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Given any finite set of trajectories of a Lipschitzian quantum stochastic differential inclu-
sion (QSDI), there exists a continuous selection from the complex-valued multifunction
associated with the solution set of the inclusion, interpolating the matrix elements of the
given trajectories. Furthermore, the difference of any two of such solutions is bounded in
the seminorm of the locally convex space of solutions.

Copyright © 2007 E. O. Ayoola and J. O. Adeyeye. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Establishment of continuous selections from the solution set multifunctions of differen-
tial inclusions defined on finite dimensional Euclidean spaces and their applications have
been considered by many authors (see, e.g., Aubin and Cellina [1], Repovs and Semenov
[2], Smirnov [3] and the references they contain). However, in the context of quantum
stochastic differential inclusions (QSDI), research in these subjects has not enjoyed a
comparable attention. In addition, theoretical and numerical aspects of QSDI have not
enjoyed significant development in comparison with the classical cases although there
are some recent results along these directions (see, e.g., [4–10]). This situation remains in
spite of the numerous practical problems in quantum dynamical systems, quantum open
systems, quantum measurement theory, quantum optics, and quantum stochastic control
theory for which methods of quantum stochastic inclusions are applicable. In particular,
it is well known that discontinuous quantum stochastic differential equations can be nu-
merically and theoretically treated by reformulating them as regularized inclusions (see
[8–13]).
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Our present research effort in this field is motivated by the need to further explore the
properties of solution spaces of quantum stochastic differential inclusions. The present
paper is, therefore, concerned with the establishment of the existence of continuous selec-
tions from the complex valued multifunctions associated with the solution sets of QSDI
interpolating the matrix elements of a given finite set of trajectories that start from dis-
tinct points. This work is a continuation of our work in [4] extending the case of a single
trajectory to the case of a finite set of trajectories. In addition, we show that the difference
of any two solutions of QSDI (1.1) below, that correspond to two distinct initial values is
bounded in the seminorm of the locally convex space of solutions.

In what follows, we will be concerned with quantum stochastic differential inclusion
in the integral form, given by

X(t)∈ a+
∫ t

0

(
E
(
s,X(s)

)
d∧π(s) +F

(
s,X(s)

)
dAf (s)

+G
(
s,X(s)

)
dA+

g (s) +H
(
s,X(s)

)
ds
)
, almost all t ∈ [0,T].

(1.1)

We will employ in this paper the various spaces of quantum stochastic processes intro-
duced in the works of Ekhaguere [8] and Ayoola [4]. As usual, our work is accomplished
within the framework of the Hudson and Parthasarathy [11] formulation of quantum
stochastic calculus employing the notations and the QSDI setup due to [8]. Correspond-
ing to a pre-Hilbert space D with completion � and the Boson Fock space Γ(L2

γ(R+))
with the dense subspace E generated by exponential vectors, we follow the fundamental

concepts and structures as in the references by employing the locally convex space �̃ of
noncommutative stochastic processes whose topology is generated by the family of semi-

norms {‖x‖ηξ = |〈η,xξ〉|, x ∈�, η,ξ ∈ D⊗E}. The underlying elements of �̃ consists
of linear maps from D⊗E into �⊗ Γ(L2

γ(R+)) having domains of their adjoints con-

taining D⊗E. In particular, the spaces LPloc(�̃), L∞γ,loc(R+), LPloc(I × �̃) for a fixed Hilbert
space γ are being adopted as in the above references. In the foregoing setup, the integral
appearing in (1.1) is a set-valued quantum stochastic integral as defined in [8]. The coef-

ficients E, F, G, H are elements of L2
loc([0,T]× �̃)mvs, where �̃ is a locally convex space

and (0,a) ∈ [0,T]× �̃ is a fixed point. The maps f , g, π appearing in (1.1) lie in some
suitable function spaces. The integrators ∧π , A+

g , and Af are the gauge, creation, and
annihilation processes associated with the basic field operators of quantum field theory.

