

(
t,·,x(t,·))−F1

(
t,·, y(t,·))∥∥L2(�) ≤MF1

[∫

D

∣
∣x(t,z)− y(t,z)

∣
∣2
dz
]1/2

=MF1‖x− y‖C([0,T];L2(D)).

(5.7)
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Next, using (A12)(i) together with the Hölder inequality, we observe that

∥
∥
∥
∥

∫

L2(�)
F2(t,·, y)μ(t,·)(dy)

∥
∥
∥
∥
L2(�)

=
[∫

�

[∫

L2(�)
F2(t,z, y)μ(t,z)(dy)

]2

dz
]1/2

≤
[∫

�

∫

L2(�)

∥
∥F2(t,z, y)

∥
∥2
L2(�)μ(t,z)(dy)dz

]1/2

≤MF2

[∫

D

(∫

L2(�)

(
1 +‖y‖L2(�)

)2
μ(t,z)(dy)

)
dz
]1/2

≤MF2

√
m(�)

√∥
∥μ(t)

∥
∥
λ2

≤MF2

√
m(�)(1 +

∥
∥μ(t)

∥
∥
λ2 ) ∀0≤ t ≤ T , μ∈ ℘λ2 (U).

(5.8)

Also, invoking (A11)(ii) enables us to see that for all μ,ν∈ ℘λ2 (U),

∥
∥
∥
∥

∫

L2(�)
F2(t,·, y)μ(t,·)(dy)−

∫

L2(�)
F2(t,·, y)ν(t,·)(dy)

∥
∥
∥
∥
L2(�)

=
∥
∥
∥
∥

∫

L2(�)
F2(t,·, y)

(
μ(t,·)− ν(t,·))(dy)

∥
∥
∥
∥
L2(�)

≤ ∥∥ρ(μ(t),ν(t)
)∥∥

L2(�)

≤
√
m(�)ρ

(
μ(t),ν(t)

) ∀0≤ t ≤ T.

(5.9)

Combining (5.5) and (5.8), we see that f satisfies (A2)(i) withM f1 = 2 ·max{MF2

√
m(�),

M∗
F1
}, and combining (5.7) and (5.9), we see that f satisfies (A2)(ii) with Mf1 =

max{MF1 ,
√
m(�)}. Thus, we can invoke Theorem 3.4 to conclude that (5.1) has a unique

mild solution x ∈ C([0,T];L2(�))) with probability law {μ(t,·) : 0≤ t ≤ T}. �

Example 5.3. We now consider a modified version of Example 5.1 which constitutes a
generalization of the model considered in [12]. Precisely, let D = R and consider the
initial boundary value problem given by

∂x(t,z)= (− (I −Δz
)γ/2(−Δz

)α/2
x(t,z) +F1

(
t,z,x(t,z)

)

+
∫

L2(�)
F2(t,z, y)μ(t,z)(dy)

)
∂t+ g(t,z)dBH(t), a.e. on (0,T)×�

x(t,z)= 0, a.e. on (0,T)× ∂�,

x(0,z)= x0(z), a.e. on �,

(5.10)
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The operator (−Δz)α/2 is defined by

(−Δz
)α/2

h(z)= 1√
2π

∫

R
eizy|y|αĥ(y)dy,

D
((−Δz

)α/2)=
{
h∈ Lpw(R) : h, |y|αĥ(y)∈ L1(R)∩L2(R),

1√
2π

∫

R
eizy|y|αĥ(y)dy ∈ Lpw(R)

}
,

(5.11)

where ĥ denotes the Fourier transform of h, and for p > 1, the Banach space L
p
w(R) is

given by

L
p
w(R)=

{
h : h is measurable and ‖h‖Lpw(R) =

∫

R

∣
∣h(z)

∣
∣pw(z)dz <∞

}
, (5.12)

where w(z)= (1 + z2)−ξ/2 for ξ > 1. Also, the operator (I −Δz)γ/2 is defined by

(
I −Δz

)γ/2
h(z)= 1√

2π

∫

R
eizy

(
1 + y2)γ/2ĥ(y)dy,

D
((
I −Δz

)γ/2)=
{
h∈ Lpw(R) : h,

(
1 + y2)γ/2ĥ(y)∈ L1(R)∩L2(R),

1√
2π

∫

R
eizy

(
1 + y2)γ/2ĥ(y)dy ∈ Lpw(R)

}
.

