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This is the first of the two companion papers which treat an infinite time horizon heredi-
tary portfolio optimization problem in a market that consists of one savings account and
one stock account. Within the solvency region, the investor is allowed to consume from the
savings account and can make transactions between the two assets subject to paying capi-
tal gain taxes as well as a fixed plus proportional transaction cost. The investor is to seek an
optimal consumption-trading strategy in order to maximize the expected utility from the
total discounted consumption. The portfolio optimization problem is formulated as an
infinite dimensional stochastic classical-impulse control problem. The quasi-variational
HJB inequality (QVHJBI) for the value function is derived in this paper. The second pa-
per contains the verification theorem for the optimal strategy. It is also shown there that
the value function is a viscosity solution of the QVHJBI.
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1. Introduction

This is the first of the two companion papers (see [1] for the second paper) which treat
an infinite time horizon hereditary portfolio optimization problem in a financial market
that consists of one savings account and one stock account. It is assumed that the savings
account compounds continuously with a constant interest rate r > 0 and the unit price
process, {S(t), t ≥ 0}, of the underlying stock follows a nonlinear stochastic hereditary
differential equation (see (2.5)) with an infinite but fading memory. The main purpose
of the stock account is to keep track of the inventories, (i.e., the time instants and the
base prices at which shares were purchased or short-sold) of the underlying stock for
purpose of calculating the capital gain taxes, and so forth. In the stock price dynamics,
we assume that both f (St) (the mean rate of return) and g(St) (the volatility coefficient)
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depend on the entire history of stock prices St over the time interval (−∞, t] instead
of just the current stock price S(t) at time t ≥ 0 alone. Within the solvency region �κ

(to be defined in (2.29)) and under the requirements of paying fixed plus proportional
transaction costs and capital gain taxes, the investor is allowed to consume from his sav-
ings account in accordance with a consumption rate process C = {C(t), t ≥ 0} and can
make transactions between his savings and stock accounts according to a trading strategy
� = {(τ(i),ζ(i)), i = 1,2, . . .}, where τ(i), i = 0,1,2, . . . denotes the sequence of transac-
tion times and ζ(i) stands for quantities of the transaction at time τ(i) (see Definitions
2.4 and 2.5).

The investor will follow the following set of consumption, transaction, and taxation
rules (Rules 1–6). Note that an action of the investor in the market is called a transaction
if it involves trading of shares of the stock such as buying and selling.

Rule 1. At the time of each transaction, the investor has to pay a transaction cost that
consists of a fixed cost κ > 0 and a proportional transaction cost with the cost rate of
μ ≥ 0 for both selling and buying shares of the stock. All the purchases and sales of any
number of stock shares will be considered one transaction if they are executed at the same
time instant and therefore incur only one fixed fee κ > 0 (in addition to a proportional
transaction cost).

Rule 2. Within the solvency region �κ, the investor is allowed to consume and to borrow
money from his savings account for stock purchases. He can also sell and/or buy back at
the current price shares of the stock he bought and/or short-sold at a previous time.

Rule 3. The proceeds for the sales of the stock minus the transaction costs and capital gain
taxes will be deposited in his savings account and the purchases of stock shares together
with the associated transaction costs and capital gain taxes (if short shares of the stock are
bought back at a profit) will be financed from his savings account.

Rule 4. Without loss of generality, it is assumed that the interest income in the savings
account is tax-free by using the effective interest rate r > 0, where the effective interest
rate equals the interest rate paid by the bank minus the tax rate for the interest income.

Rule 5. At the time of a transaction (say t ≥ 0), the investor is required to pay a capital
gain tax (resp., be paid as a capital-loss credit) in the amount that is proportional to the
amount of profit (resp., loss). A sale of stock shares is said to result in a profit if the current
stock price S(t) is higher than the base price B(t) of the stock and it is a loss otherwise. The
base price B(t) is defined to be the price at which the stock shares were previously bought
or short-sold, that is, B(t) = S(t − τ(t)) where τ(t) > 0 is the time duration for which
those shares (long or short) have been held at time t. The investor will also pay capital
gain taxes (resp., be paid as capital-loss credits) for the amount of profit (resp., loss) by
short-selling shares of the stock and then buying back the shares at a lower (resp., higher)
price at a later time. The tax will be paid (or the credit will be given) at the buying back
time. Throughout the end, a negative amount of tax will be interpreted as a capital loss
credit. The capital gain tax and capital loss credit rates are assumed to be the same as β > 0
for simplicity. Therefore, if |m| (m > 0 stands for buying and m < 0 stands for selling)
shares of the stock are traded at the current price S(t) at the base B(t)= S(t− τ(t)), then



Mou-Hsiung Chang 3

the amount of tax due at the transaction time is given by

|m|β(S(t)− S(t− τ(t)
))
. (1.1)

Rule 6. The tax and/or credit will not exceed all other gross proceeds and/or total costs of
the stock shares, that is,

m(1−μ)S(t)≥ βm∣∣S(t)− S(t− τ(t)
)∣∣, if m≥ 0,

m(1 +μ)S(t)≤ βm∣∣S(t)− S(t− τ(t)
)∣∣, if m< 0,

(1.2)

where m ∈ � denotes the number of shares of the stock traded with m ≥ 0 being the
number of shares purchased and m< 0 being the number of shares sold.

Convention 1. Throughout the end, we assume that μ+β < 1.

Under the above assumptions and Rules 1–6, the investor’s objective is to seek an opti-
mal consumption-trading strategy (C∗,�∗) in order to maximize

E
[∫∞

0
e−δt

Cγ(t)
γ

dt
]

, (1.3)

the expected utility from the total discounted consumption over the infinite time hori-
zon, where δ > 0 represents the discount rate and 0 < γ < 1 represents the investor’s risk
aversion factor.

Due to the fixed plus proportional transaction costs and the hereditary nature of the
stock dynamics and inventories, the problem will be formulated as a combination of a
classical control (for consumptions) problem and an impulse control (for the transac-
tions) problem in infinite dimensions. A classical-impulse control problem in finite di-
mensions is treated in [2]. In this paper a quasi-variational Hamilton-Jocobi-Bellman
inequality (QVHJBI) for the value function together with its boundary conditions is de-
rived. The second paper (see [1]) establishes the verification theorem for the optimal
investment trading strategy. In there, it is also shown that the value function is a viscosity
solution of the QVHJBI (see (QVHJBI (∗)) in Section 4.3.4). Due to the complexity of
the analysis involved, the uniqueness result and finite-dimensional approximations for
the viscosity solution of (QVHJBI (∗)) will be treated separately in a future paper.

In recent years, there has been extensive amount of research on the optimal
consumption-trading problems with proportional transaction costs (see, e.g., [3–6], and
references contained therein) and fixed plus proportional transaction costs (see, e.g., [7])
within the geometric Brownian motion financial market. In all these papers, the objec-
tive has been to maximize the expected utility from the total discounted or averaged con-
sumption over the infinite time horizon without considering the issues of capital gain
taxes (resp., capital loss credits) when stock shares are sold at a profit (resp., loss). In dif-
ferent contents, the issues of capital gain taxes have been studied in [8–15], and references
contained therein. In particular, [9, 10] considered the effect of capital gain taxes and
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capital loss credits on capital market equilibrium without consumption and transaction
costs. These two papers illustrated that under some conditions, it may be more profitable
to cut one’s losses short and never to realize a gain because of capital loss credits and cap-
ital gain taxes as some conventional wisdom will suggest. In [8] the optimal transaction
time problem with proportional transaction costs and capital-gain taxes was considered
in order to maximize the long-run growth rate of the investment (or the so-called Kelley
criterion), that is,

lim
t→∞

1
t
E
[

logV(t)
]
, (1.4)

where V(t) is the value of the investment measured at time t > 0. This paper is quite dif-
ferent from ours in that the unit price of the stock is described by a geometric Brownian
motion, and all shares of the stock owned by the investor are to be sold at a chosen trans-
action time and all of its proceeds from the sale are to be used to purchase new shares of
the stock immediately after the sale without consumption. Fortunately due to the nature
of the geometric Brownian motion market, the authors of that paper were able to obtain
some explicit results.

In recent years, the interest in stock price dynamics described by stochastic delay equa-
tions has increased tremendously (see, e.g., [16, 17]). To the best of the author’s knowl-
edge, this is the first paper that treats the optimal consumption-trading problem in which
the hereditary nature of the stock price dynamics and the issue of capital gain taxes are
taken into consideration. Due to drastically different nature of the problem and the tech-
niques involved, the hereditary portfolio optimization problem with taxes and propor-
tional transaction costs (i.e., κ= 0 and μ,ν > 0) remains to be solved.

This paper is organized as follows. The description of the stock price dynamics, the
admissible consumption-trading strategies, and the formulation of the hereditary port-
folio optimization problem are given in Section 2. In Section 3, the properties of the con-
trolled state process are further explored and corresponding infinite-dimensional Mar-
kovian solution of the price dynamics is investigated. Section 4 contains the derivations
of the QVHJBI together with its boundary conditions (QVHJBI (∗)) using a Bellman-
type dynamic programming principle.

The verification theorem for the optimal consumption-trading strategy and the proof
that the value function is a viscosity solution of the (QVHJBI (∗)) are contained in the
second paper [1].

2. The hereditary portfolio optimization problem

Throughout the end, we use the following convention.

Convention 2. If t ≥ 0 and φ :�→� is a measurable function, define

φt : (−∞,0]−→� by φt(θ)= φ(t+ θ), θ ∈ (−∞,0]. (2.1)

2.1. Hereditary price structure with infinite memory. Throughout the end of this pa-
per, let ρ : (−∞,0]→ [0,∞) be the influence function with relaxation property that satisfies
the following conditions.
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Condition 1. ρ is summable on (−∞,0], that is, 0 <
∫ 0
−∞ ρ(θ)dθ <∞.

Condition 2. For every λ≤ 0, one has

K(λ)= ess sup
θ∈(−∞,0]

ρ(θ + λ)
ρ(θ)

≤ K <∞, K(λ)= ess sup
θ∈(−∞,0]

ρ(θ)
ρ(θ + λ)

<∞. (2.2)

Under Conditions 1-2, it can be shown that ρ is essentially bounded and strictly posi-
tive on (−∞,0]. Furthermore,

lim
θ→−∞

θρ(θ)= 0. (2.3)

The following are two examples of ρ : (−∞,0]→ [0,∞) that satisfy Conditions 1 and
2:

(i) ρ(θ)= eθ ,
(ii) ρ(θ)= 1/(1 + θ2), −∞ < θ ≤ 0.