As in Ayoola [4–7] we will consider the equivalent form of (1.1) given by

d

dt

〈
η,X(t)ξ

〉∈ P
(
t,X(t)

)
(η,ξ),

X(0)= a, t ∈ [0,T].
(1.2)

Inclusion (1.2) is a nonclassical ordinary differential inclusion and the map (η,ξ)→
P(t,x)(η,ξ) is a multivalued sesquilinear form on (D⊗E)2 for (t,x) ∈ [0,T]× �̃. We
refer the reader to the works of Ekhaguere [8–10] for the explicit forms of the map and
the existence results for solutions of QSDI (1.1) of Lipschitz, hypermaximal monotone
and of evolution types.
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The rest of the paper is organised as follows: In Section 2, we outline some funda-
mental definitions, notations and results needed for the establishment of the main result.
Section 3 is devoted to the main results of the paper.

2. Preliminary results and assumptions

As in [4, 8], we let clos(�) denote the family of all nonempty closed subsets of a topolog-

ical space �. For � ∈ {�̃, C}, we adopt the Hausdorff topology on clos(�) as explained
in the references above. We denote by d(x,A), the distance from a point x ∈ C to a set
A⊆ C. For A,B ∈ clos(C), ρ(A,B) denote the Hausdorff distance between the sets.

For a real number δ > 0, we let B(x,δ) denote the open ball of radius δ around a point
x ∈ C. As in the references above,we shall employ the space wac(�̃) which is the com-

pletion of the locally convex topological space (Ad(�̃)wac,τ) of adapted weakly absolutely

continuous stochastic processesΦ : [0,T]→�̃ whose topology τ is generated by the family
of seminorms given by

|Φ|ηξ := ∥∥Φ(0)
∥∥
ηξ +

∫ T

0

∣∣∣∣ d

dt

〈
η,Φ(t)ξ

〉∣∣∣∣dt, for η,ξ ∈D⊗E. (2.1)

Associated with space wac(�̃), we will employ the space wac(�̃)(η,ξ) consisting of abso-
lutely continuous complex valued functions 〈η,Φ(·)ξ〉 :=Φηξ(·) : [0,T]→C, where Φ∈
wac(�̃) and for arbitrary pair of points η,ξ ∈D⊗E. We will also denote by S(T)(a), the

subset of wac(�̃) consisting of the set of solutions of QSDI (1.1) corresponding to the

initial value a∈ �̃ and write S(T)(a)(η,ξ)= {〈η,Φ(·)ξ〉 : Φ∈ S(T)(a)}.
We assume the following conditions in what follows.
(�(1)) The coefficients E, F, G, H appearing in QSDI (1.1) are continuous.
(�(2)) The multivalued map (t,x)→P(t,x)(η,ξ) has nonempty and closed values as

subsets of the field C of complex numbers.
(�(3)) For each x ∈ �̃, the map t→P(t,x)(η,ξ) is measurable.
(�(4)) There exists a map KP

ηξ : [0,T]→R+ lying in L1
loc([0,T]) such that

ρ
(
P(t,x)(η,ξ),P(t, y)(η,ξ)

)≤ KP
ηξ(t)‖x− y‖ηξ (2.2)

for t ∈ [0,T], and for each pair x, y ∈ �̃.

(�(5)) There exists a stochastic process Y : [0,T]→�̃ lying in Ad(�̃)wac such that for
each pair η,ξ ∈D⊗E,

d
(
d

dt

〈
η,Y(t)ξ

〉
,P
(
t,Y(t)

)
(η,ξ)

)
≤ ρηξ(t) (2.3)

for almost all t ∈ [0,T] and for some locally integrable map ρηξ : [0,T]→R+.

(�(6)) The initial point a lies in a set A ⊆ �̃ such that the set of complex numbers
A(η,ξ) := {〈η,aξ〉 : a ∈ A} is compact in C. For points ai ∈ A, i = 1,2, . . . , and Yi ∈
S(T)(ai), we employ the notation aηξ,i :=〈η,aiξ〉 and Yηξ,i(·):=〈η,Yi(·)ξ〉where a→S(T)(a)
is the multivalued solution map of QSDI (1.1) corresponding to the initial value x = a.
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Under the conditions above, it is well known that the set S(T)(a) is not empty for

arbitrary a∈ �̃ (see Ekhaguere [8–10]).
Next, we recall from [4] a useful result in what follows.

