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1. Introduction

Ever since the fundamental work of Black and Scholes, there has been extensive work in the
literature on alternative stock price models. In a continuous time setting, these include, for
example, jump diffusions, Levy processes, stochastic volatility models, and regime switching
models. Extensive references can be found in Cont and Tankov [1] and Fouque et al. [2].
These models and tools have proven invaluable for long term asset liability management,
in particular with applications to insurance and pensions. These include the modelling and
pricing of long term embedded guarantees (see, e.g., Sherris [3], Bauer et al. [4], Milevsky
and Salisbury [5], Zaglauer and Bauer [6]) and also with the study of optimal asset allocation
problems (see, e.g., Cairns [7], Gerber and Shiu [8], Stamos [9]). Extensive references to the
vast literature can also be found in the monographs of Hardy [10], Schmidli [11], Milevsky
[12], and Møller and Steffensen [13].
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In this paper we investigate the arbitrage-free property of the class of Brownian
based stock price models where the local martingale component of the (log) stock returns is
assumed to be an ergodic diffusion. This class of models was first investigated by Bibby and
Sørensen [14] and Rydberg [15, 16] (henceforth “BSR”)who reported good fit of their models
to financial data. The use of ergodic diffusions imply that the marginal distributions over a
long horizon will be approximately equal to that of the specified stationary distribution, such
as the Student-t (Bibby and Sørensen [14] provide additional discussion of this property). The
dynamics of these models are time homogeneous and, as it is based on diffusions, tractable.
The financial market under these models will be complete, and hence the valuation of options
and guarantees can be performed without requiring extra assumptions regarding the market
price of risk. In contrast, most alternative stock price models admit incomplete markets, with
no unique pricing of options and guarantees available in general.

A significant drawback of the ergodic diffusion approach however was also noted
by BSR (in particular, Bibby and Sørensen [14] and Rydberg [15]) who showed that no
standard equivalent local martingale measure can exist for the ergodic diffusion model with
a (generalized) hyperbolic ergodic distribution model they considered, and so the model
they considered is only arbitrage free up to a stopping time. By the fundamental theorem of
asset pricing (Harrison andKreps [17], Harrison and Pliska [18], Delbaen and Schachermayer
[19]) it follows that these models permit arbitrage. Furthermore the discussions of this issue
in BSR for the (generalized) hyperbolic class of models further suggest that this feature may
perhaps be present in many ergodic diffusion-based models in general.

Following on from the previous discussion in literature, in this paper we provide
a detailed proof that any ergodic diffusion process used as a stock return model, and as
specified in literature, will admit arbitrage. We further analyze in detail the cause for these
arbitrage opportunities and consequently propose a modification that is arbitrage-free. This
modification once again opens up the application of ergodic diffusion models to problems in
insurance and finance.

The outline of this paper is as follows. In Section 2 we briefly review the construction
of local martingales based on ergodic diffusion processes. Section 3 sets out the financial
market we consider and defines the economic notions of portfolios and arbitrage. The
standard model specification considered in the existing literature is investigated, and
associated arbitrage opportunities identified, in Section 4. This analysis is consequently used
to construct an alternative, arbitrage-free specification in Section 5. An extension of the
arbitrage-free specification to stock markets with a stochastic term structure of interest rates
can be found in Section 6. Section 7 concludes.

2. Local Martingales Based on Ergodic Diffusions

Let W(·) be a Brownian motion. Consider a local martingale X(·) of the form

dX(t) = σ(X(t))dW(t),

X(0) = 0,
(2.1)

where σ(·) is a continuous, strictly positive deterministic function. By Engelbert and Schmidt
[20] it follows that a nonexploding solution to the stochastic differential equation (2.1) will
always exist.
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Consider an interval (l, r) with −∞ < l < 0 < r < ∞. Let g(·) be a continuous, bounded
probability density functionwhich is strictly positive on (l, r) and zero outside (l, r). Typically
in applications to stock returns we are interested in the case when (l, r) is (−∞,∞), and we
will make this assumption for the analysis in Sections 4–7.

