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1. Introduction

Let Nn(R,ω) be the number of real roots of the random algebraic equation

Fn(x,ω)=
n∑

ν=0

aν(ω)xν = 0, (1.1)

where the aν(ω), ν= 0,1, . . . ,n, are random variables defined on a fixed probability space
(Ω,�,Pr) assuming real values only.

During the past 40–50 years, the majority of published researches on random algebraic
polynomials has concerned the estimation of Nn(R,ω). Works by Littlewood and Offord
[1], Samal [2], Evans [3], and Samal and Mishra [4–6] in the main concerned cases in
which the random coefficients aν(ω) are independent and identically distributed.

For dependent coefficients, Sambandham [7] considered the upper bound forNn(R,ω)
in the case when the aν(ω), ν = 0,1, . . . ,n, are normally distributed with mean zero and
joint density function

|M|1/2(2π)−(n+1)/2 exp
(− (1/2)a′Ma

)
, (1.2)

where M−1 is the moment matrix with σi = 1, ρi j = ρ, 0 < ρ < 1, (i �= j), i, j = 0,1, . . . ,n
and a′ is the transpose of the column vector a. Also, Uno and Negishi [8] obtained the
same result as Sambandham in the case of the moment matrix with σi = 1, ρi j = ρ|i− j|,
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(i �= j), i, j = 0,1, . . . ,n, where ρj is a nonnegative decreasing sequence satisfying ρ1 < 1/2

and
∑∞

j=1ρj <∞ in (1.2).
The lower bound for Nn(R,ω) in the case of dependent normally distributed coef-

ficients was estimated by Renganathan and Sambandham [9] and Nayak and Mohanty
[10] under the same condition of Sambandham [7]. Uno [11] pointed out the defect in
the proofs of the above papers and obtained the result for the lower bound. Additionally,
Uno [12] estimated the strong result for this particular problem in the sense of Evans [3].
The term strong indicates that the estimation for the exceptional set is independent of the
degree n.

The object of this paper is to find the lower bound for Nn(R,ω) when the coefficients
are nonidentically distributed dependent normal random variables. We remark that this
result is the general form of Uno [11] and that the exceptional set is dependent on the
degree n. In this paper, we suppose that the aν(ω), ν= 0,1, . . . ,n, have mean zero, and the
moment with

ρi j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 (i= j),

ρ|i− j|
(
1≤ |i− j| ≤m

)
,

0
(|i− j| >m

)
, i, j = 0,1, . . . ,n,

(1.3)

for a positive integer m, where 0≤ ρj < 1, j = 1,2, . . . ,m in (1.2). That is to say we assume

the aν(ω)′s to be m-dependent stationary Gaussian random variables. With Yoshihara
([13, page 29]), we see that this assumption is equivalent to the following two statements
for a stationary Gaussian sequence:

(i) {aν} is ∗-mixing;
(ii) {aν} is φ-mixing.

Throughout the paper, we suppose n is sufficiently large. We will follow the line of
proof of Samal and Mishra [5].

Theorem 1.1. Let

fn(x,ω)=
n∑

ν=0

aν(ω)bνx
ν = 0 (1.4)

be a random algebraic equation of degree n, where the aν(ω)’s are dependent normally dis-
tributed with mean zero, and the moment matrix given by (1.3) and the bν, ν = 0,1, . . . ,n,
be positive numbers such that limn→∞(kn/tn) is finite, where kn = max 0≤ν≤nbν and tn =
min 0≤ν≤nbν.

Then for n > n0, the number of real roots of most of the equations fn(x,ω)= 0 is at least
εn logn outside a set of measure at most

μ

εn logn
+
(
kn
tn

)β
exp

(
− μ′β

εn

)
, β > 0, (1.5)

provided εn tends to zero, but εn logn tends to infinity as n tends to infinity, and μ and μ′ are
positive constants.
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2. Proof of theorem

Let {λn} be any sequence tending to infinity as n tends to infinity and M is the integer
defined by

M =
[
α2λ2

n

(
kn
tn

)2]
+ 1, (2.1)

where α is a positive constant and [x] denotes the greatest integer not exceeding x. Let k
be the integer determined by

M2k ≤ n <M2k+2. (2.2)

We will consider fn(x,ω) at the points

xl =
(

1− 1
M2l

)1/2

(2.3)

for l = [k/2] + 1,[k/2] + 2, . . . ,k.
Let

fn
(
xl,ω

)=
∑

1

aν(ω)bνx
ν
l +
(∑

2

+
∑

3

)
aν(ω)bνx

ν
l =Ul(ω) +Rl(ω), (say), (2.4)

where ν ranges from M2l−1 + 1 to M2l+1 in
∑

1, from 0 to M2l−1 in
∑

2 and from M2l+1 + 1
to n in

∑
3.