Let �×L2
ρ(−∞,0) (or simply �×L2

ρ for short) be the history space of the stock price
dynamics, where L2

ρ is the class of ρ-weighted Hilbert space of measurable functions φ :
(−∞,0)→� such that

∫ 0

−∞

∣
∣φ(θ)

∣
∣2
ρ(θ)dθ <∞. (2.4)

For t ∈ (−∞,∞), let S(t) denote the unit price of the stock at time t. It is assumed that
the unit stock price process {S(t), t ∈ (−∞,∞)} satisfies the following stochastic heredi-
tary differential equation with an infinite but fading memory:

dS(t)= S(t)
[
f
(
St
)
dt+ g

(
St
)
dW(t)

]
, t ≥ 0. (2.5)

In the above equation, the process {W(t), t ≥ 0} is one-dimensional standard Brownian
motion defined on a complete filtered probability space (Ω,�,P;F), where F= {�(t), t ≥
0} is the P-augmented natural filtration generated by the Brownian motion {W(t), t ≥
0}. Note that f (St) and g(St) in (2.5) represent, respectively, the mean growth rate and the
volatility rate of the stock price at time t ≥ 0. Note that the stock is said to have a hereditary
price structure with infinite but fading memory because both the drift term S(t) f (St) and
the diffusion term S(t)g(St) in the right-hand side of (2.5) explicitly depend on the entire
past history prices (S(t),St) ∈�× L2

ρ in a weighted fashion by the function ρ satisfying
Conditions 1-2.

Note that we have used the following notation in the above:

�+ = [0,∞), L2
ρ,+ =

{
φ ∈ L2

ρ | φ(θ)≥ 0∀θ ∈ (−∞,0)
}
. (2.6)

It is assumed for simplicity and to guarantee the existence and uniqueness of a strong
solution S(t), t ≥ 0, that the initial price function (S(0),S0) = (ψ(0),ψ) ∈ �+ × L2

ρ,+ is
given and the functions f ,g : L2

ρ → [0,∞) are continuous, and satisfy the following Lip-
schitz and linear growth conditions (see, e.g., [18–22] for the theory of stochastic func-
tional differential equations with an infinite or a bounded memory).
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Assumption 2.1 (linear growth condition). There exists a constant c1 > 0 such that

0≤ ∣∣φ(0) f (φ) +φ(0)g(φ)
∣
∣≤ c1

(
1 +
∥
∥(φ(0),φ

)∥∥) ∀(φ(0),φ
)∈�+×L2

ρ,+. (2.7)

Assumption 2.2 (Lipschitz condition). There exists a constant c2 > 0 such that

∣
∣φ(0) f (φ)−ϕ(0) f (ϕ)

∣
∣+
∣
∣φ(0)g(φ)−ϕ(0)g(ϕ)

∣
∣

≤ c2
∥
∥(φ(0),φ)− (ϕ(0),ϕ

)∥∥ ∀(φ(0),φ
)
,
(
ϕ(0),ϕ

)∈�×L2
ρ,

(2.8)

where

∥
∥(φ(0),φ

)∥∥=
√
∣
∣φ(0)

∣
∣2

+
∫ 0

−∞

∣
∣φ(θ)

∣
∣2
ρ(θ)dθ. (2.9)

Assumption 2.3. There exist positive constants α and σ such that

0 < r < f (φ)≤ α, 0 < σ ≤ g(φ), ∀φ∈ L2
ρ,+. (2.10)

Note that the lower bound of the mean rate of return f in Assumption 2.3 is imposed
to make sure that the stock account has a higher mean growth rate than the interest rate
r > 0 for the savings account. Otherwise, it will be more profitable and less risky for the
investor to put all his money in the savings account for the purpose of optimizing the
expected utility from the total consumption.

Although the modeling of stock prices is still under intensive investigations, it is not the
intention of this paper to address the validity of the model stock price dynamics treated
in this paper but to illustrate the hereditary optimization problem that is explicitly de-
pendent upon the entire past history of the stock prices for computing capital gain taxes
or capital loss credits. The term “hereditary portfolio optimization” is therefore coined in
this paper for the first time. We, however, mention here that stochastic hereditary equa-
tion similar to (2.5) was first used to model the behavior of elastic material with infinite
memory and that stochastic functional differential equations with bounded memory have
been used to model stock price dynamics in option pricing problems (see [16, 17]).

It can be shown that, for each initial historical price function (ψ(0),ψ) ∈�+ × L2
ρ,+,

the price process {S(t), t ≥ 0} is a positive, continuous, and F-adapted process defined on
(Ω,�,P;F) but it is not Markovian with respect to any filtration that makes sense. For this
reason, we frequently consider the corresponding�+×L2

ρ,+-valued process {(S(t),St), t ≥
0} instead of the real-valued process {S(t), t ≥ 0}. However, following approaches similar
to that of [20, Section 3], it can be shown under Conditions 1-2 and Assumptions 2.1–2.3
that the �+ × L2

ρ,+-valued process {(S(t),St), t ≥ 0} is strong Markovian with respect to
the filtration G, where G= {�(t), t ≥ 0} is the filtration generated by {S(t), t ≥ 0}, that
is,

�(t)= σ(S(s), 0≤ s≤ t)(= σ((S(s),Ss
)
, 0≤ s≤ t)), ∀t ≥ 0. (2.11)

We also note here that, since security exchanges have only existed in a finite past, it is
realistic but not technically required to assume that the initial historical price function
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(ψ(0),ψ) has the property that

ψ(θ)= 0 ∀θ ≤ θ < 0 for some θ < 0. (2.12)

2.2. The stock inventory space. The space of stock inventories, N, will be the space of
bounded functions ξ : (−∞,0]→� of the following form:

ξ(θ)=
∞∑

k=0

n(−k)1{τ(−k)}(θ), θ ∈ (−∞,0], (2.13)

where {n(−k), k = 0,1,2, . . .} is a sequence in � with n(−k)= 0 for all but finitely many
k,

−∞ < ··· < τ(−k) < ··· < τ(−1) < τ(0)= 0, (2.14)

and 1{τ(−k)} is the indicator function at τ(−k).
Note that the function ξ : (−∞,0] →� defined above denotes the inventory of the

investor’s stock account. In particular, when θ = τ(−k), ξ(θ) = n(−k) is the number of
shares of the stock purchased (resp., short-sold) if n(−k) > 0 (resp., n(−k) < 0) at time
τ(−k), of course ξ(θ)= 0 if θ 
= τ(−k) for all k = 0,1,2, . . . .

Let ‖ · ‖N (the norm of the space N) be defined by

‖ξ‖N = sup
θ∈(−∞,0]

∣
∣ξ(θ)

∣
∣, ∀ξ ∈N. (2.15)

As illustrated in Sections 2.3 and 2.5, N is the space in which the investor’s stock in-
ventory lives. The assumption that n(−k)= 0 for all but finitely many k implies that the
investor can only have finitely many open positions in his stock account. However, the
number of open positions may increase from time to time. Note that the investor is said
to have an open long (resp., short) position at time τ if he still owns (resp., owes) all or
part of the stock shares that were originally purchased (resp., short-sold) at a previous
time τ. The only way to close a position is to sell what he owns and buy back what he
owes.

If η :�→� is a bounded function of the form

η(t)=
∞∑

k=−∞
n(k)1{τ(k)}(t), −∞ < t <∞, (2.16)

where

−∞ < ··· < τ(−k) < ··· < 0= τ(0) < τ(1) < ··· < τ(k) < ··· <∞, (2.17)

then for each t ≥ 0, we define, using Convention 2, the function ηt : (−∞,0]→� by

ηt(θ)= η(t+ θ), θ ∈ (−∞,0]. (2.18)
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In this case,

ηt(θ)=
∞∑

k=−∞
n(k)1{τ(k)}(t+ θ)=

Q(t)∑

k=−∞
n(k)1{τ(k)}(θ), θ ∈ (−∞,0], (2.19)

where Q(t)= sup{k ≥ 0 | τ(k)≤ t}.

2.3. Consumption-trading strategies. Let (X(0−),N0−,S(0),S0)= (x,ξ,ψ(0),ψ)∈�×
N×�+ × L2

ρ,+ be the investor’s initial portfolio immediately prior to t = 0. That is, the
investor starts with x ∈� dollars in his savings account, the initial stock inventory,

ξ(θ)=
∞∑

k=0

n(−k)1{τ(−k)}(θ), θ ∈ (−∞,0), (2.20)

and the initial profile of historical stock prices (ψ(0),ψ) ∈ �+ × L2
ρ,+, where n(−k) > 0

(resp., n(−k) < 0) represents an open long (resp., short) position at τ(−k). Within the
solvency region �κ (see (2.29)), the investor is allowed to consume from his savings account
and can make transactions between his savings and stock accounts under Rules 1–6 and
according to a consumption-trading strategy π = (C,�) defined below.

Definition 2.4. The pair π = (C,�) is said to be a consumption-trading strategy if
(i) the consumption rate process C = {C(t), t ≥ 0} is a nonnegative G-progressively

measurable process such that

∫ T

0
C(t)dt <∞ P-a.s.∀T > 0; (2.21)

(ii) � = {(τ(i),ζ(i)), i = 1,2, . . .} is a trading strategy with τ(i), i = 1,2, . . ., being a
sequence of trading times that are G-stopping times such that

0= τ(0)≤ τ(1) < ··· < τ(i) < ··· , lim
i→∞

τ(i)=∞ P-a.s., (2.22)

and for each i= 0,1, . . .,

ζ(i)= ( . . . ,m(i− k), . . . ,m(i− 2),m(i− 1),m(i)
)

(2.23)

is an N-valued �(τ(i))-measurable random vector (instead of a random variable in �)
that represents the trading quantities at the trading time τ(i). In the above,m(i) > 0 (resp.,
m(i) < 0) is the number of stock shares newly purchased (resp., short-sold) at the current
time τ(i) and at the current price of S(τ(i)) and, for k = 1,2, . . . , m(i− k) > 0 (resp.,m(i−
k) < 0) is the number of stock shares bought back (resp., sold) at the current time τ(i) and
at the current price of S(τ(i)) in his open short (resp., long) position at the previous time
τ(i− k) and at the base price of S(τ(i− k)).

For each stock inventory ξ of the form expressed (2.13), Rules 1–6 also dictate that the
investor can purchase or short sell new shares and/or buy back (resp., sell) all or part of
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what he owes (resp., owns). Therefore, the trading quantity {m(−k), k = 0,1, . . .} must
satisfy the constraint set �(ξ)⊂N defined by

�(ξ)=
{

ζ ∈N | ζ =
∞∑

k=0

m(−k)1{τ(−k)}, −∞ <m(0) <∞,

either n(−k) > 0, m(−k)≤ 0, n(−k) +m(−k)≥ 0

or n(−k) < 0, m(−k)≥ 0, n(−k) +m(−k)≤ 0 for k ≥ 1

}

.