Proposition 2.1. Let V0,V1, . . . ,Vm be stochastic processes in L1
loc(�̃) and for any pair of

points η,ξ ∈D⊗E, let {I j(aηξ)} be a partition of the interval I = [0, T] into a finite number
of subintervals with endpoints depending continuously on the point aηξ := 〈η,aξ〉, a∈ A.

Consider the map

W : aηξ −→ aηξ +
∫ t

0

m∑
j=0

χIj (aηξ )(s)
〈
η,Vj(s)ξ

〉
ds. (2.4)

Then there exists a map Rηξ(t) lying in L1
loc([0,T]) such that for every ε > 0, there exists

∂ > 0 such that |aηξ − a′ηξ| < ∂ implies that

∣∣∣∣ d

dt
W
(
aηξ
)
(t)− d

dt
W
(
a′ηξ
)
(t)
∣∣∣∣≤ Rηξ(t)χE(t), (2.5)

for some set E ⊆ I with measure μ(E) < ε.

3. Main results

The main result of this paper is established by adapting to the present quantum sto-
chastic calculus, a line of argument employed in the work of Broucke and Arapostathis
[14], concerning classical differential inclusions where multifunctions take values in fi-
nite dimensional Euclidean spaces. In what follows, we establish a continuous selection
that interpolates a finite number of trajectories extending the case of a single trajectory
established in [4].

Theorem 3.1. Assume that the conditions �(1)–�(6) are satisfied.

Let A⊆ �̃ such that for arbitrary pair η,ξ ∈D⊗E, A(η,ξ) is compact in C with diameter
Dηξ . Suppose further that a finite set of distinct initial conditions {ai, i = 1,2, . . . ,N}, from
the set A and the corresponding solutions {Yi(t), i= 1,2, . . . ,N} of QSDI (1.1), are given on
a time interval [0,T].

Then there exists a continuous map W : A(η,ξ)→wac(�̃)(η,ξ), a selection from
S(T)(a)(η,ξ) such that

W
(
aηξ,i

)= Yηξ,i, i= 1,2, . . . ,N. (3.1)

Proof. We define for any element a∈A and arbitrary pair η,ξ ∈D⊗E

δ
(
aηξ
)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

min
1≤ j≤N

∣∣aηξ − aηξ, j
∣∣, aηξ =aηξ,i, i= 1,2, . . . ,N ,

1
2

min
i, j

∣∣aηξ,i− aηξ, j
∣∣, otherwise.

(3.2)

The collection of open sets {B(aηξ ,δ(aηξ)), aηξ ∈ A(η,ξ)} is a covering for the set A(η,ξ).

By the compactness of A(η,ξ), let {B(bηξ, j ,δ(bηξ, j))}Mj=1 be a finite open subcovering and
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let {pj}Mj=1 be a partition of unity subordinated to it (see Ayoola [4] for the existence of
such partition of unity).

We remark that by the definition of the covering, each aηξ,i belongs to exactly one
member of the subcovering since for each k = i, the inequality |aηξ,k − aηξ,i| < δ(aηξ,i) is
invalid.

For each aηξ ∈A(η,ξ) define the interval

I j
(
aηξ
)=

[
T

j−1∑
i=1

pi
(
aηξ
)
, T

j∑
j=1

pi
(
aηξ
)]

, 1≤ j ≤M. (3.3)

As in [14], we employ the partition {J1, J2, J3, . . . , JN} of the set of positive integers {1,2,
3, . . . ,M} that indexed the subcoverings defined as follows: for 1≤ k < N ,

Jk =
{
j :
∣∣bηξ, j − aηξ,k

∣∣ < ∣∣bηξ, j − aηξ,l
∣∣, l > k

}
⋂{

j :
∣∣bηξ, j − aηξ,k

∣∣≤ ∣∣bηξ, j − aηξ,l
∣∣, l ≤ k

}
;

JN = {1,2,3, . . . ,M} \
N−1⋃
k=1

Jk.

