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1. Introduction

The papers [1, 2] initiated the theory of difference inequalities generated by first-order partial
differential equations. The results and the methods presented in [1, 2] were extended in
[3, 4] on functional differential problems, and they were generalized in [5–8] on parabolic
differential and differential functional equations. Explicit difference schemes were considered
in the above papers.

Our purpose is to give a result on implicit difference inequalities corresponding to
initial boundary value problems for first-order functional differential equations.

We prove also that that there are implicit difference methods which are convergent.
The proof of the convergence is based on a theorem on difference functional inequalities.

We formulate our functional differential problems. For any metric spaces X and Y
we denote by C(X,Y ) the class of all continuous functions from X into Y. We will use
vectorial inequalities with the understanding that the same inequalities hold between their
corresponding components. Write

E = [0, a] × (−b, b), D =
[ − d0, 0

] × [−d, d], (1.1)
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where a > 0, b = (b1, . . . , bn) ∈ R
n, bi > 0 for 1 ≤ i ≤ n and d = (d1, . . . , dn) ∈ R

n
+, d0 ∈ R+,

R+ = [0,+∞). Let c = b + d and

E0 =
[ − d0, 0

] × [−c, c],
∂0E = [0, a] × ([−c, c] \ (−b, b)),

Ω = E ∪ E0 ∪ ∂0E.

(1.2)

For a function z : Ω → R
k, z = (z1, . . . , zk), and for a point (t, x) ∈ E where E is the closure

of E, we define a function z(t,x) : D → R
k by z(t,x)(τ, y) = z(t + τ, x + y), (τ, y) ∈ D. Then

z(t,x) is the restriction of z to the set [t − d0, t] × [x − d, x + d] and this restriction is shifted
to the set D. Write Σ = E × C(D,Rk) × R

n and suppose that f = (f1, . . . , fk) : Σ → R
k and

ϕ : E0 ∪ ∂0E → R
k, ϕ = (ϕ1, . . . , ϕk), are given functions. Let us denote by z = (z1, . . . , zk) an

unknown function of the variables (t, x), x = (x1, . . . , xn).Write

F[z](t, x) =
(
f1
(
t, x, z(t,x), ∂xz1(t, x)

)
, . . . , fk

(
t, x, z(t,x), ∂xzk(t, x)

))
(1.3)

and ∂xzi = (∂x1zi, . . . , ∂xnzi), 1 ≤ i ≤ k. We consider the system of functional differential
equations

∂tz(t, x) = F[z](t, x) (1.4)

with the initial boundary condition

z(t, x) = ϕ(t, x) on E0 ∪ ∂0E. (1.5)

In the paper we consider classical solutions of (1.4), (1.5).
We give examples of equations which can be obtained from (1.4) by specializing the

operator f.

Example 1.1. Suppose that the function α : E → R
1+n satisfies the condition: α(t, x)−(t, x) ∈ D

for (t, x) ∈ E. For a given f̃ = (f̃1, . . . , f̃k) : E × R
k × R

k × R
n → R

k we put

f(t, x,w, q) = f̃
(
t, x,w(0, θ), w

(
α(t, x) − (t, x)

)
, q
)

on Σ, (1.6)

where θ = (0, . . . , 0) ∈ R
n. Then (1.4) is reduced to the system of differential equations with

deviated variables

∂tzi(t, x) = f̃i
(
t, x, z(t, x), z

(
α(t, x)

)
, ∂xzi(t, x)

)
, i = 1, . . . , k. (1.7)

Example 1.2. For the above f̃ we define

f(t, x,w, q) = f̃

(
t, x,w(0, θ),

∫

D

w(τ, y)dy dτ, q

)
on Σ. (1.8)
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Then (1.4) is equivalent to the system of differential integral equations

∂tzi(t, x) = f̃i

(
t, x, z(t, x),

∫

D

z(t + τ, x + y)dy dτ, ∂xzi(t, x)
)
, i = 1, . . . , k. (1.9)

It is clear that more complicated differential systems with deviated variables and
differential integral problems can be obtained from (1.4) by a suitable definition of f.
Sufficient conditions for the existence and uniqueness of classical or generalized solutions
of (1.4), (1.5) can be found in [9, 10].