(2.24)

2.4. Solvency region. Throughout the end of this paper, the investor’s state space S is
taken to be S = �×N×�+ × L2

ρ,+. An element (x,ξ,ψ(0),ψ) ∈ S is called a portfolio,
where x ∈� is investor’s holding in his savings account, ξ is the investor’s stock inventory,
and (ψ(0),ψ) ∈ �+ × L2

ρ,+ is the profile of historical stock prices. Define the function
Hκ : S→� as follows:

Hκ
(
x,ξ,ψ(0),ψ

)=max
{
Gκ
(
x,ξ,ψ(0),ψ

)
, min

{
x,n(−k), k = 0,1,2, . . .

}}
, (2.25)

where Gκ : S→� is the liquidating function defined by

Gκ
(
x,ξ,ψ(0),ψ

)= x− κ+
∞∑

k=0

[
min
{

(1−μ)n(−k),(1 +μ)n(−k)
}
ψ(0)

−n(−k)β
(
ψ(0)−ψ(τ(−k)

))]
.

(2.26)

In the right-hand side of the above expression,

x− κ= the amount in his savings account after

deducting the fixed transaction cost κ;
(2.27)

and for each k = 0,1, . . .,

min
{

(1−μ)n(−k),(1 +μ)n(−k)
}
ψ(0)

= the proceed for selling n(−k) > 0 or buying back n(−k) < 0

shares of the stock net of proportional transactional cost;

−n(−k)β
(
ψ(0)−ψ(τ(−k)

))

= the capital gain tax to be paid for selling the n(−k)

shares of the stock with the current price of ψ(0) and base price of ψ
(
τ(−k)

)
.

(2.28)

Therefore,Gκ(x,ξ,ψ(0),ψ) defined in (2.26) represents the cash value (if the assets can
be liquidated at all) after closing all open positions and paying all transaction costs (fixed
plus proportional transactional costs) and taxes.
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The solvency region �κ of the portfolio optimization problem is defined as

�κ =
{(
x,ξ,ψ(0),ψ

)∈ S |Hκ
(
x,ξ,ψ(0),ψ

)≥ 0
}

= {(x,ξ,ψ(0),ψ
)∈ S |Gκ

(
x,ξ,ψ(0),ψ

)≥ 0
}∪ S+,

(2.29)

where S+ =�+×N+×�+×M2
ρ,+ and N+ = {ξ ∈N | ξ(θ)≥ 0, ∀θ ∈ (−∞,0]}.

Note that within the solvency region �κ, there are positions that cannot be closed at all,
namely, those (x,ξ,ψ(0),ψ)∈�κ such that

(
x,ξ,ψ(0),ψ

)∈ S+, Gκ
(
x,ξ,ψ(0),ψ

)
< 0. (2.30)

This is due to the insufficiency of funds to pay for the transaction costs and/or taxes, and
so forth. Observe that the solvency region �κ is an unbounded and nonconvex subset of
the state space S. The boundary ∂�κ will be described in detail in Section 4.3.

2.5. Portfolio dynamics and admissible strategies. At time t ≥ 0, the investor’s portfolio
in the financial market will be denoted by the quadruplet (X(t),Nt,S(t),St), where X(t)
denotes the investor’s holdings in his savings account, Nt ∈N is the inventory of his stock
account, and (S(t),St) describes the profile of the unit prices of the stock over the past
history (−∞, t] as described in Section 2.1.

Given the initial portfolio

(
X(0−),N0−,S(0),S0

)= (x,ξ,ψ(0),ψ
)∈ S (2.31)

and applying a consumption-trading strategy π = (C,�) (see Definition 2.4), the portfo-
lio dynamics of {Z(t)= (X(t),Nt,S(t),St), t ≥ 0} can then be described as follows.

Firstly, the savings account holding {X(t), t ≥ 0} satisfies the following differential
equation between the trading times:

dX(t)= [rX(t)−C(t)
]
dt, τ(i)≤ t < τ(i+ 1), i= 0,1,2, . . . , (2.32)

and the following jumped quantity at the trading time τ(i):

X
(
τ(i)
)= X(τ(i)− )− κ

−
∞∑

k=0

m(i− k)
[
(1−μ)S

(
τ(i)
)−β(S(τ(i)

)

− S(τ(i− k)
))]

1{n(i−k)>0,−n(i−k)≤m(i−k)≤0}

−
∞∑

k=0

m(i− k)
[
(1 +μ)S

(
τ(i)
)−β(S(τ(i)

)

− S(τ(i− k)
))]

1{n(i−k)<0,0≤m(i−k)≤−n(i−k)}.

(2.33)

As a reminder,m(i) > 0 (resp.,m(i) < 0) means buying (resp., selling) new stock shares
at τ(i) and m(i− k) > 0 (resp., m(i− k) < 0) means buying back (resp., selling) some or
all of what he owed (resp., owned).
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Secondly, the inventory of the investor’s stock account at time t ≥ 0, Nt ∈N, does not
change between the trading times and can be expressed as the following equation:

Nt =Nτ(i) =
Q(t)∑

k=−∞
n(k)1τ(k), if τ(i)≤ t < τ(i+ 1), i= 0,1,2 . . . , (2.34)

where Q(t)= sup{k ≥ 0 | τ(k)≤ t}.
It has the following jumped quantity at the trading time τ(i):

Nτ(i) =Nτ(i)− ⊕ ζ(i), (2.35)

where Nτ(i)− ⊕ ζ(i) : (−∞,0]→N is defined by

(
Nτ(i)− ⊕ ζ(i)

)
(θ)

=
∞∑

k=0

n̂(i− k)1{τ(i−k)}
(
τ(i) + θ

)=m(i)1{τ(i)}
(
τ(i) + θ

)

+
∞∑

k=1

[
n(i− k) +m(i− k)

(
1{n(i−k)<0,0≤m(i−k)≤−n(i−k)}

+ 1{n(i−k)>0,−n(i−k)≤m(i−k)≤0}
)]

·1{τ(i−k)}
(
τ(i) + θ

)
, θ ∈ (−∞,0].

(2.36)

Thirdly, since the investor is small, the unit stock price process {S(t), t ≥ 0} will not be
in anyway affected by the investor’s action in the market and is again described as in (2.5).

Definition 2.5. If the investor starts with an initial portfolio,

(
X(0−),N0−,S(0),S0

)= (x,ξ,ψ(0),ψ
)∈�κ. (2.37)

The consumption-trading strategy π = (C,�) defined in Definition 2.4 is said to be ad-
missible at (x,ξ,ψ(0),ψ) if

ζ(i)∈�
(
Nτ(i)−

)
, ∀i= 1,2, . . . ,

(
X(t),Nt,S(t),St

)∈�κ, ∀t ≥ 0.
(2.38)

The class of consumption-investment strategies admissible at (x,ξ,ψ(0),ψ)∈�κ will be
denoted by �κ(x,ξ,ψ(0),ψ).

2.6. The problem statement. Given the initial state (X(0−),N0−,S(0),S0) = (x,ξ,ψ(0),
ψ) ∈ �κ, the investor’s objective is to find an admissible consumption-trading strategy
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π∗ ∈�κ(x,ξ,ψ(0),ψ) that maximizes the following expected utility from the total dis-
counted consumption:

Jκ
(
x,ξ,ψ(0),ψ;π

)= Ex,ξ,ψ(0),ψ;π
[∫∞

0
e−δt

Cγ(t)
γ

dt
]

(2.39)

among the class of admissible consumption-trading strategies �κ(x,ξ,ψ(0),ψ), where
Ex,ξ,ψ(0),ψ;π[···] is the expectation with respect to Px,ξ,ψ(0),ψ;π{···}, the probability mea-
sure induced by the controlled (by π) state process {(X(t),Nt,S(t),St), t ≥ 0} and condi-
tioned on the initial state

(
X(0−),N0−,S(0),S0

)= (x,ξ,ψ(0),ψ
)
. (2.40)

In the above, δ > 0 denotes the discount factor, and 0 < γ < 1 indicates that the utility
function U(c) = cγ/γ, for c > 0, is a function of HARA (hyperbolic absolute risk aver-
sion) type that was considered in most of optimal consumption-trading literature (see,
e.g., [3–5, 7, 6]) with or without a fixed transaction cost. The admissible (consumption-
trading) strategy π∗ ∈�κ(x,ξ,ψ(0),ψ) that maximizes Jκ(x,ξ,ψ(0),ψ;π) is called an op-
timal (consumption-trading) strategy and the function Vκ : �κ→�+ defined by

Vκ
(
x,ξ,ψ(0),ψ

)= sup
π∈�κ(x,ξ,ψ(0),ψ)

Jκ
(
x,ξ,ψ(0),ψ;π

)= Jκ
(
x,ξ,ψ(0),ψ;π∗

)
(2.41)

is called the value function of the hereditary portfolio optimization problem.
The hereditary portfolio optimization problem considered in this paper is then for-

malized as follows.

Problem 1. For each given initial state (x,ξ,ψ(0),ψ) ∈ �κ, identify the optimal strategy
π∗ and its corresponding value function Vκ : �κ→�+.

3. The controlled state process

Given an initial state (x,ξ,ψ(0),ψ) ∈ �κ and an admissible consumption-investment
strategy π = (C,�)∈�κ(x,ξ,ψ(0),ψ), the �κ-valued controlled state process will be de-
noted by {Z(t) = (X(t),Nt,S(t),St), t ≥ 0}. Note that the dependence of the controlled
state process on the initial state (x,ξ,ψ(0),ψ) and the admissible consumption-trading
strategy π will be suppressed for notational simplicity.

The main purpose of this section is to establish the Markovian and the Dynkin formula
for the controlled state process {Z(t), t ≥ 0}. Note that the �+ × L2

ρ,+-valued process
{(S(t),St), t ≥ 0} described by (2.5) is uncontrollable by the investor and is therefore
independent of the consumption-trading strategy π ∈�κ(x,ξ,ψ(0),ψ) but is dependent
on the initial historical price function (S(0),S0)= (ψ(0),ψ)∈�+×L2

ρ,+.

3.1. The properties of the stock prices. To study the Markovian properties of the �+×
L2
ρ,+-valued solution process {(S(t),St), t ≥ 0} where St(θ) = S(t + θ), θ ∈ (−∞,0], and

(S(0),S0)= (ψ(0),ψ), we need the following notation and ancillary results.
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Let (�× L2
ρ)∗ be the space of bounded linear functionals (or the topological dual of

the space�×L2
ρ) equipped with the operator norm ‖ · ‖∗ defined by

‖Φ‖∗ = sup
(φ(0),φ)
=(0,0)

∣
∣Φ
(
φ(0),φ

)∣∣
∥
∥(φ(0),φ

)∥∥ , Φ∈ (�×L2
ρ

)∗
. (3.1)

Note that (�×L2
ρ)∗ can be identified with�×L2

ρ by the well-known Riesz representation
theorem.