Using standard diffusion theory (cf. Karlin and Taylor [21]), it was noted by Bibby
and Sørensen [14] and Rydberg [15] that X(·) can be constructed to be an ergodic diffusion
with stationary density g(·) by selecting

σ(x) =

√
k

g(x)
, (2.2)

for some arbitrary constant k > 0. In particular they considered g(·) from the (generalized)
hyperbolic class, which includes as special cases the Student-t and Normal Inverse Gaussian
distributions. As an example, a local martingale X(·) with coefficient

σ2(x) = k

√
πυΓ(υ/2)

Γ((υ + 1)/2)

(
1 +

x2

υ

)(υ+1)/2

(2.3)

will possess a Student-t (with υ degrees of freedom) stationary distribution, while a local
martingale X(·) with

σ2(x) = kπ
(
1 + x2

)
(2.4)

will possess a Cauchy stationary distribution. Other distributions can also be used,
dependent on the characteristics of the process being modelled.

It is worth noting that the existence of a stationary distribution for (2.1) is closely
related to the concept of volatility-induced stationarity in the interest ratemodelling literature
(Conley et al. [22], Nicolau [23]).

Note that the above is not the only method of constructing a Brownian-based
model with a specified distribution. There are two alternative approaches. The first
alternative (Bibby et al. [24], Borkovec and Klüppelberg [25]) constructs semimartingales
with stationary density g(·) by considering diffusion processes with nonzero drift. We do
not pursue this approach as our stock price construction considers local martingales, which
necessarily have zero drift. The second alternative (Dupire [26], Madan and Yor [27]) uses
the Fokker-Plank equation of a diffusion, with an additional time scaling assumption, to
construct a diffusion with a specified marginal distribution. A significant drawback of this
second alternative approach however is that the dynamics of the resulting local martingales
will be time inhomogeneous in general. In contrast, the dynamics of the local martingale (2.1)
is time homogeneous.

3. Financial Market

For the financial market we consider a probability space (Ω,F,P) and the time interval [0, T],
the filtration being generated by 1-dimensional Brownian Motion, augmented to satisfy the
usual conditions. In cases where we consider two nonequivalent measures we will augment
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with respect to the null sets of both measures. Denote by P∗
P the equivalence class of all

progressively measurable processes ϕ(·) satisfying

P

(∫T

0
ϕ2(t)dt < ∞

)
= 1. (3.1)

For clarity of presentation, in Sections 3–5 we will assume that the only source of uncertainty
in the financial market arises from the stock. Specifically, assume that there are two primary
securities traded in the time interval [0, T]. The first is a savings account B(·)with

B(t) = ert, (3.2)

for some constant short rate r ∈ R. The second is a strictly positive stock price S(·), with
S(0) = 1. We consider alternative specifications for S(·) in Sections 4 and 5.

An extension of our framework to include stochastic interest rates can be found in the
Section 6.

Portfolios are formed by holding an amount of π0(·) of the savings account and π(·) of
the stock, with π0(·), π(·) being progressively measurable. The value V (·) of a self-financing
portfolio should satisfy for all t ∈ [0, T],

dV (t) =
π0(t)
B(t)

dB(t) +
π(t)
S(t)

dS(t),

V (t) = π0(t) + π(t).

(3.3)

To ensure that there are no pathological doubling strategies we also require that the
discounted value of a portfolio V (·)/B(·) is bounded below by −1. Portfolios satisfying this
constraint are referred to as tame (Dybvig and Huang [28]). Finally, an arbitrage opportunity
is defined as a tame portfolio with value process V (·) satisfying

V (0) = 0,

V (t)
B(t)

≥ −1,

V (T) > 0.