Our motivations for investigations of implicit difference functional inequalities
and for the construction of implicit difference schemes are the following. Two types of
assumptions are needed in theorems on the stability of difference functional equations
generated by (1.4), (1.5). The first type conditions concern regularity of f . It is assumed
that

(i) the function f of the variables (t, x,w, q), q = (q1, . . . , qn), is of class C1 with respect
to q and the functions ∂qfi = (∂q1fi, . . . , ∂qnfi), 1 ≤ i ≤ k, are bounded,

(ii) f satisfies the Perron type estimates with respect to the functional variable w.

The second type conditions concern themesh. It is required that difference schemes generated
by (1.4), (1.5) satisfy the condition

1 − h0

n∑

j=1

1
hj

∣∣∂qj fi(t, x,w, q)
∣∣ ≥ 0 on Σ for i = 1, . . . , k, (1.10)

where h0 and h′ = (h1, . . . , hn) are steps of the mesh with respect to t and (x1, . . . , xn)
respectively. The above assumption is known as a generalized Courant-Friedrichs-Levy
(CFL) condition for (1.4), (1.5) (see [11, Chapter 3] and [10, Chapter 5]). It is clear that strong
assumptions on relations between h0 and h′ are required in (1.10). It is important in our
considerations that assumption (1.10) is omitted in a theorem on difference inequalities and
in a theorem on the convergence of difference schemes.

We show that there are implicit difference methods for (1.4), (1.5) which are
convergent while the corresponding explicit difference schemes are not convergent. We give
suitable numerical examples.

The paper is organized as follows. A theorem on implicit difference functional
inequalities with unknown function of several variables is proved in Section 2. We propose
in Section 3 implicit difference schemes for the numerical solving of functional differential
equations. Convergence results and error estimates are presented. A theorem on difference
inequalities is used in the investigation of the stability of implicit difference methods.
Numerical examples are given in the last part of the paper.

We use in the paper general ideas for finite difference equations which were
introduced in [12–14]. For further bibliographic informations concerning differential and
functional differential inequalities and applications see the survey paper [15] and the
monographs [16, 17].
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2. Functional Difference Inequalities

For any two sets U and W we denote by F(U,W) the class of all functions defined on U and
taking values inW . Let N and Z be the sets of natural numbers and integers, respectively. For
x = (x1, . . . , xn) ∈ R

n, p = (p1, . . . , pk) ∈ R
k we put

‖x‖ =
∣∣x1

∣∣ + · · · + ∣∣xn

∣∣, ‖p‖∞ = max
{∣∣pi

∣∣ : 1 ≤ i ≤ k
}
. (2.1)

We define a mesh on Ω in the following way. Suppose that (h0, h
′), h′ = (h1, . . . , hn), stand

for steps of the mesh. For (r,m) ∈ Z
1+n where m = (m1, . . . , mn), we define nodal points as

follows:

t(r) = rh0, x(m) =
(
x
(m1)
1 , . . . , x

(mn)
n

)
=
(
m1h1, . . . , mnhn

)
. (2.2)

Let us denote byH the set of all h = (h0, h
′) such that there areK0 ∈ Z andK = (K1, . . . , Kn) ∈

Z
n satisfying the conditions: K0h0 = d0 and (K1h1, . . . , Knhn) = d. Set

R
1+n
h =

{(
t(r), x(m)) : (r,m) ∈ Z

1+n},

Dh = D ∩ R
1+n
h , Eh = E ∩ R

1+n
h , E0.h = E0 ∩ R

1+n
h ,

∂0Eh = ∂0E ∩ R
1+n
h , Ωh = Eh ∪ E0.h ∪ ∂0Eh.

(2.3)

Let N0 ∈ N be defined by the relations: N0h0 ≤ a < (N0 + 1)h0 and

E′
h =

{(
t(r), x(m)) ∈ Eh : 0 ≤ r ≤ N0 − 1

}
. (2.4)

For functions w : Dh → R
k and z : Ωh → R

k we write w(r,m) = w(t(r), x(m)) on Dh and
z(r,m) = z(t(r), x(m)) on Ωh. We need a discrete version of the operator (t, x) → z(t,x). For a
function z : Ωh → R

k and for a point (t(r), x(m)) ∈ Eh we define a function z[r,m] : Dh → R
k

by

z[r,m](τ, y) = z
(
t(r) + τ, x(m) + y

)
, (τ, y) ∈ Dh. (2.5)