Let (�×L2
ρ)† be the space of bounded bilinear functionals Φ : (�×L2

ρ)× (�×L2
ρ)→

� (i.e., Φ((φ(0),φ),(·,·)), Φ((·,·),(φ(0),φ)) ∈ (�× L2
ρ)∗ for each (φ(0),φ) ∈�× L2

ρ),
equipped with the operator norm ‖ · ‖† defined by

‖Φ‖† = sup
(φ(0),φ)
=(0,0)

∥
∥Φ
(
(·,·),

(
φ(0),φ

))∥∥∗
∥
∥(φ(0),φ

)∥∥ = sup
(φ(0),φ)
=(0,0)

∥
∥Φ
((
φ(0),φ

)
, (·,·))∥∥

∥
∥(φ(0),φ

)∥∥ .

(3.2)

Let Φ :�× L2
ρ →�. The function Φ is said to be Fréchet differentiable at (φ(0),φ)∈

�×L2
ρ if for each (ϕ(0),ϕ)∈�×L2

ρ,

Φ
((
φ(0),φ

)
+
(
ϕ(0),ϕ

))−Φ
(
φ(0),φ

)=DΦ(φ(0),φ
)(
ϕ(0),ϕ

)
+ o
(∥∥(ϕ(0),ϕ

)∥∥),
(3.3)

where DΦ :�×L2
ρ → (�×L2

ρ)∗ and o :�→� is a function such that

o
(∥∥(ϕ(0),ϕ

)∥∥)

∥
∥(ϕ(0),ϕ

)∥∥ −→ 0 as
∥
∥(ϕ(0),ϕ

)∥∥−→ 0. (3.4)

In this case, DΦ(φ(0),φ) ∈ (�× L2
ρ)∗ is called the (first-order) Fréchet derivative of Φ

at (φ(0),φ)∈�× L2
ρ. The function Φ is said to be continuously Fréchet differentiable if

its Fréchet derivative DΦ :�× L2
ρ → (�× L2

ρ)∗ is continuous under the operator norm
‖ · ‖∗. The function Φ is said to be twice Fréchet differentiable at (φ(0),φ) ∈�× L2

ρ if
its Fréchet derivative DΦ(φ(0),φ) :�×L2

ρ →� exists and there exists a bounded bilinear
functional D2Φ(φ(0),φ) : (�× L2

ρ)× (�× L2
ρ)→� where for each (ϕ(0),ϕ),(σ(0),σ) ∈

�×L2
ρ,

D2Φ
(
φ(0),φ

)(
(·,·),

(
ϕ(0),ϕ

))
,D2Φ

(
φ(0),φ

)((
σ(0),σ

)
, (·,·))∈ (�×L2

ρ

)∗
, (3.5)

and where

(
DΦ
((
φ(0),φ

)
+
(
ϕ(0),ϕ

))−DΦ(φ(0),φ
))(

σ(0),σ
)

=D2Φ
(
φ(0),φ

)((
σ(0),σ

)
,
(
ϕ(0),ϕ

))
+ o
(∥∥(σ(0),σ

)∥∥,
∥
∥(ϕ(0),ϕ

)∥∥).
(3.6)
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Here, o :�×�→� is such that

o
(·,∥∥(ϕ(0),ϕ

)∥∥)

∥
∥(ϕ(0),ϕ

)∥∥ −→ 0, as
∥
∥(ϕ(0),ϕ

)∥∥−→ 0,

o
(∥∥(ϕ(0),ϕ

)∥∥,·)
∥
∥(ϕ(0),ϕ

)∥∥ −→ 0, as
∥
∥(ϕ(0),ϕ

)∥∥−→ 0.

(3.7)

In this case, the bounded bilinear functional D2Φ(φ(0),φ) : (�× L2
ρ)× (�× L2

ρ)→� is
the second order Fréchet derivative of Φ at (φ(0),φ)∈�×L2

ρ.
The second-order Fréchet derivative D2Φ is said to be globally Lipschitz on �× L2

ρ if
there exists a constant K > 0 such that

∥
∥D2Φ

(
φ(0),φ

)−D2Φ
(
ϕ(0),ϕ

)∥∥†

≤ K∥∥(φ(0),φ
)− (ϕ(0),ϕ

)∥∥, ∀(φ(0),φ
)
,
(
ϕ(0),ϕ

)∈�×L2
ρ.

(3.8)

Assuming all the partial and/or Frechet derivatives of the following exist, the actions of
the first-order Fréchet derivativeDΦ(φ(0),φ) and the second-order FréchetD2Φ(φ(0),φ)
can be expressed as

DΦ
(
φ(0),φ

)(
ϕ(0),ϕ

)= ϕ(0)∂φ(0)Φ
(
φ(0),φ

)
+DφΦ

(
φ(0),φ

)
ϕ,

D2Φ
(
φ(0),φ

)((
ϕ(0),ϕ

)
,
(
σ(0),σ

))

= ϕ(0)∂2
φ(0)Φ

(
φ(0),φ

)
σ(0) + σ(0)∂φ(0)DφΦ

(
φ(0),φ

)
ϕ

+ϕ(0)Dφ∂φ(0)Φ
(
φ(0),φ

)
(ϕ,σ) +D2

φΦ
(
φ(0),φ

)
σ,

(3.9)

where ∂φ(0)Φ and ∂2
φ(0)Φ are the first- and second-order partial derivatives of Φ with re-

spect to its first variable φ(0)∈�, DφΦ and D2
φΦ are the first- and second-order Fréchet

derivatives with respect to its second variable φ ∈ L2
ρ, ∂φ(0)DφΦ is the second-order de-

rivative first with respect to φ in the Fréchet sense and then with respect to φ(0), and so
forth.

Let C2,2(�× L2
ρ) be the space of functions Φ : �× L2

ρ → � that are twice contin-
uously differentiable with respect to both its first and second variables. The space of
Φ∈ C2,2(�×L2

ρ) with D2Φ being globally Lipschitz will be denoted by C2,2
lip (�×L2

ρ).

3.1.1. The weak infinitesimal generator Γ. For each (φ(0),φ) ∈ �× L2
ρ, define φ̃ : (−∞,

∞)→� by

φ̃(t)=
⎧
⎪⎨

⎪⎩

φ(0), for t ∈ [0,∞),

φ(t), for t ∈ (−∞,0).
(3.10)
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Then for each θ ∈ (−∞,0] and t ∈ [0,∞),

φ̃t(θ)= φ̃(t+ θ)

⎧
⎪⎨

⎪⎩

φ(0), for t+ θ ≥ 0,

φ(t+ θ), for t+ θ < 0.
(3.11)

A bounded measurable function Φ :�× L2
ρ →�, that is, Φ ∈ Cb(�× L2

ρ), is said to be-
long to �(Γ), the domain of the weak infinitesimal operator Γ, if the following limit exists
for each fixed (φ(0),φ)∈�×L2

ρ:

Γ(Φ)
(
φ(0),φ

)≡ lim
t↓0

Φ
(
φ(0), φ̃t

)−Φ
(
φ(0),φ

)

t
. (3.12)

Remark 3.1. Note that Φ∈ C2,2
lip (�×L2

ρ) does not guarantee that Φ∈�(Γ). For example,

let θ > 0 and define a simple tame function Φ :�×L2
ρ →� by

Φ
(
φ(0),φ

)= φ(−θ) ∀(φ(0),φ
)∈�×L2

ρ. (3.13)

Then it can be shown that Φ∈ C2,2
lip (�×L2

ρ) and yet Φ /∈�(Γ).

It will be shown in the proof of Theorem 3.5, however, that any tame function of the
above form can be approximated by a sequence of quasi-tame functions that are in �(Γ).

Again, consider the associated Markovian �× L2
ρ-valued process {(S(t),St), t ≥ 0}

described by (2.5) with the initial historical price function (S(0),S0) = (ψ(0),ψ) ∈�×
L2
ρ. We have the following result for its weak infinitesimal generator A + Γ (see, e.g.,

[18, 21, 22]).

Theorem 3.2. If Φ∈ C2,2
lip (�×L2

ρ)∩�(Γ), then

lim
t↓0

E
[
Φ
(
S(t),St

)−Φ
(
ψ(0),ψ

)]

t
= (A +Γ)Φ

(
ψ(0),ψ

)
, (3.14)

where

AΦ
(
ψ(0),ψ

)= 1
2
∂2
ψ(0)Φ

(
ψ(0),ψ

)
ψ2(0)g2(ψ) + ∂ψ(0)Φ

(
ψ(0),ψ

)
ψ(0) f (ψ), (3.15)

and Γ(Φ)(ψ(0),ψ) is as defined in (3.12).

It seems from a glance at (3.15) that AΦ(ψ(0),ψ) requires only the existence of the
first- and second-order partial derivatives ∂ψ(0)Φ and ∂2

ψ(0)Φ of Φ(ψ(0),ψ) with respect
to its first variable ψ(0) ∈�. However, detailed derivations of the formula reveal that a
stronger condition that Φ∈ C2,2

lip (�×L2
ρ) is required.

We have the following Dynkin formula (see [20–22]).

Theorem 3.3. Let Φ∈ C2,2
lip (�×L2

ρ)∩�(Γ). Then

E
[
e−δτΦ

(
S(τ),Sτ

)]=Φ
(
ψ(0),ψ

)
+E
[∫ τ

0
e−δt(A +Γ− δI)Φ(S(t),St

)
dt
]

, (3.16)

for every P-a.s. finite G-stopping time τ.
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The function Φ∈ C2,2
lip (�× L2

ρ)∩�(Γ) that has the following special form is referred
to as a quasi-tame function:

Φ
(
φ(0),φ

)=Ψ
(
m
(
φ(0),φ

))
, (3.17)

where

m
(
φ(0),φ

)=
(
φ(0),

∫ 0

−∞
η1
(
φ(θ)
)
λ1(θ)dθ, . . . ,

∫ 0

−∞
ηn
(
φ(θ)
)
λn(θ)dθ

)
∀(φ(0),φ

)∈�×L2
ρ,

(3.18)

for some positive integer n and some functions m ∈ C(�× L2
ρ;�n+1), ηi ∈ C∞(�), λi ∈

C1((−∞,0]) with

lim
θ→−∞

λi(θ)= λi(−∞)= 0 (3.19)

for i= 1,2, . . . ,n, and Ψ∈ C∞(�n+1) of the form Ψ(x, y1, y2, . . . , yn).
We have the following Ito formula in case Φ∈�×L2

ρ is a quasi-tame function in the
sense defined above.