(3.4)

4. Arbitrage Opportunities under the Standard Specification

Ergodic diffusion-based stock price models were first considered by Bibby and Sørensen [14]
and Rydberg [15, 16]. Their models for the stock price process S(·) are of the form

S(t) = exp
{
μt +X(t)

}
, (4.1)

with S(0) = 1, constant μ ∈ R, and X(·) being a driftless ergodic diffusion with stationary
density g(·) and associated state space (−∞,∞). In the followingwewill call ergodic diffusion
based models of the form (4.1) as being of the standard specification.
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As X(·) is nonexplosive by construction, it follows that

P(S(T) > 0) = 1. (4.2)

The model can equivalently be represented by the following stochastic differential equation
by an application of Ito’s formula:

dS(t) =

(
μ +

k

2g
(
lnS(t) − μt

)
)
S(t)dt +

√
k

g
(
lnS(t) − μt

)S(t)dW(t). (4.3)

Representation (4.3) is sometimes more convenient for calculation purposes.
Bibby and Sørensen [14] and Rydberg [15, 16] report a good fit of the generalized

hyperbolic ergodic diffusion to financial data. Unfortunately they also noted that no standard
equivalent martingale measure can exist for the models they considered. By the fundamental
theorem of asset pricing (Harrison and Kreps [17], Harrison and Pliska [18], Delbaen
and Schachermayer [19]) it follows that arbitrage opportunities exist in these models.
Furthermore, their discussion and proof suggests that the same problem may also apply
to any ergodic diffusion-based model of the form (4.1). In the following we provide a
detailed proof of the arbitrage opportunity for general ergodic diffusion models and perform
further analysis on the technical features of this model specification which created these
opportunities. Consequently in Section 5 we construct an alternative model specification that
is arbitrage free.

Theorem 4.1. The financial market with stock price modelled by (4.1) admits arbitrage opportunities.

Proof. By Ito’s lemma the process S̃(·) := S(·)/B(·) satisfies the stochastic differential equation

dS̃(t) =

⎛
⎜⎝μ − r +

k

2g
(
ln S̃(t) − (μ − r

)
t
)
⎞
⎟⎠S̃(t)dt +

√√√√ k

g
(
ln S̃(t) − (μ − r

)
t
) S̃(t)dW(t).

(4.4)

In a Brownian setting, the fundamental theorem of asset pricing states that there is no
arbitrage if and only if there exists an equivalent measure such that S̃(·) is a local martingale
under the equivalent measure. As there is only one source of uncertainty, the market is
complete. It follows that an equivalent local martingale measure exists if and only if there
exists a strictly positive martingale Z(·) with Z(0) = 1, and

Z(t) = exp

{
−
∫ t

0
γ(u)dW(u) − 1

2

∫ t

0
γ2(u)du

}
, (4.5)

where γ(·) is the market price of risk process, with

γ(t) =
(
μ − r√

k

)√
g(X(t)) +

(√
k

2

)
1√

g(X(t))
. (4.6)
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Notice that as Z(·) is a supermartingale as it is a local martingale that is bounded below.
Consequently 0 will be absorbing if reached. As the processes g(X(·)) and 1/g(X(·)) are
continuous and non-explosive by construction, γ(·) ∈ P∗

P , and hence

P(Z(T) > 0) = 1 (4.7)

(cf. Kazamaki [29], Liptser and Shiryaev [30, 6.1.1]).
The martingale property of Z(·) can be investigated by considering a candidate

measure Q (cf. Kadota and Shepp [31], Delbaen and Shirakawa [32], Wong and Heyde [33],
Rogers and Veraart [34] for an application of this technique in different settings), which is
not assumed to be equivalent to P a priori, with Brownian motionWQ(·), and a process S̃Q(·)
satisfying

dS̃Q(t) =

√√√√ k

g
(
ln S̃Q(t) −

(
μ − r

)
t
) S̃Q(t)dWQ(t), (4.8)

with S̃Q(0) = 1. UnderQwe assume that S̃Q(·)will be stopped if explosion (to 0 or∞) occurs.
Denote this stopping time as τS̃Q

. If P andQ are equivalent measures, then S̃(·) and S̃Q(·)will
be equivalent in law under Q.