(3.4)

Next we define the function

αk
(
aηξ , t

)=∑
j∈Jk

χIj (aηξ )(t), k = 1,2, . . . ,N. (3.5)

Thus by definition, the set Jk is not empty and αk(aηξ,k, t)= 1 for all k ∈ {J1, J2, . . . , JN}.
Also we have

N∑
k=1

αk
(
aηξ , t

)= 1, ∀aηξ ∈A(η,ξ), t ∈ [0,T]. (3.6)

Since each Yi ∈ S(T)(ai), then Yi ∈ Ad(�̃)wac, i= 1,2, . . . ,N. By the properties of solu-

tions of QSDI (1.1) (see [4, 8]), there exist stochastic processes V0,i ∈ L1
loc(�̃), i=1,2, . . . ,

N such that

Yi(t)= ai +
∫ t

0
V0,i(s)ds, almost all t ∈ [0,T] (3.7)

and for arbitrary η,ξ ∈D⊗E, we have

〈
η,V0,i(t)ξ

〉= d

dt

〈
η,Yi(t)ξ

〉∈ P
(
t,Yi(t)

)
(η,ξ), t ∈ [0,T]. (3.8)

For any point a∈A, we consider the family of maps {Φ0(a)} ⊆wac(�̃) given by

Φ0(a)(t)= a+
∫ t

0

∑
1≤k≤N

αk
(
aηξ ,s

)
V0,k(s)ds. (3.9)
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Associated with Φ0(a), we define the map

W0 : A(η,ξ)−→wac(�̃)(η,ξ) (3.10)

given by

W0(aηξ)(t)= aηξ +
∫ t

0

∑
1≤k≤N

αk
(
aηξ ,s

)〈
η,V0,k(s)ξ

〉
ds. (3.11)

We remark here that Φ0(ak)(t)= Yk(t) and therefore we have

〈
η,Φ0(ak)(t)ξ〉= Yηξ,k(t). (3.12)

Next we have the following estimates:

d
(
d

dt
W0(aηξ)(t), P

(
t,Φ0(a)(t)

)
(η,ξ)

)

= d

( ∑
1≤k≤N

αk
(
aηξ , t

)〈
η,V0,k(t)ξ

〉
, P
(
t,Φ0(a)(t)

)
(η,ξ)

)

≤ max
1≤k≤N

ρ
(
P
(
t,Yk(t)

)
(η,ξ), P

(
t,Φ0(a)(t)

)
(η,ξ)

)

≤ KP
ηξ(t) max

1≤k≤N
∥∥Yk(t)−Φ0(a)(t)

∥∥
ηξ

≤ KP
ηξ(t) max

1≤k≤N

[∣∣aηξ,k − aηξ
∣∣+

∫ t

0

∣∣∣∣∣
〈
η,V0,k(s)ξ

〉− ∑
1≤l≤N

αl
(
aηξ ,s

)〈
η,V0,l(s)ξ

〉∣∣∣∣∣ds
]

≤ KP
ηξ(t)Lηξ ,

(3.13)

where

Lηξ =Dηξ + min
i, j

∫ T

0

∣∣〈η,V0,i(s)ξ
〉− 〈η,V0, j(s)ξ

〉∣∣ds. (3.14)

Inequality (3.13) holds since

max
1≤k≤N

[∣∣aηξ,k − aηξ
∣∣+

∫ t

0

∣∣∣∣∣
〈
η,V0,k(s)ξ

〉− ∑
1≤l≤N

αl
(
aηξ ,s

)〈
η,V0,l(s)ξ

〉∣∣∣∣∣ds
]
≤ Lηξ .