Theorem 3.4. Let {(S(t),St), t ≥ 0} be the �× L2
ρ-valued solution process corresponding

to (2.5) with an initial historical price function (ψ(0),ψ) ∈�× L2
ρ. If Φ ∈ C(�× L2

ρ) is a
quasi-time function, then Φ∈�(A)∩�(Γ) and

e−δτΦ
(
S(τ),Sτ

)=Φ
(
ψ(0),ψ

)
+
∫ τ

0
e−δt(A +Γ− δI)Φ(S(t),St

)
dt

+
∫ τ

0
e−δtΦx

(
S(t),St

)
S(t) f

(
St
)
dW(t)

(3.20)

for every finite G-stopping time τ, where I is the identity operator.
Moreover, if Φ∈ C(�×L2

ρ) is of the form described in (3.17)-(3.18), then

(A +Γ)Φ
(
ψ(0),ψ

)=
n∑

i=1

Ψyi

(
m
(
ψ(0),ψ

))

×
(
ηi
(
ψ(0)
)
λi(0)−

∫ 0

−∞
ηi
(
ψ(θ)
)
λ̇i(θ)dθ

)

+Ψx
(
m
(
ψ(0),ψ

))
ψ(0) f (ψ) +

1
2
Ψxx
(
m
(
ψ(0),ψ

))
ψ2(0)g2(ψ),

(3.21)

where Ψx, Ψyi , and Ψxx denote the partial derivatives of Ψ(x, y1, . . . , yn) with respect to its
appropriate variables.

Proof. The Ito formula for a quasi-tame function Φ :�× L2([−h,0])→� for the �×
L2([−h,0]) solution process {(x(t),xt), t ≥ 0} of a stochastic function differential
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equation with a bounded delay h > 0 is obtained in an unpublished dissertation by Ar-
riojas [18] (the same result can also be obtained from [21, 22] with some modifications).
The same arguments can be easily extended to the infinite memory stochastic heredi-
tary differential equation (2.5) considered in this paper. To avoid further lengthening the
paper, we omit the proof here. �

In the following, we will prove that above Ito’s formula also holds for any tame func-
tion Φ :�×C→� of the following form:

Φ
(
φ(0),φ

)=Ψ
(
m
(
φ(0),φ

))=Ψ
(
φ(0),φ

(− θ1
)
, . . . ,φ

(− θn
))

, (3.22)

where C is the space continuous function φ : (−∞,0]→� equipped with uniform topol-
ogy, 0 < θ1 < θ2 < ··· < θn <∞, and Ψ(x, y1, . . . , yn) is such that Ψ∈ C∞(�n+1).

Theorem 3.5. Let {(S(t),St), t ≥ 0} be the �× L2
ρ-valued process corresponding to (2.5)

with an initial historical price function (ψ(0),ψ) ∈ �× L2
ρ. If Φ : �×C →� is a tame

function defined by (3.22), then Φ∈�(A)∩�(Γ) and

e−δτΨ
(
S(τ),S

(
τ − θ1

)
, . . . ,S

(
τ − θn

))

=Ψ
(
ψ(0),ψ

(− θ1
)
, . . . ,ψ

(− θn
))

+
∫ τ

0
e−δt(A− δI)Ψ(S(t),S

(
t− θ1

)
, . . . ,S

(
t− θn

))
dt

+
∫ τ

0
e−δtΨx

(
S(t),S

(
t− θ1

)
, . . . ,S

(
t− θn

))
S(t) f

(
St
)
dW(t)

(3.23)

for every finite G-stopping time τ, where

(A +Γ)Ψ
(
ψ(0),ψ

(− θ1
)
, . . . ,ψ

(− θn
))

=Ψx
(
ψ(0),ψ

(− θ1
)
, . . . ,ψ

(− θn
))
ψ(0) f (ψ)

+
1
2
Ψxx
(
ψ(0),ψ

(− θ1
)
, . . . ,ψ

(− θn
))
ψ2(0)g2(ψ),

(3.24)

with Ψx and Ψxx being the first- and second-order derivatives with respect to x of Ψ(x, y1, . . . ,
yn).

Proof. Without loss of generality, we will assume in order to simplify the notation that
Ψ :�×�→� with Ψ(x, y) and there is only one delay in the function Ψ(φ(0),φ(−θ))
for some fixed θ ∈ (0,∞).

We will approximate the function Ψ(φ(0),φ(−θ)) by a sequence of quasi-tame func-
tions as follows.

Throughout the end of this proof, we define for each φ ∈ L2
ρ and each k = 1,2, . . . the

function φ(k)(−θ;h) by

φ(k)(−θ;h)= k
∫ 0

−∞
h
(
k(−θ− σ)

)
φ(σ)dσ, (3.25)
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where h :�→�+ is the mollifier defined by

h(σ)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if |σ| ≥ 1,

cexp
{

1
|σ|2− 1

}
, if |σ| < 1,

(3.26)

and c > 0 is the constant chosen so that
∫∞
−∞h(σ)dσ= 1.

It is clear that

lim
k→∞

Ψ
(
φ(0),φ(k)(−θ;h)

)=Ψ
(
φ(0),φ(−θ)

)
, (3.27)

since limk→∞φ(k)(−θ;h)= φ(−θ). Moreover,

ΓΨ
(
φ(0),φ(k)(−θ;h)

)

=Ψy
(
φ(0),−φ(θ)

)
(

φ(0)kh(−kθ)− 2k3
∫ 0

−∞
φ(θ)h

(
k(θ+θ)

) θ + θ
(
k2(−θ− θ)2− 1

)2 dθ

)

(3.28)

and by the Lebesque dominating convergence theorem, we have

lim
k→∞

ΓΨ
(
φ(0),φ(k)(−θ;h)

)= 0. (3.29)

Therefore, for any finite G-stopping time τ, we have from Theorem 3.4 and sample path
convergence property of the Ito integrals (see [23, 24]) that

e−δτΨ
(
S(τ),S(τ − θ)

)= lim
k→∞

e−δτΨ
(
S(τ),S(k)

τ (−θ;h)
)

= lim
k→∞

[
Ψ
(
ψ(0),ψ(k)(−θ;h)

)

+
∫ τ

0
e−δs(A +Γ− δI)Ψ(S(s),S(k)

s (−θ;h)
)
ds

+
∫ τ

0
e−δsΨx

(
S(s),S(k)

s (−θ;h)
)
S(s) f

(
Ss
)
dW(s)

]

=Ψ
(
ψ(0),ψ(−θ)

)
+
∫ τ

0
e−δs
(
Ψx
(
S(s),S(s− θ)

)
S(s) f

(
Ss
)

+
1
2
Ψxx
(
S(s),S(s− θ)

)
S2(s)g2(Ss

))
ds

+
∫ τ

0
e−δsΨx

(
S(s),S(s− θ)

)
S(s) f

(
Ss
)
dW(s).

(3.30)

This proves the theorem. �
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3.2. Dynkin’s formula for the controlled state process. Combining the above results in
this section and results for general jumped processes (see [25, 26]), we have the following
Dynkin formula for the controlled (by the admissible strategy π) �κ-valued state process
{Z(t)= (X(t),Nt,S(t),St), t ≥ 0}:

E
[
e−δτΦ

(
Z(τ)
)]=Φ

(
Z(0−)

)
+E
[∫ τ

0
e−δt	C(t)Φ

(
Z(t)
)
dt
]

+E

[
∑

0≤t≤τ
e−δt
(
Φ
(
Z(t)
)−Φ

(
Z(t−)

))
]

,

(3.31)

for all Φ :�×N×�×L2
ρ →� such that Φ(·,ξ,ψ(0),ψ)∈ C1(�) for each (ξ,ψ(0),ψ)∈

N×�×L2
ρ and Φ(x,ξ,·,·)∈ C2,2

lip (�×L2
ρ)∩�(Γ) for each (x,ξ)∈�×N, where

	cΦ
(
x,ξ,ψ(0),ψ

)= (A +Γ− δI + (rx− c)∂x
)
Φ
(
x,ξ,ψ(0),ψ

)
, (3.32)

and A and Γ are as defined in (3.12) and (3.15).
Note that E[···] in the above stands for Ex,ξ,ψ(0),ψ;π[···].
In the case, Φ ∈ C(�×N×�× L2

ρ) is such that Φ(x,ξ,·,·) :�× L2
ρ →� is a quasi-

tame (resp., tame) function on �× L2
ρ of the form described in (3.17)-(3.18) (resp.,

(3.22)), then the following Ito formula for the controlled state process {Z(t)= (X(t),Nt,
S(t),St), t ≥ 0} also holds true.

Theorem 3.6. If Φ∈ C(�×N×�×L2
ρ) is such that Φ(x,ξ,·,·) :�×L2

ρ →� is a quasi-
tame function (resp., tame) on�×L2

ρ, then

e−δτΦ
(
Z(τ)
)=Φ

(
Z(0−)

)
+
∫ τ

0
e−δt	C(t)Φ

(
Z(t)
)
dt

+
∫ τ

0
e−δt∂ψ(0)Φ

(
Z(t)
)
S(t) f

(
St
)
dW(t)

+

[
∑

0≤t≤τ
e−δt
(
Φ
(
Z(t)
)−Φ

(
Z(t−)

))
]

,

(3.33)

for every P-a.s. finite G-stopping time τ.
Moreover, if Φ(x,ξ,ψ(0),ψ)=Ψ(x,ξ,m(ψ(0),ψ)) where Ψ ∈ C(�×N ×�n+1) and

m(ψ(0),ψ) is given by (3.17)-(3.18) (resp., (3.22)), then

	cΦ
(
x,ξ,ψ(0),ψ

)= (A +Γ− kI + (rx− c)∂x
)
Ψ
(
x,ξ,m

(
ψ(0),ψ

))
(3.34)

and (A + Γ)Ψ(x,ξ,m(ψ(0),ψ)) is as given in (3.21) (resp., (3.24)) for each fixed (x,ξ) ∈
�×N (and of Theorem 3.6)
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4. The quasi-variational HJB inequality

The main objective of this section is to derive the dynamic programming equation for
the value function in form of an infinite-dimensional quasi variational Hamilton-Jacobi-
Bellman (HJB) inequality (or QVHJBI) (see (QVHJBI (∗)) in Section 4.3.4).