Solutions of difference equations corresponding to (1.4), (1.5) are functions defined on the
mesh. On the other hand (1.4) contains the functional variable z(t,x) which is an element of
the space C(D,Rk). Then we need an interpolating operator Th : F(Dh,R

k) → C(D,Rk). We
define Th in the following way. Let us denote by (ϑ1, . . . , ϑn) the family of sets defined by

ϑi = {0, 1} if di > 0, ϑi = {0} if di = 0, 1 ≤ i ≤ n. (2.6)

Set υ = (υ1, . . . , υn) ∈ Z
n and υi = 0 if di = 0, υi = 1 if di > 0 where 1 ≤ i ≤ n.Write

Δ+ =
{
λ =

(
λ1, . . . , λn

)
: λi ∈ ϑi for 1 ≤ i ≤ n

}
. (2.7)

Set ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
n with 1 standing on the ith place.
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Let w ∈ F(Dh,R
k) and (t, x) ∈ D. Suppose that d0 > 0. There exists (t(r), x(m)) ∈ Dh

such that (t(r+1), x(m+υ)) ∈ Dh and t(r) ≤ t ≤ t(r+1), x(m) ≤ x ≤ x(m+υ).Write

Th[w](t, x) =
(
1 − t − t(r)

h0

) ∑

λ∈Δ+

w(r,m+λ)
(
x − x(m)

h′

)λ(
1 − x − x(m)

h′

)1−λ

+
t − t(r)

h0

∑

λ∈Δ+

w(r+1,m+λ)
(
x − x(m)

h′

)λ(
1 − x − x(m)

h′

)1−λ
,

(2.8)

where

(
x − x(m)

h′

)λ

=
n∏

i=1

(
xi − x

(mi)
i

hi

)λi

,

(
1 − x − x(m)

h′

)1−λ
=

n∏

i=1

(
1 − xi − x

(mi)
i

hi

)1−λi
(2.9)

and we take 00 = 1 in the above formulas. If d0 = 0 then we put

Th[w](t, x) =
∑

λ∈Δ+

w(r,m+λ)
(
x − x(m)

h′

)λ(
1 − x − x(m)

h′

)1−λ
. (2.10)

Then we have defined Th[w] on D. It is easy to see that Th[w] ∈ C(D,Rk). The above
interpolating operator has been first proposed in [10, Chapter 5].

For w,w ∈ F(Dh,R
k) we write w ≤ w if w(r,m) ≤ w(r,m) where (t(r), x(m)) ∈ Dh. In a

similar way we define the relation w ≤ w for w,w ∈ C(D,Rk) and the relation z ≤ z for
z, z ∈ F(Ωh,R

k) and for z, z ∈ C(Ω,Rk).
We formulate an implicit difference scheme for (1.4), (1.5). For x, y ∈ R

n we write
x � y = (x1y1, . . . , xnyn) ∈ R

n.

Assumption (H[f]). The function f = (f1, . . . , fk) : Σ → R
k of the variables (t, x,w, q), q =

(q1, . . . , qn), is continuous and

(1) the partial derivatives (∂q1fi, . . . , ∂qnfi) = ∂qfi, i = 1, . . . , k, exist on Σ and the
functions ∂qfi, i = 1, . . . , k, are continuous and bounded on Σ,

(2) there is x̃ ∈ (−b, b), x̃ = (x̃1, . . . , x̃n), such that

(x − x̃) � ∂qfi(t, x,w, q) ≥ θ on Σ for i = 1, . . . , k, (2.11)

(3) there is ε0 > 0 such that for 0 < h0 < ε0 and w,w ∈ C(D,Rk), w ≤ w, we have

w(0, θ) + h0f(t, x,w, q) ≤ w(0, θ) + h0f(t, x,w, q), (t, x, q) ∈ E × R
n. (2.12)
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Remark 2.1. The existence theory of classical or generalized solutions to (1.4), (1.5) is based
on a method of bicharacteristics. Suppose that z ∈ C(Ω,Rk), u ∈ C(Ω,Rn). Let us denote by

gi[z, u](·, t, x) =
(
gi.1[z, u](·, t, x), . . . , gi.n[z, u](·, t, x)

)
(2.13)

the ith bicharacteristic of (1.4) corresponding to (z, u). Then gi[z, u](·, t, x) is a solution of the
Cauchy problem

y′(τ) = −∂qfi
(
τ, y(τ), z(τ,y(τ)), u

(
τ, y(τ)

))
, y(t) = x. (2.14)

Assumption (2.11) states that the bicharacteristics satisfy the following monotonicity
conditions: If xj − x̃j ≥ 0 the function gij[z, u](·, t, x) is non increasing. If xj − x̃j < 0 then
gij[z, u](·, t, x) is nondecreasing.