(3.15)

We remark also that for any pair of points a,a′ ∈A with aηξ ,a′ηξ ∈A(η,ξ),

∣∣W0(aηξ)(t)−W0(a′ηξ
)
(t)
∣∣

=
∣∣∣∣∣
(
aηξ − a′ηξ

)
+
∫ t

0

∑
1≤k≤N

[
αk
(
aηξ ,s

)−αk
(
a′ηξ ,s

)]〈
η,V0,k(s)ξ

〉
ds

∣∣∣∣∣≤ Lηξ .
(3.16)
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As in our previous work [4] (see also Ekhaguere [8], Aubin and Cellina [1]), we can
choose V 0(a)(t)(η,ξ) to be a measurable selection from P(t,Φ0(a)(t))(η,ξ) such that

∣∣∣∣ d

dt
W0(aηξ)(t)−V 0(a)(t)(η,ξ)

∣∣∣∣= d
(
d

dt
W0(aηξ)(t),P

(
t,Φ0(a)(t)

)
(η,ξ)

)
. (3.17)

As (η,ξ)→V 0(a)(t)(η,ξ) is a sesquilinear form, there exists a stochastic processV 0(a)∈
Ad(�̃)wac such that

V 0(a)(t)(η,ξ)= 〈η,V 0(a)(t)ξ
〉

, t ∈ [0,T]. (3.18)

Next we define the map

Φ1(a)(t)= a+
∫ t

0

M∑
j=0

χIj (aηξ )(s)V
0(bj

)
(s)ds, (3.19)

W1(aηξ)(t)= aηξ +
∫ t

0

M∑
j=0

χIj (aηξ )(s)
〈
η,V 0(bj

)
(s)ξ

〉
ds. (3.20)

From (3.9), (3.11), (3.13), and (3.20), we have

∣∣∣∣ d

dt
W1(aηξ)(t)− d

dt
W0(aηξ)(t)

∣∣∣∣

=
∣∣∣∣∣

M∑
j=0

χIj (aηξ )(t)
〈
η,V 0(bj

)
(t)ξ

〉− ∑
1≤k≤N

αk
(
aηξ , t

)〈
η,V0,k(t)ξ

〉∣∣∣∣∣

≤max
j,k

ρ
(
P
(
t,Φ0(bj

)
(t)
)
(η,ξ), P

(
t,Yk(t)

)
(η,ξ)

)

=max
j,k

ρ
(
P
(
t,Φ0(bj

)
(t)
)
(η,ξ), P

(
t,Φ0(ak)(t))(η,ξ)

)

≤ LηξK
P
ηξ(t).

(3.21)

Since by definition, 〈η,Φ0(a)(t)ξ〉 =W0(aηξ)(t), then by (3.16) we have the following
estimates:

d
(
d

dt
W1(aηξ)(t), P

(
t,Φ0(a)(t)

)
(η,ξ)

)

≤ max
1≤ j≤M

d
(〈
η,V 0(bj

)
(t)ξ

〉
, P
(
t,Φ0(a)(t)

)
(η,ξ)

)

≤ max
1≤ j≤M

ρ
(
P
(
t,Φ0(bj

)
(t)
)
(η,ξ), P

(
t,Φ0(a)(t)

)
(η,ξ)

)

≤ LηξK
P
ηξ(t).

(3.22)
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Therefore, by (3.20) and (3.22), we have

d
(
d

dt
W1(aηξ)(t), P

(
t,Φ1(a)(t)

)
(η,ξ)

)

≤ d
(
d

dt
W1(aηξ)(t), P

(
t,Φ0(a)(t)

)
(η,ξ)

)

+ ρ
(
P
(
t,Φ0(a)(t)

)
(η,ξ), P

(
t,Φ1(a)(t)

)
(η,ξ)

)

≤ LηξK
P
ηξ(t) +KP

ηξ(t)
∥∥Φ0(a)(t)−Φ1(a)(t)

∥∥
ηξ .

(3.23)

Let t ∈ I j(aηξ), then by (3.13) and (3.17), we have

∥∥Φ0(a)(t)−Φ1(a)(t)
∥∥
ηξ =

∣∣W0(aηξ)(t)−W1(aηξ)(t)∣∣

≤
∫ t

0

∣∣∣∣ d

ds
W0(aηξ)(s)− 〈η,V 0(bj

)
(s)ξ

〉∣∣∣∣ds

=
∫ t

0
d
(
d

ds
W0(aηξ)(s), P

(
t,Φ0(bj

)
(s)
)
(η,ξ)

)
ds

≤ Lηξ

∫ t

0
KP
ηξ(s)ds= LηξMηξ(t).

(3.24)

Thus from (3.23),

d
(
d

dt
W1(aηξ)(t), P

(
t,Φ1(a)(t)

)
(η,ξ)

)
≤ LηξK

P
ηξ(t) +LηξK

P
ηξ(t)Mηξ(t). (3.25)

The estimate given by (3.25) is independent of any j and so holds on the whole interval
[0,T].