4.1. The dynamic programming principle. The following Bellman-type dynamic pro-
gramming principle (DPP) was established in [6] and still holds true in our problem
by combining it with that obtained in [27–29] for optimal classical control of stochastic
functional differential equations with a bounded memory. For the sake of saving space,
we take the following result as the starting point without proof for deriving our dynamic
principle equation.

Proposition 4.1. Let (x,ξ,ψ(0),ψ)∈�κ be given and let 
 be an open subset of �κ con-
taining (x,ξ,ψ(0),ψ). For π = (C,�)∈�κ(x,ξ,ψ(0),ψ), let {(X(t),Nt,S(t),St), t ≥ 0} be
given by (2.5), and (2.32)–(2.36). Define

τ = inf
{
t ≥ 0 | (X(t),Nt,S(t),St

)
/∈ 

}

, where 
 is the closure of 
. (4.1)

Then, for each t ∈ [0,∞), the following optimality equation holds:

Vκ
(
x,ξ,ψ(0),ψ

)= sup
π∈�κ(x,ξ,ψ(0),ψ)

E
[∫ t∧τ

0
e−δs

Cγ(s)
γ

ds

+ 1{t∧τ<∞}e−δ(t∧τ)Vκ
(
X(t∧ τ),Nt∧τ ,S(t∧ τ),St∧τ

)
]

,

(4.2)

where the notation a∧ b=min{a,b} for a,b ∈� is used.

4.2. Derivation of the QVHJBI. In this section, we will derive the Hamilton-Jacobi-
Bellman (HJB) quasi-variational inequality (see (QVHJBI (∗)) in Section 4.3.4) based
on the dynamic programming principle described in Proposition 4.1. We emphasize here
that it is not our intension to rigorously verify every step involved in the derivations since
the rigorous verification is to be done in [1], the continuation of this paper. To derive
(QVHJBI (∗)) in Section 4.3.4, we consider the effects on the value function when there
is consumption but no transaction and when there is transaction but no consumption.

4.2.1. Consumptions without transaction. Assume first that there is no transaction then
the corresponding state process {Z(t) = (X(t),Nt,S(t),St), t ≥ 0} satisfies the following
set of equations:

dX(t)= [rX(t)−C(t)
]
dt, t ≥ 0,

dS(t)
S(t)

= f
(
St
)
dt+ g

(
St
)
dW(t), t ≥ 0, (4.3)

Nt = ξ, t ≥ 0, (4.4)

with the initial state (X(0−),N0−,S(0),S0)= (x,ξ,ψ(0),ψ)∈�κ.
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In this case, Vκ(X(t),Nt,S(t),St) = Vκ(X(t−),Nt−,S(t),St) for all t ≥ 0, since there is
no jump transaction. Assume that the value functionVκ : �κ→�+ is sufficiently smooth.
From Proposition 4.1 and (4.4), we have

0≥ lim
t↓0

E
[
e−δtVκ

(
X(t),Nt,S(t),St

)−Vκ
(
x,ξ,ψ(0),ψ

)]

t
+ lim

t↓0

1
t
E
[∫ t

0
e−δs

Cγ(s)
γ

ds
]

= lim
t↓0

E
[
e−δt
(
Vκ
(
X(t),Nt,S(t),St

)−Vκ
(
x,ξ,ψ(0),ψ

))]

t

+ lim
t↓0

[(
e−δt − 1

)
Vκ
(
x,ξ,ψ(0),ψ

)]

t
+ lim

t↓0

1
t
E
[∫ t

0
e−δs

Cγ(s)
γ

ds
]

= lim
t↓0

E
[
e−δt
∫ t

0

(
A +Γ− (rX(t)−C(t)

)
∂x
)
Vκ
(
X(t),Nt,S(t),St

)
dt
]

t

− δVκ
(
x,ξ,ψ(0),ψ

)
+ lim

t↓0

1
t
E
[∫ t

0
e−δs

Cγ(s)
γ

ds
]

= (A +Γ+ (rx− c)∂x − δ
)
Vκ
(
x,ξ,ψ(0),ψ

)
+
cγ

γ
, ∀c ≥ 0.

(4.5)

This shows that

0≥�Vκ
(
x,ξ,ψ(0),ψ

)≡ sup
c≥0

(
	cVκ

(
x,ξ,ψ(0),ψ

)
+
cγ

γ

)

= (A +Γ+ rx∂x − δ
)
Vκ
(
x,ξ,ψ(0),ψ

)
+ sup

c≥0

(
cγ

γ
− c∂xVκ

(
x,ξ,ψ(0),ψ

)
)

= (A +Γ+ rx∂x − δ
)
Vκ
(
x,ξ,ψ(0),ψ

)
+

1− γ
γ

(
∂xVκ
)γ/(γ−1)(

x,ξ,ψ(0),ψ
)
,

(4.6)

since the maximum of the above expression is achieved at

c∗ = (∂xVκ
)1/(γ−1)(

x,ξ,ψ(0),ψ
)
. (4.7)

Note that the Fréchet differential operators A and Γ are defined in (3.12) and (3.15),
respectively.

4.2.2. Transactions without consumption. We next consider the case where there are trans-
actions but no consumption. For each locally bounded Φ : �κ→�+ and each (x,ξ,ψ(0),
ψ)∈�κ define the intervention operator

�κΦ
(
x,ξ,ψ(0),ψ

)= sup
{
Φ
(
x̂, ξ̂, ψ̂(0), ψ̂

) | ζ ∈�(ξ)−{0},(x̂, ξ̂, ψ̂(0), ψ̂
)∈�κ

}
,
(4.8)
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where (x̂, ξ̂, ψ̂(0), ψ̂) are as defined as follows:

x̂ = x− κ− (m(0) +μ
∣
∣m(0)

∣
∣)ψ(0)

−
∞∑

k=1

[
(1 +μ)m(−k)ψ(0)−βm(−k)

(
ψ(0)−ψ(τ(−k)

))]

·1{n(−k)<0,0≤m(−k)≤−n(−k)}

−
∞∑

k=1

[
(1−μ)m(−k)ψ(0)−βm(−k)

(
ψ(0)−ψ(τ(−k)

))]

· 1{n(−k)>0,−n(−k)≤m(−k)≤0},

(4.9)

and for all θ ∈ (−∞,0],

ξ̂(θ)= (ξ ⊕ ζ)(θ)=m(0)1{τ(0)}(θ)

+
∞∑

k=1

(
n(−k) +m(−k)

[
1{n(−k)<0,0≤m(−k)≤−n(−k)}

+ 1{n(−k)>0,−n(−k)≤m(−k)≤0}
])

1{τ(−k)}(θ),

(4.10)

and again

(
ψ̂(0), ψ̂

)= (ψ(0),ψ
)
. (4.11)

If (x̂, ξ̂, ψ̂(0), ψ̂) /∈ �κ for all ζ ∈�(ξ)− {0}, we set �κΦ(x,ξ,ψ(0),ψ) = 0. If for all

(x,ξ,ψ(0),ψ)∈�κ there exists (x̂, ξ̂, ψ̂(0), ψ̂)∈�κ such that

�κΦ
(
x,ξ,ψ(0),ψ

)=Φ
(
x̂, ξ̂, ψ̂(0), ψ̂

)
, (4.12)

then we set

ζ̂
(
x,ξ,ψ(0),ψ

)= ζ̂Φ
(
x,ξ,ψ(0),ψ

)= (x̂, ξ̂, ψ̂(0), ψ̂
)∈�(ξ). (4.13)

Note we let ζ̂(x,ξ,ψ(0),ψ) denote a measurable selection of the map

(
x,ξ,ψ(0),ψ

) �−→ (x̂, ξ̂, ψ̂(0), ψ̂
)

(4.14)

defined in (4.13).
We make the following technical assumption regarding the existence of a measurable

selection:

ζ̂
(
x,ξ,ψ(0),ψ

)= ζ̂Vκ
(
x,ξ,ψ(0),ψ

)
(4.15)



Mou-Hsiung Chang 23

for the value function Vκ : �κ →�, that is, there exists a measurable function ζ̂Vκ : �κ →
� such that

Vκ
(
ζ̂
(
x,ξ,ψ(0),ψ

))=�κVκ
(
x,ξ,ψ(0),ψ

) ∀(x,ξ,ψ(0),ψ
)∈�κ. (4.16)

Assumption 4.2. For each (x,ξ,ψ(0),ψ) ∈ �κ, there exists a measurable function ζ̂Vκ :
�κ→� such that (4.16) is satisfied for every (x,ξ,ψ(0),ψ)∈�κ.

Assume without loss of generality that the investor’s portfolio immediately prior to
time t is (X(t−),Nt−,S(t),St) = (x,ξ,ψ(0),ψ) ∈ �κ. An immediate transaction of the
amount ζ ∈�−{0} without consumption at time t (i.e., C(t)= 0) yields that (X(t),Nt,

S(t),St) = (x̂, ξ̂, ψ̂(0), ψ̂), where x̂, ξ̂, and ψ̂(0), ψ̂ are as given in (4.9)–(4.11). It is clear
that

Vκ
(
x,ξ,ψ(0),ψ

)≥�κVκ
(
x,ξ,ψ(0),ψ

)
, ∀(x,ξ,ψ(0),ψ

)∈�κ. (4.17)

Combining Sections 4.2.1 and 4.2.2, we have the following inequality:

max
{
�Vκ,�κVκ−Vκ

}≤ 0 on �◦
κ , (4.18)

where �◦
κ denotes the interior of the solvency region �κ.

Using a standard technique in deriving the variational HJB inequality for stochastic
classical-singular and classical-impulse control problems (see [30, 31] for stochastic im-
pulse controls, [2, 7] for stochastic classical-impulse controls, and [28, 29] for classical
and singular controls of stochastic delay equations), one can show that on the set

{(
x,ξ,ψ(0),ψ

)∈�◦
κ |�κVκ

(
x,ξ,ψ(0),ψ

)
< Vκ
(
x,ξ,ψ(0),ψ

)}
(4.19)

we have �Vκ = 0 and on the set

{(
x,ξ,ψ(0),ψ

)∈�◦
κ |�Vκ

(
x,ξ,ψ(0),ψ

)
< 0
}

(4.20)

we have �κVκ =Vκ. Therefore, we have the following QVHJBI on �◦
κ :

max
{
�Vκ,�κVκ−Vκ

}= 0 on �◦
κ , (4.21)

where

�Φ= (A +Γ+ rx∂x − δ
)
Φ+ sup

c≥0

(
cγ

γ
− c∂xΦ

)
, (4.22)

�κΦ is as given in (4.8), and the operators A and Γ are given as follows.