The same property of bicharacteristics is needed in a theorem on the existence and
uniqueness of solutions to (1.4), (1.5) see [9]. It is important that our theory of difference
methods is consistent with known theorems on the existence of solutions to (1.4), (1.5).

Remark 2.2. Given the function f̃ = (f̃1, . . . , f̃k) : E × R ×C(D,Rk) × R
n → R

k of the variables
(t, x, p,w, q). Write fi(t, x,w, q) = f̃i(t, x,wi(0, θ), w, q), i = 1, . . . , k, on Σ. Then system (1.4) is
equivalent to

∂tzi(t, x) = f̃i
(
t, x, zi(t, x), z(t,x), ∂xzi(t, x)

)
, i = 1, . . . , k. (2.15)

Note that the dependence of f̃ on the classical variable z(t, x) is distinguished in (2.15).
Suppose that

(1) f̃ is nondecreasing with respect to the functional variable,

(2) there exists the derivative ∂pf̃ = (∂pf̃1, . . . , ∂pf̃k) and ∂pf̃i(t, x, p,w, q) ≥ L for i =
1, . . . , k and 1 + Lh0 ≥ 0.

Then the monotonicity condition (3) of Assumption (H[f]) is satisfied.

Let us denote by H� the set of all h = (h0, h
′) ∈ H such that

hi < min
{
bi − x̃i, x̃i + bi

}
, i = 1, . . . , n. (2.16)

Suppose that ω : Ωh → R. We apply difference operators δ = (δ1, . . . , δn) given by

if x̃j ≤ x
(mj )
j < bj then δjω

(r,m) =
1
hj

[
ω(r,m+ej ) −ω(r,m)],

if − bj < x
(mj )
j < x̃j then δjω

(r,m) =
1
hj

[
ω(r,m) −ω(r,m−ej )],

(2.17)
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and we put j = 1, . . . , n in (2.17). Let δ0 be defined by

δ0ω
(r,m) =

1
h0

[
ω(r+1,m) −ω(r,m)] (2.18)

and δ0z = (δ0z1, . . . , δ0zk). Write

Fh[z]
(r,m) =

(
f1
(
t(r), x(m), Thz[r,m], δz

(r+1,m)
1

)
, . . . , fk

(
t(r), x(m), Thz[r,m], δz

(r+1,m)
k

))
. (2.19)

Given ϕh : E0.h ∪ ∂0Eh → R
k,we consider the functional difference equation

δ0z
(r,m) = Fh[z]

(r,m) (2.20)

with the initial boundary condition

z(r,m) = ϕ
(r,m)
h on E0.h ∪ ∂0Eh. (2.21)

The above problem is considered as an implicit difference method for (1.4), (1.5). It is
important that the difference expressions (δ1zi, . . . , δnzi), 1 ≤ i ≤ k, are calculated at the point
(t(r+1), x(m)) and the functional variable Thz[r,m] appears in a classical sense.

We prove a theorem on implicit difference inequalities corresponding to (2.20), (2.21).
Note that results on implicit difference methods presented in [18] are not applicable to (2.20),
(2.21).

Theorem 2.3. Suppose that Assumption (H[f]) is satisfied and

(1) h ∈ H�, h0 < ε0 and the functions u, v : Ωh → R
k satisfy the difference functional

inequality

δ0u
(r,m) − Fh[u]

(r,m) ≤ δ0v
(r,m) − Fh[v]

(r,m) on E′
h, (2.22)

(2) the initial boundary estimate u(r,m) ≤ v(r,m) holds on E0.h ∪ ∂0Eh.