The following lemmas are necessary for the proof of the theorem. We will use the fact
that each aν(ω) has marginal frequency function (2π)−1/2 exp(−u2/2).

Lemma 2.1. For α1 > 0,

σl > α1tnM
l, (2.5)

where

σ2
l =

M2l+1∑

i=M2l−1+1

b2
i x

2i
l + 2

M2l+1−1∑

i=M2l−1+1

M2l+1∑

j=i+1

bibjx
i+ j
l ρ j−i. (2.6)

Proof. First, we have

M2l+1∑

i=M2l−1+1

b2
i x

2i
l > t2

n

M2l∑

i=M2l−1+1

x2i
l >

(
B

A

)
t2
nM

2l, (2.7)

where A and B are positive constants such that A > 1 and 0 < B < 1.
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Second, we get

M2l+1−1∑

i=M2l−1+1

M2l+1∑

j=i+1

bibjx
i+ j
l ρ j−i > t2

n

M2l−1∑

i=M2l−1+1

M2l∑

j=i+1

x
i+ j
l ρ j−i

= t2
n

x2(M2l−1+1)
l

1− x2
l

{ m∑

i=1

ρix
i
l −

m∑

i=1

ρix
2(M2l−M2l−1)−i
l

}
≥
(
B′

A′

)
ρ0t

2
nM

2l,

(2.8)

where ρ0 =
∑m

j=1ρj and A′ and B′ are positive constants satisfying A′ > 1 and 0 < B′ < 1.
So we get

σ2
l ≥ α2

1t
2
nM

2l, (2.9)

where α1 is a positive constant, as required. �

Lemma 2.2. Let

Pr
({

ω;
∣∣∣∣
∑

2

aν(ω)bνx
ν
l

∣∣∣∣ > λnσ̃ l

})
<

√
2
π

e−λ
2
n/2

λn
, (2.10)

where

σ̃2
l =

M2l−1∑

i=0

b2
i x

2i
l + 2

M2l−1−1∑

i=0

M2l−1∑

j=i+1

bibjx
i+ j
l ρ j−i. (2.11)

Proof. We get

Pr
({

ω;
∣∣∣∣
∑

2

aν(ω)bνx
ν
l

∣∣∣∣ > λnσ̃ l

})
=
√

2
π

∫∞

λn
e−u

2/2du <

√
2
π

e−λ
2
n/2

λn
. (2.12)

�

Lemma 2.3. Let

Pr
({

ω;
∣∣∣∣
∑

3

aν(ω)bνx
ν
l

∣∣∣∣ > λn ˜̃σl
})

<

√
2
π

e−λ
2
n/2

λn
, (2.13)

where

˜̃σ
2

l =
n∑

i=M2l+1+1

b2
i x

2i
l + 2

n−1∑

i=M2l+1+1

n∑

j=i+1

bibjx
i+ j
l ρ j−i. (2.14)

The proof is similar to that of Lemma 2.2.

Lemma 2.4. For a fixed l,

Pr
({
ω;
∣∣Rl(ω)

∣∣ < σl
})

> 1− 2

√
2
π

1
λn

e−λ
2
n/2. (2.15)
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Proof. By Lemmas 2.2 and 2.3, we get, for a given l,

∣∣Rl(ω)
∣∣ < λn

(
σ̃ l + ˜̃σl

)
(2.16)

outside a set of measure at most 2(2/π)1/2λ−1
n exp(−λ2

n/2). Again, we have

M2l−1∑

i=0

b2
i x

2i
l ≤ 2k2

nM
2l−1,

M2l−1−1∑

i=0

M2l−1∑

j=i+1
bibjx

i+ j
l ρ j−i ≤ k2

n

m∑

i=1
ρi

M2l−1−(i−1)∑

j=1
x

2 j+i−2
l ≤ ρ0k

2
nM

2l−1.

(2.17)

Hence we get, for a positive constant α2,

σ̃2
l ≤ α2

2k
2
nM

2l−1. (2.18)

Similarly, we have

˜̃σ
2

l ≤ α2
3k

2
nM

2l−1 (2.19)

for a positive constant α3. Therefore, we obtain, outside the exceptional set,

∣∣Rl(ω)
∣∣ < λn

(
α2 +α3

)
knM

l−(1/2) <
(
α2 +α3

α1

kn
tn
λnσl

)/
M1/2 < σl, (2.20)

by Lemma 2.1 and (2.1). �

Let us define random events Ep, Fp by

Ep =
{
ω; U3p(ω)≥ σ3p,U3p+1(ω) <−σ3p+1

}
,

Fp =
{
ω; U3p(ω) <−σ3p,U3p+1(ω)≥ σ3p+1

}
.