(5.13)

As shown in [12, Proposition 1], the operator −(I −Δz)γ/2(−Δz)α/2 generates a strongly
continuous semigroup on L

p
w(R), assuming that α + γ > (λ− 1)/p and λ < p/q, (where

q ∈ (1,2]). As such, by taking U = L
p
w(R) and V = R, and defining the operator A =

−(I −Δz)γ/2(−Δz)α/2, we can argue as in Example 5.1 to show that (5.10) has a unique
mild solution x ∈ C([0,T];L

p
w(R))) with probability law {μ(t,·) : 0≤ t ≤ T}.

Example 5.4. Consider the following initial-boundary value problem of Sobolev type:

∂
(
x(t,z)− xzz(t,z)

)− xzz(t,z)∂t

=
(
F1
(
t,z,x(t,z)

)
+
∫

L2(0,π)
F2(t,z, y)μ(t,z)(dy)

)
∂t+ g(t,z)dBH(t),

0≤ z ≤ π, 0≤ t ≤ T ,

(5.14)

x(t,0)= x(t,π)= 0, 0≤ t ≤ T ,

x(0,z)= x0(z), 0≤ z ≤ π,
(5.15)

where x : [0,T]× [0,π]→R, F1 : [0,T]× [0,π]×R→R and F2 : [0,T]×[0,π]×L2(0,π)→
L2(0,π) satisfy (A11) and (A12), μ(t,·) ∈ ℘λ2 (L2(0,π)) is the probability law of x(t,·),
g : [0,T]× [0,π]→ L(RN ,L2(0,π)) is a bounded measurable mapping, and {βH(t) : 0 ≤
t ≤ T} is an fBm. We have the following theorem.
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Theorem 5.5. Under these assumptions, (5.15) has a unique mild solution x ∈ C([0,T];
L2(0,π)), provided that MSMf T < 1.

Proof. Let U = L2(0,π), V = R, and define the operators A : D(A) ⊂ U → U and B :
D(B)⊂U →U , respectively, by

Ax(t,·)=−xzz(t,·), Bx(t,·)= x(t,·)− xzz(t,·), (5.16)

with domains

D(A)=D(B)= {x ∈ L2(0,π) : x, xz are absolutely continuous,

xzz ∈ L2(0,π), x(0)= x(π)= 0
}
.

(5.17)

Define f and g as in Example 5.1 (with L2(0,π) in place of L2(�)). Then, (5.15) can be
written in the abstract form

dv(t) +AB−1v(t)dt = f
(
t,B−1v(t),μ(t)

)
dt+ g(t)dBH(t), 0≤ t ≤ T ,

v(0)= Bx0,
(5.18)

where v(t)= Bx(t). It is known that B is a bijective operator possessing a continuous in-
verse and that−AB−1 is a bounded linear operator on L2(0,π) which generates a strongly
continuous semigroup on L2(0,π) satisfying (A1) with MS = α= 1 (see [11]). Further, f
satisfies (A2) as in Example 5.1. Consequently, we can invoke Theorem 3.4 (assuming that
MSMf T < 1) to conclude that (5.18) has a unique mild solution v ∈ C([0,T];L2(0,π)).
Consequently, x = B−1v is the corresponding mild solution of (5.15). �

6. Remark

This example provides a generalization of the work in [20, 30–32] to a more general set-
ting. Such initial-boundary value problems arise naturally in the mathematical modeling
of various physical phenomena (see [8, 23, 24]).
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[11] D. Nualart and A. Răşcanu, “Differential equations driven by fractional Brownian motion,” Col-

lectanea Mathematica, vol. 53, no. 1, pp. 55–81, 2002.
[12] V. V. Anh and W. Grecksch, “A fractional stochastic evolution equation driven by fractional

Brownian motion,” Monte Carlo Methods and Applications, vol. 9, no. 3, pp. 189–199, 2003.
[13] T. E. Duncan, B. Pasik-Duncan, and B. Maslowski, “Fractional Brownian motion and stochastic

equations in Hilbert spaces,” Stochastics and Dynamics, vol. 2, no. 2, pp. 225–250, 2002.
[14] W. Grecksch and V. V. Anh, “A parabolic stochastic differential equation with fractional Brown-

ian motion input,” Statistics & Probability Letters, vol. 41, no. 4, pp. 337–346, 1999.
[15] B. Maslowski and D. Nualart, “Evolution equations driven by a fractional Brownian motion,”

Journal of Functional Analysis, vol. 202, no. 1, pp. 277–305, 2003.
[16] D. A. Dawson, “Critical dynamics and fluctuations for a mean-field model of cooperative be-

havior,” Journal of Statistical Physics, vol. 31, no. 1, pp. 29–85, 1983.
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