Note that S̃Q(·) can also be represented in terms of a process XQ(·), with

dS̃Q(t) =

√
k

g
(
XQ(t)

) S̃Q(t)dWQ(t), (4.9)

XQ(t) =
∫ t

0

√
k

g
(
XQ(u)

)dWQ(u) −
∫ t

0

((
μ − r

)
+
(
1
2

)
k

g
(
XQ(u)

)
)
du, (4.10)

with XQ(·) also being stopped at the explosion time τS̃Q
. Note also that if

Q
(
τS̃Q

≤ T
)
> 0, (4.11)

then the stochastic integral in (4.10) should be interpreted in the Liptser-Shiryaev [30, 4.2.9]
sense.

For calculation purposes it is convenient to consider, under the measure P , the related
process Ŝ(·) defined by

Ŝ(t) = e−μtS(t) = eX(t), (4.12)

which, by the definition of X(·), satisfies

P
(
Ŝ(T) > 0

)
= 1. (4.13)
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Correspondingly, consider under the measure Q a process ŜQ(·), defined by

ŜQ(t) = e−(μ−r)tS̃Q(t) = eXQ(t). (4.14)

By Ito’s lemma ŜQ(·) satisfies

dŜQ(t) =
(
r − μ

)
ŜQ(t)dt +

√√√√ k

g
(
ln
(
ŜQ(t)

)) ŜQ(t)dWQ(t). (4.15)

Define the Q local martingale η(·) by

η(t) = exp

{∫ t

0

(
μ − r√

k

)√
g
(
XQ(u)

)
dWQ(u) − 1

2

∫ t

0

(
μ − r√

k

)2

g
(
XQ(u)

)
du

}
. (4.16)

Observe that, by the boundedness of g(·) and Novikov’s condition, η(·) is a strictly positive,
true martingale. Hence we can define a measure Qη equivalent to Q by

Qη(A) = EQ

[
η(T)1A

]
, (4.17)

for some FT measurable event A, and where 1A represents the indicator function for A.
Girsanov’s theorem shows that under Qη there exists a Brownian motion WQη(·), and where
ŜQ(·) satisfies

dŜQ(t) =

√√√√ k

g
(
ln
(
ŜQ(t)

)) ŜQ(t)dWQη(t). (4.18)

Consider the probability of explosion to 0 in finite time. This can be checked with a
criterion of Delbaen and Shirakawa [32]. Denote G(·) as the cumulative distribution function
corresponding to g(·). By the assumptions on g(·) in Section 2 we have, for all ε, M > 0, with
∞ > M ≥ ε,

∞ > sup
ε≤u≤M

(√
k

g(ln(u))
u

)
≥ inf

ε≤u≤M

(√
k

g(ln(u))
u

)
> 0 (4.19)

as required by Delbaen and Shirakawa [32, Theorem 1.4]. Consequently the probability of
hitting 0 is decided by the convergence or divergence of the integral

∫1

0

g
(
ln
(
y
))

ky
dy =

G(0) −G(−∞)
k

, (4.20)

with divergence being equivalent to a 0 probability of the process reaching 0. As 0 ≤ G(·) ≤ 1
it follows that (4.20) is finite, and hence ŜQ(·) can hit 0 in finite time. As ŜQ(·) is a Qη local
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martingale bounded below by 0, it is also a supermartingale. Hence 0 is absorbing, and we
have

Qη

(
ŜQ(T) = 0

)
> 0, (4.21)

and by equivalence

Q
(
ŜQ(T) = 0

)
> 0, (4.22)

which by comparison to (4.13) implies that P and Q cannot be equivalent measures.

As this is a complete market we can identify a specific arbitrage portfolio and strategy
using the techniques of Levental and Skorohod [35]. Firstly note that as Z(·) is not a true
martingale, we have

EP [Z(T)] = c, (4.23)

for some constant c < 1. Define a P -martingale Z̃(·) by

Z̃(t) = EP [Z(T) | Ft], (4.24)

which is a strictly positive martingale. It follows by Ito’s lemma that there exist θ̃(·) ∈ P∗
P

such that we can represent Z̃(·) in stochastic exponential form

Z̃(t) = c exp

{
−
∫ t

0
θ̃(u)dW(u) − 1

2

∫ t

0
θ̃2(u)du

}
. (4.25)

Consider the process V (·), with

V (t) = B(t)

(
Z̃(t) − Z(t) + 1 − c

Z(t)

)
. (4.26)

Applying Ito’s lemma shows that V (·) is the value process of a self financing portfolio, with

π(t) =

((
μ − r

)
g(X(t))
k

+
1
2

)
V (t) +

((
μ − r

)
g(X(t))
k

+
1
2
− θ̃(t)

√
g(X(t))√

k

Z̃(t)
Z(t)

)
B(t).