Then

u(r,m) ≤ v(r,m) on Eh. (2.23)

Proof. We prove (2.23) by induction on r. It follows from assumption (2) that estimate (2.23)
is satisfied for r = 0 and (t(0), x(m)) ∈ Eh. Assume that u(j,m) ≤ v(j,m) for (t(j), x(m)) ∈ Eh ∩
([0, t(r)] × R

n).We prove that u(r+1,m) ≤ v(r+1,m) for (t(r+1,m), x(m)) ∈ Eh.Write

U
(r,m)
i = u

(r,m)
i + h0fi

(
t(r), x(m), Thu[r,m], δu

(r+1,m)
i

)

− v
(r,m)
i − h0fi

(
t(r), x(m), Thv[r,m], δu

(r+1,m)
i

)
, i = 1, . . . , k.

(2.24)
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It follows from (2.22) that

(
ui − vi

)(r+1,m) ≤ U
(r,m)
i + h0

[
fi
(
t(r), x(m), Thv[r,m], δu

(r+1,m)
i

)

− fi
(
t(r), x(m), Thv[r,m], δv

(r+1,m)
i

)]
,

(2.25)

where i = 1, . . . , k. The monotonicity condition (3) of Assumption (H[f]) implies the
inequalities U(r,m)

i ≤ 0 for (t(r), x(m)) ∈ Eh, i = 1, . . . , k. Then we have

(
ui − vi

)(r+1,m) ≤ h0

n∑

j=1

∫1

0
∂qj fi

(
Q

(r,m)
i [v, τ]

)
dτ δj

(
ui − vi

)(r+1,m)
, (2.26)

where i = 1, . . . , k and

Q
(r,m)
i [v, τ] =

(
t(r), x(m), Thv[r,m], δv

(r+1,m)
i + τδ

(
ui − vi

)(r+1,m))
. (2.27)

Write

Γ(m)
+ =

{
j ∈ {1, . . . , n} : x

(mj )
j ∈ [

x̃j , bj
)}

, Γ(m)
− = {1, . . . , n} \ Γ(m)

+ . (2.28)

It follows from (2.11), (2.17) that

(
ui − vi

)(r+1,m)
[
1 + h0

n∑

j=1

1
hj

∫1

0

∣∣∂qj fi
(
Q

(r,m)
i [v, τ]

)|dτ
]

≤ h0

∑

j∈Γ(m)
+

1
hj

∫1

0
∂qj fi

(
Q

(r,m)
i [v, τ]

)
dτ

(
ui − vi

)(r+1,m+ej )

− h0

∑

j∈Γ(m)
−

1
hj

∫1

0
∂qj fi

(
Q

(r,m)
i [v, τ]

)
dτ

(
ui − vi

)(r+1,m−ej ), i = 1, . . . , k.

(2.29)

We define m̃ ∈ Z
n and μ ∈ N, 1 ≤ μ ≤ k, as follows:

(
uμ − vμ

)(r+1,m̃) = max
1≤i≤k

max
{(

ui − vi

)(r+1,m) :
(
t(r+1), x(m)) ∈ Ωh

}
. (2.30)
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If (t(r+1), x(m̃)) ∈ ∂0Eh then assumption (2) implies that (uμ − vμ)
(r+1,m̃) ≤ 0. Let us consider the

case when (t(r+1), x(m̃)) ∈ Eh. Then we have from (2.29) that

(
uμ − vμ

)(r+1,m̃)

[

1 + h0

n∑

j=1

1
hj

∫1

0

∣∣∂qj fi(Q
(r,m̃)
i [v, τ])

∣∣dτ

]

≤ h0
(
uμ − vμ

)(r+1,m̃)

[
∑

j∈Γ(m̃)
+

1
hj

∫1

0
∂qj fi

(
Q

(r,m̃)
i [v, τ]

)
dτ

−
∑

j∈Γ(m̃)
−

1
hj

∫1

0
∂qj fi

(
Q

(r,m̃
)

i [v, τ]
)
dτ

]

.

(2.31)

It follows that (uμ − vμ)
(r+1,m̃) ≤ 0. The the proof of (2.23) is completed by induction.