In general, by the method employed in [4], we can construct sequences of maps:

Φn : A→wac(�̃) and Wn : A(η,ξ)→wac(�̃)(η,ξ) such that Wn is continuous on A(η,ξ)
satisfying for each a ∈ A, aηξ ∈ A(η,ξ), t ∈ [0,T], Φn(a)(0) = a, Φn(ai)(t) = Yi(t),
Wn(aηξ,i)(t)= Yηξ,i(t), i= 1,2, . . . ,N. Moreover,

∫ t

0

∣∣∣∣ d

ds
Wn

(
aηξ
)
(s)− d

ds
Wn−1(aηξ)(s)

∣∣∣∣ds

≤ Lηξ

[
Mn

ηξ(t)

n!
+

4
2n

n∑
i=1

(
2Mηξ(t)

)i
i!

+
1
2n

]
,

(3.26)

d
(
d

dt
Wn

(
aηξ
)
(t), P

(
t,Φn(a)(t)

)
(η,ξ)

)

≤ LηξK
P
ηξ(t)

[
Mn

ηξ(t)

n!
+

4
2n

n∑
i=0

(
2Mηξ(t)

)i
i!

]
.

(3.27)

The construction is established by induction on n. For n = 1, our claim and the esti-
mates (3.26) and (3.27) hold by (3.21) and (3.25), respectively. For n ≥ 2, we employ
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Proposition 2.1 and select δn > 0 such that |aηξ − a′ηξ| < δn implies that

∫ T

0

∣∣∣∣ d

dt
Wn−1(aηξ)(t)− d

dt
Wn−1(a′ηξ

)
(t)
∣∣∣∣dt ≤ Lηξ

2n
. (3.28)

Next we define for a∈ A, aηξ ∈ A(η,ξ),

δn
(
aηξ
)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
{Lηξ

2n
, δn,

1
2

min
1≤ j≤N

∣∣aηξ − aηξ, j
∣∣}, aηξ =aηξ, j ,

min
{Lηξ

2n
, δn,

1
2

min
i, j

∣∣aηξ,i− aηξ, j
∣∣}, otherwise.

(3.29)

As before, we cover the set A(η,ξ) with the balls B(aηξ ,δn(aηξ)), where aηξ ∈A(η,ξ), and
by compactness of the set, we let {B(bnηξ, j ,δn(bnηξ, j))}, j = 1,2, . . . ,Mn be a finite subcov-
ering where bnηξ, j := 〈η,bnj ξ〉, bnj ∈A∀ j.

Let {pnj }Mn

j=1
be a partition of unity subordinated to the subcovering. Each point aηξ,i

belongs only to one member of the subcovering. Next for aηξ ∈ A(η,ξ), we define the
interval

Inj
(
aηξ
)=

[
T

j−1∑
i=1

pni
(
aηξ
)
, T

j∑
i=1

pni
(
aηξ
)]

, 1≤ j ≤Mn. (3.30)

Similar to the case (3.17)–(3.20), we can choose Vn−1(a)(t)(η,ξ) to be measurable selec-
tion from P(t,Φn−1(a)(t))(η,ξ) such that

∣∣∣∣ d

dt
Wn−1(aηξ)(t)−Vn−1(a)(t)(η,ξ)

∣∣∣∣= d
(
d

dt
Wn−1(aηξ)(t),P

(
t,Φn−1(a)(t)

)
(η,ξ)

)
.