(4.27)
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As Z̃0(·), Z0(·) > 0, we have

V (0) = 0,

V (t)
B(t)

=

(
Z̃(t)
Z(t)

+
1 − c

Z(t)
− 1

)
≥ −1,

V (T) = (1 − c)
B(T)
Z(T)

> 0,

(4.28)

implying that V (·) is an arbitrage opportunity.

5. Arbitrage-Free Specification

In the previous section we have shown that the model specification (4.1) will always admit
arbitrage opportunities. In this section we further investigate the technical features of this
specification that create the arbitrage and consequently construct a modification that is
arbitrage free.

AsQ is not an equivalent measure to P , theQ-local martingale ẐQ(·), where ẐQ(0) = 1,
and

ẐQ(t) = exp

{
−
∫ t

0
γQ(u)dWQ(u) −

∫ t

0

1
2
γ2Q(u)du

}
, (5.1)

is not strictly positive, with

γQ(t) = −
(
μ − r√

k

)√
g
(
XQ(t)

) −
(√

k

2

)
1√

g
(
XQ(t)

) , (5.2)

and XQ(·) defined by (4.10). By Kazamaki [29] and Liptser and Shiryaev [30, 6.1.1] we have

{
ẐQ(T) = 0

}
⇐⇒

{∫T

0
γ2Q(t)du = ∞

}
, (5.3)

where all processes are stopped at the explosion time of
∫ ·
0γ

2
Q(t)du, which we will denote as

τ〈γQ〉. Note that, by comparing (4.9) and (4.10) with (5.2), and as g(·) is bounded, we have
τ〈γQ〉 = τS̃Q

by construction.

As ẐQ(·) is not strictly positive, we have

Q
(
τ〈γQ〉 ≤ T

)
> 0, (5.4)

and as g(·) is bounded it follows that the term in (5.2) causing (5.4) is of the form 1/g(XQ(t)).
In comparison to the standardmodel specification (4.1) it is apparent that this term arose from
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a drift adjustment for the quadratic variation of X(·). This suggests that an alternative stock
price model of the form

dS(t) = μS(t)dt + S(t)dX(t), (5.5)

or, equivalently,

S(t) = exp
{
μt − 1

2
〈X〉(t) +X(t)

}
, (5.6)

where 〈X〉(·) is the quadratic variation process of X(·), defined by

〈X〉(t) =
∫ t

0

k

g(X(u))
du, (5.7)

will be arbitrage free.

Theorem 5.1. The financial market with stock model (5.6)-(5.7) does not admit arbitrage
opportunities.

Proof. Note firstly that we have, by the assumptions on g(·) in Section 2,

P(〈X〉(T) < ∞) = 1. (5.8)

Hence by Kazamaki [29] and Liptser and Shiryaev [30, 6.1.1] it follows that S(·) is strictly
positive over [0, T].

From Ito’s lemma the discounted stock price process S̃(·) = S(·)/B(·) satisfies

dS̃(t) =
(
μ − r

)
S̃(t)dt +

√
k

g(X(t))
S̃(t)dW(t). (5.9)

An equivalent local martingale measure exists if and only if there exists a strictly positive
martingale Z(·),with Z(0) = 1, and

Z(t) = exp

{
−
∫ t

0
θ(u)dW(u) − 1

2

∫ t

0
θ2(u)du

}
, (5.10)

where θ(·) is the market price of risk process, with

θ(t) =
(
μ − r√

k

)√
g(X(t)). (5.11)

By construction the process
√
g(X(·)) is continuous and bounded. Hence by Novikov’s

condition it follows that Z(·) is a strictly positive martingale and an (unique) equivalent local
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martingale measure Q exists. By the fundamental theorem of asset pricing it follows that the
model is arbitrage free.