3. Implicit Difference Schemes

We define N = (N1, . . . ,Nn) ∈ Nn by the relations:

(
N1h1, . . . ,Nnhn

)
<
(
b1, . . . , bn

) ≤ ((
N1 + 1

)
h1, . . . ,

(
Nn + 1

)
hn

)
(3.1)

and we assume that (Ni + 1)hi = bi if di = 0. For w ∈ C(D,Rk) we write

‖w‖D = max
{∥∥w(t, x)

∥∥
∞ : (t, x) ∈ D

}
. (3.2)

In a similar way we define the norm in the space F(Dh,R
k) : if w : Dh → R

k then

‖w‖Dh = max
{∥∥w(r,m)∥∥

∞ :
(
t(r), x(m)) ∈ Dh

}
. (3.3)

The following properties of the operator Th are important in our considerations.

Lemma 3.1. Suppose that w : D → R
k is of class C1 and wh is the restriction of w to the set Dh.

Let C̃ be such a constant that ‖∂tw‖D, ‖∂xiw‖D ≤ C̃ for 1 ≤ i ≤ n. Then ‖Th[wh] − w‖D ≤ C̃‖h‖
where ‖h‖ = h0 + h1 + · · · + hn.

Lemma 3.2. Suppose thatw : D → R
k is of class C2 andwh is the restriction ofw to the setDh. Let

C̃ be such a constant that ‖∂ttw‖D, ‖∂txiw‖D, ‖∂xixjw‖D ≤ C̃, i, j = 1, . . . , n. Then ‖Th[wh]−w‖D ≤
C̃‖h‖2.

The above lemmas are consequences of [10, Lemma 3.19 and Theorem 5.27].
We first prove a theorem on the existence and uniqueness of solutions to (2.20), (2.21).

Theorem 3.3. If Assumption (H[f]) is satisfied and ϕh ∈ F(E0.h ∪ ∂0Eh,R
k) then there exists

exactly one solution uh = (uh.1, . . . , uh.k) : Ωh → R
k of difference functional problem (2.20), (2.21).
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Proof. Suppose that 0 ≤ r ≤ N0 − 1 is fixed and that the solution uh of problem (2.20), (2.21) is
given on the set Ωh ∩ ([−d0, t

(r)] × R
n). We prove that the vectors u(r+1,m)

h
, −N ≤ m ≤ N, exist

and that they are unique. It is sufficient to show that there exists exactly one solution of the
system of equations

1
h0

(
z
(r+1,m)
i − u

(r,m)
h.i

)
= fi

(
t(r), x(m), T(uh)[r,m], δz

(r+1,m)
i

)
, (3.4)

where −N ≤ m ≤ N, i = 1, . . . , k, with the initial boundary condition (2.21). There exists
Qh > 0 such that

Qh ≥ h0

[
∑

j∈Γ(m)
+

1
hj

∂qj fi
(
t(r), x(m), Th

(
uh

)
[r,m], q

) −
∑

j∈Γ(m)
−

1
hj

∂qj fi
(
t(r), x(m), Th

(
uh

)
[r,m], q

)
]

,

(3.5)

where −N ≤ m ≤ N, i = 1, . . . , k. It is clear that system (3.4) is equivalent to the following
one:

z
(r+1,m)
i =

1
Qh + 1

[
Qhz

(r+1,m)
i + u

(r,m)
h.i + h0fi

(
t(r), x(m), Th

(
uh

)
[r,m], δz

(r+1,m)
i

)]
,

−N ≤ m ≤ N, i = 1, . . . , k

(3.6)

Write Sh = {x(m) : x(m) ∈ [−c, c]}. Elements of the space F(Sh,R
k) are denoted by ξ, ξ. For

ξ : Sh → R
k, ξ = (ξ1, . . . , ξk), we write ξ(m) = ξ(x(m)) and

δξ
(m)
i =

(
δ1ξ

(m)
i , . . . , δnξ

(m)
i

)
, 1 ≤ i ≤ k,

δjξ
(m)
i =

1
hj

[
ξ
(m+ej j)
i − ξ

(m)
i

]
if x

(mj )
j ∈ [

x̃j , bj
)
,

δjξ
(m)
i =

1
hj

[
ξ
(m)
i − ξ

(m−ej )
i

]
if x

(mj )
j ∈ (

bj , x̃j

)
,

(3.7)

where j = 1, . . . , n. The norm in the space F(Sh,R
k) is defined by

‖ξ‖� = max
{∥∥ξ(m)∥∥

∞ : x(m) ∈ Sh

}
. (3.8)