(2.21)

It can be easily seen that

Pr
(
Ep∪Fp

)= δp (say) > δ, (2.22)

where δ > 0 is a certain constant. Let ηp be a random variable such that

ηp =
⎧
⎨
⎩

1 on Ep∪Fp,

0 elsewhere.
(2.23)

Then we get

E
(
ηp

)= δp, V
(
ηp

)= δp− δ2
p. (2.24)

Let q be the total number of pairs (U3p,U3p+1) for which

[
k

2

]
+ 1≤ 3p < 3p+ 1≤ k, (2.25)
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q must be at least equal to [k/3]− [([k/2] + 1)/3]− 1. Take

η =
∑

ηp, (2.26)

where the summation is taken over all the q pairs. Applying Tschebyscheff inequality, we
have, for 0 < ε < δ,

Pr
({∣∣η−E(η)

∣∣≥ qε
})≤ V(η)

q2ε2
≤
∑
δp

q2ε2
≤ 1

qε2
, (2.27)

since for n sufficiently large, Cov(ηi,ηj)= 0 (i �= j). But

q ≥
[
k

3

]
−
[

[k/2] + 1
3

]
− 1≥ k

3
− 1−

(
(k/2) + 1

3

)
− 1= 1

6
(k− 14)≥ μ1k, (2.28)

where μ1 is a positive constant. Therefore, outside a set of measure at most μ2/k,

∣∣η−E(η)
∣∣ < qε, (2.29)

that is,

η−E(η) >−qε (2.30)

or

η > E(η)− qε=
∑

δp− qε > q(δ− ε)≥ μ3k, (2.31)

where μ2 and μ3 are positive constants. Thus we have proved that outside a set of measure
at most μ2/k, either U3p ≥ σ3p and U3p+1 <−σ3p+1, or U3p <−σ3p and U3p+1 ≥ σ3p+1 for
at least μ3k values of l.

Define

ζ p =
⎧
⎨
⎩

0 if
∣∣R3p

∣∣ < σ3p,
∣∣R3p+1

∣∣ < σ3p+1,

1 elsewhere.
(2.32)

Let ξ p = ηp−ηpζ p. If ξ p = 1, there is a root of the polynomial in the interval (x3p,x3p+1).
Hence the number of real roots in the interval (x[k/2]+1,xk) must exceed

∑
ξ p, where the

summation is taken over all the q pairs. Now, by using Lemma 2.4, we have

E
(∑

ηpζ p
)
=
∑

E
(
ηpζ p

)≤
∑

E
(
ζ p
)=

∑
Pr
(
ζ p = 1

)

≤
∑{

Pr
(∣∣R3p

∣∣≥ σ3p
)

+ Pr
(∣∣R3p+1

∣∣≥ σ3p+1
)}

< μ4(k+ 1)
1
λn

e−λ
2
n/2,

(2.33)

where μ4 is a constant. Hence we have, for β > 0,

Pr
({∑

ηpζ p > μ4(k+ 1)λβn
1
λn

e−λ
2
n/2
})

<
E
(∑

ηpζ p
)

μ4(k+ 1)λβ−1
n e−λ

2
n/2

<
1

λβn
. (2.34)
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So we get

∑
ηpζ p ≤ μ4(k+ 1)λβ−1

n e−λ
2
n/2, (2.35)

except for a set of measure at most 1/λβn. Therefore, we have, outside a set of measure at
most μ2/k+ 1/λβn,

Nn >
∑

ξ p > μ3k−μ4(k+ 1)λβ−1
n e−λ

2
n/2 ≥ k

(
μ3− ε1

)
, (2.36)

where 0 < ε1 < μ3 (since μ4λ
β−1
n exp(−λ2

n/2) tends to zero as n tends to infinity). But it
follows from (2.1) and (2.2) that

μ5

(
kn
tn

)2

λ2
n ≤M ≤ μ6

(
kn
tn

)2

λ2
n,

μ7 logn

log
((
kn/tn

)
λn
) ≤ k ≤ μ8 logn

log
((
kn/tn

)
λn
) ,

(2.37)

where μi, i= 5,6,7,8, are constants. Hence we get outside the exceptional set

Nn >
μ9 logn

log
((
kn/tn

)
λn
) , (2.38)

where μ9 is a constant.
Taking λn = (tn/kn)exp(μ9/εn), we obtain

Nn > εn logn (2.39)

outside a set of measure at most

μ

εn logn
+
(
kn
tn

)β
exp

(
− μ′β

εn

)
, (2.40)

where μ and μ′ are constants. This completes the proof of the theorem.
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