Under the unique equivalent local martingale measure Q the discounted stock price
S̃(·) satisfies

dS̃(t) =

√
k

g(X(t))
S̃(t)dWQ(t), (5.12)

with

X(t) =
∫ t

0

√
k

g(X(u))
dWQ(u) −

∫ t

0

(
μ − r

)
du. (5.13)

6. Stock Markets with Stochastic Term Structure of Interest Rates

In Sections 3 to 5 we considered a financial market with a constant interest rate for clarity of
presentation. In practical applications however the long term nature of many problems (e.g.,
in insurance and pensions) imply that such an assumption may be inappropriate. In this
section we extend Theorem 5.1 to stock markets with a stochastic term structure of interest
rates.

To allow for imperfect correlation between stock and interest rates we now consider
a probability space (Ω,G,P) and the time interval [0, T], the filtration being generated by
2 dimensional Brownian motion (W(·),Wr(·)), augmented to satisfy the usual conditions.
Following Section 5, we consider a stock price model of the form

dS(t) = μS(t)dt + S(t)dX(t), (6.1)

where the local martingale X(·) is assumed to be

dX(t) =

√
k

g(x)

(
ρ dW(t) +

√
1 − ρ2 dWr(t)

)
,

X(0) = 0,

(6.2)

for constants k > 0, ρ ∈ (−1, 1), and stationary density g(·).
Interest rate variability will be introduced via the second Brownian motion Wr(·) and

its augmented filtration Fr
(·), with Fr ⊂ G. Following Heath et al. [36] (cf. Musiela and

Rutkowski [37, Chapter 11]), assume that for every U ≤ T , the instantaneous forward rate
f(t,U) follows

f(t,U) = f(0, U) +
∫ t

0
αf(u,U)du +

∫ t

0
σf(u,U)dWr(u), (6.3)
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for a Borel measurable function f(0, ·), and Fr progressively measurable processes αf(·, U)
and σf(·, U) satisfying

∫U

0

∣∣αf(u,U)
∣∣du +

∫U

0

∣∣σf(u,U)du
∣∣2 < ∞. (6.4)

Assume αf(t,U), σf(t,U), and f(0, U) are differentiable with respect to U, with bounded
first derivatives α′

f
(t,U), σ ′

f
(t,U), and f ′(0, U). It is known (cf. Musiela and Rutkowski [37,

Proposition 11.1.1]) that the short rate process r(·) is a continuous semimartingale, with

r(t) = r(0) +
∫ t

0
ζ(u)du +

∫ t

0
σf(u, u)dWr(u), (6.5)

where

ζ(t) = αf(t, t) + f ′(0, t) +
∫ t

0
α′
f(u, t)du +

∫ t

0
σ ′
f(u, t)dWr(u). (6.6)

Finally, assume that there exists a Fr progressively measurable process λ(·) ∈ P∗
P such that,

for any U ≤ T , we have

∫U

t

αf(t, v)dv =
1
2

(∫U

t

σf(t, v)dv

)2

−
(∫U

t

σf(t, v)dv

)
λ(t), (6.7)

and such that the process Zr(·), with

Zr(t) = exp

{∫ t

0
λ(u)dWr(u) − 1

2

∫ t

0
λ2(u)du

}
, (6.8)

is a strictly positive martingale. This assumption is standard in literature and can intuitively
be interpreted as assuming that the interest rate market is internally arbitrage free.

Under the above setup the savings account B(·) satisfies

B(t) = e
∫ t
0r(u)du, (6.9)

and the price B(·, U) of a U-maturity Zero Coupon Bond process, with initial value B(0, U),
satisfies

dB(t,U) = a(t,U)B(t,U)dt + b(t,U)B(t,U)dWr(t), (6.10)
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where

a(t,U) = f(t, t) −
∫U

t

αf(t, v)dv +
1
2

(∫U

t

σf(t, v)dv

)2

,

b(t,U) = −
∫U

t

σf(t, v)dv.