Let us consider the set

Xh =
{
ξ ∈ F

(
Sh,R

k) : ξ(m) = ϕ(r+1,m) for x(m) ∈ [−c, c] \ (−b, b)}. (3.9)

We consider the operator Wh : Xh → Xh, Wh = (Wh.1, . . . ,Wh.n) defined by

Wh.i[ξ]
(m) =

1
Qh + 1

[
Qhξ

(m)
i + u

(r,m)
h.i

+ h0fi
(
t(r), x(m), T

(
uh

)
[r,m], δξ

(m)
i

)]
, (3.10)
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where −N ≤ m ≤ N, i = 1, . . . , k and

Wh[ξ]
(m) = ϕ

(r+1,m)
h for x(m) ∈ [−c, c] \ (−b, b), (3.11)

where ξ = (ξ1, . . . , ξk) ∈ F(Sh,R
k). We prove that

∥∥Wh[ξ] −Wh[ξ]
∥∥
� ≤

Qh

Qh + 1
‖ξ − ξ‖� on F

(
Sh,R

k). (3.12)

It follows from (3.10) that we have for −N ≤ m ≤ N:

Wh.i[ξ]
(m) −Wh.i[ξ]

(m)

=
1

Qh + 1

[
Qh

(
ξi − ξi

)(m) − h0

∑

j∈Γ(m)
+

1
hj

∫1

0
∂qj fi

(
P
(r,m)
i [uh, τ]

)
dτ

(
ξi − ξi

)(m)

+
∑

j∈Γ(m)
−

1
hj

∫1

0
∂qj fi

(
P
(r,m)
i [uh, τ]

)
dτ (ξi − ξi)

(m)

+ h0

∑

j∈Γ(m)
+

1
hj

∫1

0
∂qj fi

(
P
(r,m)
i [uh, τ]

)
dτ (ξi − ξi)

(m+ej )

− h0

∑

j∈Γ(m)
−

1
hj

∫1

0
∂qj fi

(
P
(r,m)
i [uh, τ]

)
dτ (ξi − ξi)

(m−ej )
]
,

(3.13)

where i = 1, . . . , k and

P
(r,m)
i

[
uh, τ

]
=
(
t(r), x(m), Th

(
uh

)
[r,m], δξ

(m)
i + τδ

(
ξi − ξi

)(m))
. (3.14)

It follows from the above relations and from (3.5) that

∣∣∣Wh.i[ξ]
(m) −Wh.i[ξ]

(m)∣∣∣ ≤ Qh

Qh + 1
‖ξ − ξ‖� for −N ≤ m ≤ N, i = 1, . . . , k. (3.15)

According to (3.12)we have

Wh.i[ξ]
(m) −Wh.i[ξ]

(m)
= 0 for x(m) ∈ [−c, c] \ (−b, b), i = 1, . . . , k. (3.16)

This completes the proof of (3.12).
It follows from the Banach fixed point theorem that there exists exactly one solution

ξ : Sh → R
k of the equation ξ = Wh[ξ] and consequently, there exists exactly one solution of

(3.6), (2.21). Then the vectors u(r+1,m)
h

, −N ≤ m ≤ N, exist and they are unique. Then the proof
is completed by induction with respect to r, 0 ≤ r ≤ N0.
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Assumption (H[σ]). The function σ : [0, a] × R+ → R+ satisfies the conditions:

(1) σ is continuous and it is nondecreasing with respect to the both variables,

(2) σ(t, 0) = 0 for t ∈ [0, a] and the maximal solution of the Cauchy problem

η′(t) = σ(t, η(t)), η(0) = 0, (3.17)

is η̃(t) = 0 for t ∈ [0, a].

Assumption (H[f, σ]). There is σ : [0, a]×R+ → R+ such that Assumption (H[σ]) is satisfied
and for w,w ∈ C(D,Rk), w ≥ w, we have

fi(t, x,w, q) − fi(t, x,w, q) ≤ σ
(
t, ‖w −w‖D

)
, i = 1, . . . , k, (3.18)

where (t, x, q) ∈ E × R
n.