4.3. Boundary values of the QVHJBI.

4.3.1. The solvency region for κ = 0 and μ > 0. When there is no fixed transaction cost
(i.e., κ= 0 and μ > 0), the solvency region can be written as

�0 =
{(
x,ξ,ψ(0),ψ

) |G0
(
x,ξ,ψ(0),ψ

)≥ 0
}

, (4.23)
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where G0 is the liquidating function given in (2.26) with κ= 0. This is because

x ≥ 0, n(−i)≥ 0 ∀i= 0,1,2, . . .=⇒G0
(
x,ξ,ψ(0),ψ

)≥ 0. (4.24)

In this case, all shares of the stock owned or owed can be liquidated due the absence of a
fixed transaction cost κ= 0.

4.3.2. Decomposition of ∂�κ. For I ⊂ ℵ ≡ {0,1,2, . . .}, the boundary ∂�κ of �κ can be
decomposed as follows:

∂�κ =
⋃

I⊂ℵ

(
∂−,I�κ∪ ∂+,I�κ

)
, (4.25)

where

∂−,I�κ = ∂−,I ,1�κ∪ ∂−,I ,2�κ,

∂+,I�κ = ∂+,I ,1�κ∪ ∂+,I ,2�κ,

∂+,I ,1�κ =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)= 0, x ≥ 0,

n(−i) < 0∀i∈ I , n(−i)≥ 0∀i /∈ I},

∂+,I ,2�κ =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)
< 0, x ≥ 0,

n(−i)= 0∀i∈ I , n(−i)≥ 0∀i /∈ I},

∂−,I ,1�κ =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)= 0, x < 0,

n(−i) < 0∀i∈ I , n(−i)≥ 0∀i /∈ I},

∂−,I ,2�κ =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)
< 0, x = 0,

n(−i)= 0∀i∈ I , n(−i)≥ 0∀i /∈ I}.

(4.26)

The interface (intersection) between ∂+,I ,1�κ and ∂+,I ,2�κ is denoted by

Q+,I =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)= 0, x ≥ 0,

n(−i)= 0∀i∈ I , n(−i)≥ 0∀i /∈ I}.
(4.27)

Whereas the interface between ∂−,I ,1�κ and ∂−,I ,2�κ is denoted by

Q−,I =
{(

0,ξ,ψ(0),ψ
) |Gκ

(
0,ξ,ψ(0),ψ

)= 0, x = 0,

n(−i)= 0∀i∈ I , n(−1)≥ 0∀i /∈ I}.
(4.28)

For example, if I = ℵ, then n(−i) < 0∀i= 0,1,2, . . . and

Gκ
(
x,ξ,ψ(0),ψ

)≥ 0=⇒ x ≥ κ. (4.29)
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In this case, ∂−,ℵ�κ =∅ (the empty set),

∂+,ℵ,1�κ =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)= 0, x ≥ 0, n(−i) < 0∀i∈ ℵ},

∂+,ℵ,2�κ =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)
< 0, x ≥ 0, n(−i)= 0∀i∈ ℵ}

= {(x,0,ψ(0),ψ
) | 0≤ x ≤ κ}.

(4.30)

On the other hand, if I =∅ (the empty set), that is, n(−i)≥ 0 for all i∈ ℵ, then

∂+,∅,1�κ =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)= 0, x ≥ 0, n(−i)≥ 0∀i∈ ℵ},

∂+,∅,2�κ =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)
< 0, x ≥ 0, n(−i)≥ 0∀i∈ ℵ},

∂−,∅,1�κ =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)= 0, x < 0, n(−i)≥ 0∀i∈ ℵ},

∂−,∅,2�κ =
{(
x,ξ,ψ(0),ψ

) |Gκ
(
x,ξ,ψ(0),ψ

)
< 0, x = 0, n(−i)≥ 0∀i∈ ℵ}.

(4.31)

4.3.3. Boundary conditions for the value function. Let us now examine the conditions of
the value function Vκ : �κ →�+ on the boundary ∂�κ of the solvency region �κ defined
in (4.25)-(4.26).

We make the following observations regarding the behavior of the value function Vκ

on the boundary ∂�κ.

Lemma 4.3. Let (x,ξ,ψ(0),ψ) ∈ �κ, and let x̂, ξ̂, and (ψ̂(0), ψ̂) be as defined in (4.9)–
(4.11). Then

G0
(
x̂, ξ̂, ψ̂(0), ψ̂

)=G0
(
x,ξ,ψ(0),ψ

)− κ. (4.32)

Proof. Suppose the investor’s current portfolio is (x,ξ,ψ(0),ψ) ∈ �κ then an instanta-
neous transaction of the quantity ζ = {m(−k), k = 0,1,2, . . .} ∈�(ξ) will facilitate an

instantaneous jump of the state from (x,ξ,ψ(0),ψ) to the new state (x̂, ξ̂, ψ̂(0), ψ̂).

The result follows immediately by substituting (x̂, ξ̂, ψ̂(0), ψ̂) intoG0 defined by (2.26).
This proves the lemma. �

Lemma 4.4. If there is no fixed transaction cost (i.e., κ= 0 and μ > 0) and if (x,ξ,ψ(0),ψ)∈
∂I ,1�0, that is,

G0
(
x,ξ,ψ(0),ψ

)= 0, (4.33)

then the only admissible strategy is to do no consumption but to close all open positions in
order to bring his portfolio to {0}× {0}×M2

ρ,+ after paying proportional transaction costs
and capital gain taxes, and so forth.

Proof. For a fixed (x,ξ,ψ(0),ψ)∈�0, let I ⊂ ℵ≡ {0,1,2 . . .} be such that

i∈ I =⇒ n(−i) < 0, i /∈ I =⇒ n(−i)≥ 0. (4.34)
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To guarantee that (X(t),Nt,S(t),St)∈�0, we require that

G0
(
X(t),Nt,S(t),St

)≥ 0 ∀t ≥ 0. (4.35)

Applying Theorem 3.5 to the process {e−rtG0(X(t),Nt,S(t),St), t ≥ 0} we obtain

e−rτG0
(
X(τ),Nτ ,S(τ),Sτ

)=G0
(
x,ξ,ψ(0),ψ

)

+
∫ τ

0

(
∂t + A +Γ

)[
e−rtG0

(
X(t),Nt,S(t),St

)]
dt

+
∫ τ

0
∂ψ(0)
[
e−rtG0

(
X(t),Nt,S(t),St

)]
S(t) f

(
St
)
dW(t)

+
∫ τ

0
∂x
[
e−rtG0

(
X(t),Nt,S(t),St

)](
rX(t)−C(t)

)
dt

+
∑

0≤t≤τ
e−rt
[
G0
(
X(t),Nt,S(t),St

)−G0
(
X(t−),Nt−,S(t),St

)]
,

(4.36)

for every almost surely finite G-stopping time τ, where X(t) and Nt are given in (2.32)–
(2.36) with κ= 0.

Taking into the account of (2.5) and (2.32)–(2.36) and substituting them into the func-
tion G0, we have

G0
(
X(t),Nt,S(t),St

)=G0
(
X(t−),Nt−,S(t),St

)
. (4.37)

Intuitively, this is also because of the invariance of liquidated value of the assets with-
out increase of stock value. Hence (4.36) becomes the following by grouping the terms
n(Q(t)− i) according to i∈ I and i /∈ I :

d
[
e−rtG0

(
X(t),Nt,S(t),St

)]

= e−rt
[
−C(t) +

∑

i∈I
(1 +μ−β)n

(
Q(t)− i)S(t)

(
f
(
St
)− r)

+
∑

i /∈I
(1−μ−β)n

(
Q(t)− i)S(t)

(
f
(
St
)− r)

− rβ
∑

i∈I
n
(
Q(t)− i)S(τ(Q(t)− i))

− rβ
∑

i /∈I
n
(
Q(t)− i)S(τ(Q(t)− i))

]
dt

+ e−rt
[∑

i∈I
(1 +μ−β)n

(
Q(t)− i)

+
∑

i /∈I
(1−μ−β)n

(
Q(t)− i)

]
S(t)g
(
St
)
dW(t).

(4.38)
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Now fix the first exit time τ̂ (τ̂ is a G-stopping time) defined by

τ̂ ≡ 1∧ inf
{
t ≥ 0 | n(Q(t)− i)S(τ(Q(t)− i)) /∈

the interval
(
n(−i)ψ(τ(−i))− 1,0

)
for i∈ I ,

n
(
Q(t)− i)S(τ(Q(t)− i)) /∈

the interval
(
0,n(−i)ψ(τ(−i))+ 1

)
for i /∈ I}.

(4.39)

We can integrate (4.38) from 0 to τ̂, keeping in mind that (x,ξ,ψ(0),ψ) ∈ ∂I ,1�0 (or
equivalently, G0(x,ξ,ψ(0),ψ)= 0), to obtain

0≤ e−rτ̂G0
(
X(τ̂),Nτ̂ ,S(τ̂),Sτ̂

)

=
∫ τ̂

0
e−rs
[
−C(s) +

∑

i∈I
(1 +μ−β)n

(
Q(s)− i)S(s)

(
f
(
Ss
)− r)

+
∑

i /∈I
(1−μ−β)n

(
Q(s)− i)S(s)

(
f
(
Ss
)− r)

− rβ
∑

i∈I
n
(
Q(s)− i)S(τ(Q(s)− i))

− rβ
∑

i /∈I
n
(
Q(s)− i)S(τ(Q(s)− i))

]
ds

+
∫ τ̂

0
e−rs
[
∑

i∈I
(1 +μ−β)n

(
Q(s)− i)

+
∑

i /∈I
(1−μ−β)n

(
Q(s)− i)

]

S(s)g
(
Ss
)
dW(s).

(4.40)

Now use the facts that 0 < μ+ β < 1, C(t) ≥ 0, α ≥ f (St) > r > 0, n(−i) < 0 for i ∈ I and
n(−i)≥ 0 for i /∈ I and Rule 6 to obtain the following inequality:

0≤ e−rτ̂G0
(
X(τ̂),Nτ̂ ,S(τ̂),Sτ̂

)

≤
∫ τ̂

0
e−rs
[
∑

i /∈I
(1−μ−β)n

(
Q(s)− i)S(t)(α− r)

]

dt

+
∫ τ̂

0
e−rs
[
∑

i∈I
(1 +μ−β)n

(
Q(t)− i)

+
∑

i /∈I
(1−μ−β)n

(
Q(s)− i)

]

S(s)g
(
Ss
)
dW(s).