(6.11)

Theorem 6.1. The financial market with stock model (6.1)-(6.2) and interest rate term structure
modelled by (6.3)–(6.8) does not admit arbitrage opportunities.

Proof. The discounted stock price process S̃(·) = S(·)/B(·) satisfies

dS̃(t) =
(
μ − r(t)

)
S̃(t)dt +

√
k

g(X(t))
S̃(t)

(
ρdW(t) +

√
1 − ρ2dWr(t)

)
(6.12)

under themeasure P . AsZr(·) is a strictly positive P martingale by assumption, we can define
a measure PZr equivalent to P by

PZr (A) = EP [Zr(T)1A], (6.13)

for some GT measurable event A, and where 1A represents the indicator function for A. By
Girsanov’s theorem, under PZr we have a 2-dimensional Brownian motion (W(·),Wr,PZr

(·)),
with

Wr,PZr
(t) = Wr(t) −

∫ t

0
λ(u)du, (6.14)

with λ(·) defined by (6.7). Under PZr the short rate process r(·) satisfies

r(t) = r(0) +
∫ t

0

(
ζ(u) + σf(u, u)λ(u)

)
du +

∫ t

0
σf(u, u)dWr,PZr

(u), (6.15)

which is continuous and is independent of W(·) by the assumptions on the coefficients of
(6.3).

Consider now the nonnegative PZr local martingale Z(·), with

Z(t) = exp

{
−
∫ t

0
θ(u)dW(u) − 1

2

∫ t

0
θ2(u)du

}
, (6.16)

and where θ(·) is the market price of risk process corresponding to W(·), with

θ(t) =

(
μ − r(t)

ρ
√
k

)√
g(X(t)) +

√
1 − ρ2

ρ
λ(t). (6.17)
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Notice that r(·) ∈ P∗
P by the continuity of r(·). As λ(·) ∈ P∗

P we also have (r(·) + λ(·)) ∈ P∗
P ,

and hence by equivalence

PZr

(∫T

0
(r(u) + λ(u))2du < ∞

)
= 1. (6.18)

Consequently, by the boundedness of g(·), we have

PZr

(∫T

0
θ2(u)du < ∞

)
= 1, (6.19)

and, by noting that r(·) and λ(·) are independent of W(·), we have (cf. Liptser and Shiryaev,
[30, Example 6.2.4])

EPZr

[
e(1/2)

∫T
0 θ

2(t)dt | Fr
T

]
< ∞. (6.20)

It follows by Novikov’s condition that

EPZr

[
Z(T) | Fr

T

]
= 1 (6.21)

and in particular,

EPZr
[Z(T)] = EPZr

[
EPZr

[
Z(T) | Fr

T

]]
= 1. (6.22)

Equations (6.19) and (6.22) imply that Z(·) is a strictly positive PZr martingale, and hence we
can define a measure Q equivalent to PZr by

Q(A) = EQ[Z(T)1A], (6.23)

for some GT measurable event A, and where 1A represents the indicator function for A. By
Girsanov’s Theorem it follows that discounted asset prices are local martingales underQ. As
Q is equivalent to PZr which is in turn equivalent to P , Q is an equivalent local martingale
measure. By the fundamental theorem of asset pricing it follows that the model is arbitrage
free.

7. Conclusions

In this paper we investigated the arbitrage-free property of the class of stock price models
where the local martingale component is based on an ergodic diffusion with a specified
stationary distribution. The dynamics of these models are time homogeneous and, as it
is based on Brownian motion, tractable. The financial market under these models will be
complete, and hence the valuation of options and guarantees can be performed without
requiring extra assumptions regarding the market price of risk. In this paper we provided
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a detailed proof that any ergodic diffusion process used as a stock return model, and as
specified in the existing literature, will admit arbitrage in general. We further analyzed the
technical cause for these arbitrage opportunities and consequently constructed amodification
that is arbitrage-free. This arbitrage free property is shown to be true in financial markets
both with and without stochastic interest rates. Our modification once again opens up the
application of ergodic diffusion models to problems in insurance and finance.
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