(3.31)

As (η,ξ)→Vn−1(a)(t)(η,ξ) is a sesquilinear form, there exists a stochastic process

Vn−1(a)∈ Ad(�̃)wac such that

Vn−1(a)(t)(η,ξ)= 〈η,Vn−1(a)(t)ξ
〉

, t ∈ [0,T]. (3.32)

Next we define the maps

Φn(a)(t)= a+
∫ t

0

Mn∑
j=0

χInj (aηξ )(s)V
n−1(bnj )(s)ds,

Wn
(
aηξ
)
(t)= aηξ +

∫ t

0

Mn∑
j=0

χInj (aηξ )(s)
〈
η,Vn−1(bnj )(s)ξ〉ds.

(3.33)

The estimates (3.26)-(3.27) can then be established by induction in the same way as in
Ayoola [4].
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By (3.26), the sequences {Φn(a)} is uniformly Cauchy in wac(�̃) and thus converges

uniformly to a map Φ : A→wac(�̃). Also we have

lim
n→∞W

n
(
aηξ
)
(t)= lim

n→∞
〈
η,Φn(a)(t)ξ

〉= 〈η,Φ(a)(t)ξ
〉
. (3.34)

The map aηξ→〈η,Φ(a)(t)ξ〉 is continuous and Φ(a)∈ Ad(�̃)wac∩L1
loc(�̃). By (3.27),

d
(
d

dt

〈
η,Φ(a)(t)ξ

〉
, P
(
t,Φ(a)(t)

)
(η,ξ)

)
= 0. (3.35)

Hence, Φ(a) ∈ S(T)(a), 〈η,Φ(a)(·)ξ〉 ∈ S(T)(a)(η,ξ), and Φ(ai)(t) = Yi(t), i = 1,2, . . . ,
N , t ∈ [0,T].

Finally, we present a result which shows that the difference of any two solutions of
QSDI (1.1) that start from distinct points in the set A is bounded in the seminorm of
wac(�̃). �

Theorem 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied. Let a0 ∈ A and
Φ0 ∈ S(T)(a0). Then there exists a selectionΦ(a)∈S(T)(a) such that the map aηξ→〈η,Φ(a)ξ〉
is continuous and

∣∣Φ(a)−Φ
(
a0
)∣∣

ηξ ≤ 3Dηξe
2Mηξ (T), a =a0. (3.36)

Proof. As established in [4], there exists a sequence of approximate trajectories

{Φn(a)}∞n=0 which form a Cauchy sequence in the locally convex space wac(�̃) and con-
verges uniformly to a map Φ(a)∈ S(T)(a). In particular, the sequence can be established
such that

∣∣Φn(a)−Φn−1(a)
∣∣
ηξ ≤Dηξ

(Mn
ηξ(T)

n!
+
e2Mηξ (T)

2n+1

)
, (3.37)

where Dηξ is the diameter of the set A(η,ξ).
Thus we have

∣∣Φ(a)−Φ0(a)
∣∣
ηξ ≤Dηξ

(
eMηξ (T) + e2Mηξ (T)), (3.38)

for some V0 ∈ L1
loc(�̃), where

Φ0(a)(t)= a+
∫ t

0
V0(s)ds,

〈
η,V0(s)ξ

〉= d

ds

〈
η,Φ

(
a0
)
(s)ξ

〉 ∈ P
(
s,Φ

(
a0
)
(s)
)
(η,ξ).

(3.39)
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Consequently, we have the following estimates:

∣∣Φ(a)−Φ
(
a0
)∣∣

ηξ =
∥∥Φ(a)(0)−Φ

(
a0
)
(0)
∥∥
ηξ

+
∫ T

0

∣∣∣∣ d

dt

〈
η,Φ(a)(t)ξ

〉− d

dt

〈
η,Φ

(
a0
)
(t)ξ

〉∣∣∣∣dt

= ∥∥a− a0
∥∥
ηξ +

∫ T

0

∣∣∣∣ d

dt

〈
η,Φ(a)(t)ξ

〉− d

dt

〈
η,Φ0(a)(t)ξ

〉∣∣∣∣dt
≤Dηξ +

∣∣Φ(a)−Φ0(a)
∣∣
ηξ ≤Dηξ

(
eMηξ (T) + e2Mηξ (T) + 1

)

≤ 3Dηξe
2Mηξ (T),

(3.40)

on account of (3.38). �
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