(4.41)
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It is clear that

E

[∫ τ̂

t
e−rs
(
∑

i∈I
(1 +μ−β)n

(
Q(s)− i)

)

S(s)g
(
Ss
)
dW(s)

]

= 0. (4.42)

Now define the following process:

W̃(t)= α− r
g(St)

t+W(t), t ≥ 0. (4.43)

Then by the Girsanov transformation (see [23, 24]), {W̃(t), t ≥ 0} is a Brownian motion
defined on a new probability space (Ω,�, P̃;F), where P̃ and P are equivalent probability
measures, and hence

E

[∫ τ̂

0
e−rs
(
∑

i /∈I
(1−μ−β)n

(
Q(s)− i)S(s)(α− r)

)

ds

+
∫ τ̂

0
e−rs
(
∑

i /∈I
(1−μ−β)n

(
Q(s)− i)S(s)g

(
Ss
)
dW(s)

)]

= EP̃
[∫ τ̂

0
e−rs
(
∑

i /∈I
(1−μ−β)n

(
Q(s)− i)

)

S(s)g
(
Ss
)
dW̃(s)

]

= 0.

(4.44)

Therefore
[∫ τ̂

0
e−rs
(
∑

k /∈I
(1− ν−β)n

(
Q(s)− k)S(s)g

(
Ss
)
dW̃(s)

)]

= 0 P̃-a.s., (4.45)

by Assumptions 2.1–2.3.
Since G0(X(t),Nt,S(t),St)≥ 0 for all t ≥ 0, this implies that τ̂ = 0 a.s., that is,

(
X(τ̂),Nτ̂ ,S(τ̂),Sτ̂

)= (x,ξ,ψ(0),ψ
)∈ ∂I ,1�0. (4.46)

We need to determine the conditions under which the exit time occurred.
Let k be the index of the shares of the stock where the state process violated the condi-

tion for the stopping time τ̂. In other words, if k ∈ I , then

n
(
Q(τ̂)− k)S(τ(Q(τ̂)− k)) /∈ ((n(−k)ψ(−k)

)− 1,0
)

(4.47)

or

if k /∈ I , then n
(
Q(τ̂)− k)S(τ(Q(τ̂)− k)) /∈ (

(
0,n(−k)ψ(−k)

)
+ 1
)
. (4.48)

We will examine both cases separately.

Case 1. Suppose k ∈ I . Then

either n
(
Q(τ̂)− k)S(τ(Q(τ̂)− k))≤ n(−k)ψ

(
τ(−k)

)− 1

or n
(
Q(τ̂)− k)S(τ(Q(τ̂)− k))≥ 0.

(4.49)
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We have established that

(
X(τ̂),Nτ̂ ,S(τ̂),Sτ̂

)∈ ∂I ,1�0, (4.50)

and this is inconsistent with

both n
(
Q(τ̂)− k)S(τ(Q(τ̂)− k))≤ n(−k)ψ(−k)− 1

and n
(
Q(τ̂)− k)S(τ(Q(τ̂)− k)) > 0.

(4.51)

Therefore, we know n(Q(τ̂ − k))= 0.

Case 2. Suppose k /∈ I . Then

either n
(
Q(τ̂)− k)S(τ(Q(τ̂)− k))≥ n(−k)ψ(−k) + 1

or n
(
Q
(
τ̂)− k)S(τ(Q(τ̂)− k))≤ 0.

(4.52)

Again, since

(
X(τ̂),Nτ̂ ,S(τ̂),Sτ̂

)∈ ∂I ,1�0, (4.53)

we see that n(Q(τ̂)− k)= 0. We conclude from both cases that (X(τ̂),Nτ̂)= (0,{0}). This
means that the only admissible strategy is to bring the portfolio from (x,ξ,ψ(0),ψ) to
(0,0,ψ(0),ψ) by an appropriate amount of the transaction specified in the lemma. This
proves the lemma.

�

We have the following result.

Theorem 4.5. Let κ > 0 and μ > 0. On ∂I ,1�κ for I ⊂ ℵ, then the investor should not con-
sume but close all open positions in order to bring his portfolio to {0}×{0}×�+×L2

ρ,+. In
this case, the value function Vκ : ∂I ,1�κ→�+ satisfies the following equation:

(
�κΦ−Φ

)(
x,ξ,ψ(0),ψ

)= 0. (4.54)

Proof. Suppose the investor’s current portfolio is (x,ξ,ψ(0),ψ) ∈ ∂I ,1�κ for some I ⊂ ℵ.
A transaction of the quantity ζ = {m(−k), k = 0,1,2, . . .} ∈�(ξ)−{0} will facilitate an

instantaneous jump of the state from (x,ξ,ψ(0),ψ) to the new state (x̂, ξ̂, ψ̂(0), ψ̂) as given
in (4.9)–(4.11).

We observe that, since ζ = (m(−k), k = 0,1,2, . . .) ∈ �(ξ)− {0}, n(−k) < 0 implies
n̂(−k)= n(−k) +m(−k)≤ 0 and n(−k) > 0 implies n̂(−k)= n(−k) +m(−k)≥ 0 for k =
0,1,2, . . . .

Taking into account the new portfolio after a transaction (x̂, ξ̂, ψ̂(0), ψ̂), we have from
Lemma 4.3 that

G0
(
x̂, ξ̂, ψ̂(0), ψ̂

)=G0
(
x,ξ,ψ(0),ψ

)− κ. (4.55)



30 Journal of Applied Mathematics and Stochastic Analysis

Therefore if (x,ξ,ψ(0),ψ)∈ ∂I ,1�κ for some I ⊂ ℵ, then

Gκ
(
x,ξ,ψ(0),ψ

)=G0
(
x,ξ,ψ(0),ψ

)− κ= 0=G0
(
x̂, ξ̂, ψ̂(0), ψ̂

)
. (4.56)

This implies (x̂, ξ̂, ψ̂(0), ψ̂) ∈ ∂I ,1�0. From Lemma 4.4, we prove that the only admissi-
ble strategy is to make no consumption but to make another trading from the new state

(x̂, ξ̂, ψ̂(0), ψ̂)∈ ∂I ,1�0. Therefore, starting from (x,ξ,ψ(0),ψ)∈ ∂I ,1�κ we make two im-
mediate instantaneous transactions (which will be counted as only one transaction) with
the total amount specified by the following two equations:

0= x− κ+
∑

i∈Ic

[
n(−i)ψ(0)(1−μ−β) +βn(−i)ψ(τ(−i))]

+
∑

i∈I

[
n(−i)ψ(0)(1 +μ−β) +βn(−i)ψ(τ(−i))],

(4.57)

0= ξ ⊕ ζ , (4.58)

to reach the final destination (0,0,ψ(0),ψ). This proves the theorem. �

We conclude from some simple observations and Theorem 4.5 the following.

Boundary condition (i). On the hyper plane

∂−,∅,2�κ =
{(

0,ξ,ψ(0),ψ
)∈�κ |Gκ

(
0,ξ,ψ(0),ψ

)
< 0, n(−i)≥ 0∀i}, (4.59)

the only strategy for the investor is to do no transaction and no consumption, since x = 0
and Gκ(0,ξ,ψ(0),ψ) < 0 (hence there is no money to consume and not enough money
to pay for the transaction costs, etc.), but to let the stock prices grow according to (2.5).
Thus, the value function Vκ on ∂−,∅,2�κ satisfies the equation

	0Φ≡ (A +Γ− δ + rx∂x
)
Φ= 0 (4.60)

provided that it is smooth enough.

Boundary condition (ii). On ∂I ,1�κ for I ⊂ ℵ, then the investor should not consume but
buy back n(−i) shares for i∈ I and sell n(−i) shares for i∈ Ic of the stock in order to bring
his portfolio to {0} × {0} ×�+ × L2

ρ,+ after paying transaction costs and capital gains
taxes, and so forth. In other words, bring his portfolio from the position (x,ξ,ψ(0),ψ)∈
∂I ,1�κ to (0,0,ψ(0),ψ) by the quantity that satisfies (4.57)-(4.58). In this case, the value
function Vκ : ∂I ,1�κ→�+ satisfies the following equation:

(
�κΦ−Φ

)(
x,ξ,ψ(0),ψ

)= 0. (4.61)

Note that this is a restatement of Theorem 4.5.
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Boundary condition (iii). On ∂+,I ,2�κ for I ⊂ ℵ, the only optimal strategy is to make no
transaction but to consume optimally according to the optimal consumption rate func-
tion c∗(x,ξ,ψ(0),ψ, )= (∂Vκ/∂x)1/(γ−1)(x,ξ,ψ(0),ψ) which is obtained via

c∗
(
x,ξ,ψ(0),ψ

)= argmax
c≥0

{
	cVκ

(
x,ξ,ψ(0),ψ

)
+
cγ

γ

}
, (4.62)

where 	c is the differential operator defined by

	cΦ
(
x,ξ,ψ(0),ψ

)≡ (A +Γ− δ)Φ+ (rx− c)∂xΦ. (4.63)

This is because the cash in his savings account is not sufficient to buy back any shares
of the stock but to consume optimally. In this case, the value function Vκ : ∂+,I ,2�κ →�+

satisfies the following equation provided that it is smooth enough:

�Φ≡ (A +Γ− δ)Φ+ rx∂xΦ+
1− γ
γ

(
∂xΦ
)γ/(γ−1) = 0. (4.64)

Boundary condition (iv). On ∂−,I ,2�κ, the only admissible consumption-investment
strategy is to do no consumption and no transaction but to let the stock price grow as
in the boundary condition (i).

Boundary condition (v). On ∂+,ℵ,2�κ={(x,ξ,ψ(0),ψ) | 0≤ x ≤ κ, n(−i)=0∀i=0,1, . . .},
the only admissible consumption-investment strategy is to do no transaction but to con-
sume optimally like in boundary condition (iii).

Remark 4.6. From boundary conditions (i)–(v), it is clear that the value function Vκ is
discontinuous on the interfaces Q+,I and Q−,I for all I ⊂ ℵ.

4.3.4. The QVHJBI with boundary conditions. We conclude from the above subsections
that the QVHJBI (together with the boundary conditions) can be expressed as follows:

QVHJBI (∗)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{
�Φ,�κΦ−Φ

}= 0 on �◦
κ ,

�Φ= 0, on
⋃
I⊂ℵ ∂+,I ,2�κ,

	0Φ= 0, on
⋃
I⊂ℵ ∂−,I ,2�κ,

�κΦ−Φ= 0 on
⋃
I⊂ℵ ∂I ,1�κ,

(QVHJBI (∗))

where �Φ, 	0Φ (	cΦ with c = 0), and �κ are as defined in (4.64), (4.63), and (4.8),
respectively.

As mentioned earlier, the second paper (see [1]) establishes the verification theorem
for the optimal consumption-trading strategy. It is also shown there that the value func-
tion defined in (2.41) is a viscosity solution of (QVHJBI (∗)) defined above.
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