Theorem 3.4. Suppose that Assumptions (H[f]) and (H[f, σ]) are satisfied and

(1) v : Ω → R is a solution of (1.4), (1.5) and v is of class C1 on Ω,

(2) h ∈ H∗, h0 < ε and ϕh : E0.h ∪ ∂0Eh → R
k and there is α0 : H∗ → R+ such that

∥∥ϕ(r,m) − ϕ
(r,m)
h

∥∥
∞ ≤ α0(h) on E0.h ∪ ∂0Eh, lim

h→ 0
α0(h) = 0. (3.19)

Under these assumptions there is a solution uh : Ωh → R
k of (2.20), (2.21) and there is α : H∗ →

R+ such that

∥∥(uh − vh

)(r,m)∥∥
∞ ≤ α(h) on Eh, lim

h→ 0
α(h) = 0, (3.20)

where vh is the restriction of v to the set Ωh.

Proof. The existence of uh follows from Theorem 3.3. Let Γh : E′
h
→ R

k, Γ0.h : E0.h∪∂0Eh → R
k

be defined by the relations

δ0v
(r,m)
h = Fh

[
vh

](r,m) + Γ(r,m)
h on E′

h, (3.21)

v
(r,m)
h

= ϕ
(r+1,m)
h

+ Γ(r,m)
0.h for

(
t(r), x(m)) ∈ E0.h ∪ ∂0Eh. (3.22)

From Lemma 3.1 and from assumption (1) of the theorem it follows that there are γ, γ0 : H∗ →
R+ such that

∥∥Γ(r,m)
h

∥∥
∞ ≤ γ(h) on E′

h,
∥∥Γ(r,m)

0.h

∥∥
∞ ≤ γ0(h) on E0.h ∪ ∂0Eh (3.23)

and limh→ 0 γ(h) = 0, limh→ 0 γ0(h) = 0. Write J = [0, a] and Jh = {t(r) : 0 ≤ r ≤ N0}. For
β : Jh → R we put β(r) = β(t(r)). Let βh : Jh → R+ be a solution of the difference problem

β(r+1) = β(r) + h0σ
(
t(r), β(r)

)
+ h0γ(h), 0 ≤ r ≤ N0 − 1, β(0) = α0(h). (3.24)
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We prove that

∥∥(uh − vh

)(r,m)∥∥
∞ ≤ β

(r)
h

on Eh. (3.25)

Let ṽh = (ṽh.1, . . . , ṽh.k) : Ωh → R
k be defined by

ṽ
(r,m)
h.i

= v
(r,m)
h.i

+ β
(0)
h

on E0.h,

ṽ
(r,m)
h.i = v

(r,m)
h.i + β

(i)
h on Eh ∪ ∂0Eh,

(3.26)

where i = 1, . . . , k.We prove that the difference functional inequality

δ0ṽh ≥ Fh

[
ṽh

](r,m)
,

(
t(r), x(m)) ∈ E′

h, (3.27)

is satisfied. It follows from Assumption (H[f, σ]) and from (3.21) that

δ0ṽ
(r,m)
h.i

= δ0v
(r,m)
h.i

+
1
h0

(
β
(r+1)
h

− β
(r)
h

)

= fi
(
t(r), x(m), Th

(
ṽh

)
[r,m], δṽ

(r+1,m)
h.i

)
+

1
h0

(
β
(r+1)
h − β

(r)
h

)

+
[
fi
(
t(r), x(m), Th

(
vh

)
[r,m], δv

(r+1,m)
h.i

) − fi
(
t(r), x(m), Th

(
ṽh

)
[r,m], δv

(r+1,m)
h.i

)]

≥ fi
(
t(r), x(m), Th

(
ṽh

)
[r,m], δṽ

(r+1,m)
h.i

) − σ
(
t(r), β

(r)
h

)
+

1
h0

(
β
(r+1)
h − β

(r)
h

)

= fi(t(r), x(m), Th(ṽh)[r,m], δṽ
(r+1,m)
h.i

), i = 1, . . . , k.

(3.28)

This completes the proof of (3.27).
Since v(r,m)

h ≤ ṽ
(r,m)
h on E0.h ∪ ∂0Eh, it follows from Theorem 2.3 that u(r,m)

h ≤ v
(r,m)
h + β

(r)
h

on Eh. In a similar way we prove that v(r,m)
h − β

(r)
h ≤ u

(r,m)
h on Eh. The above estimates imply

(3.25). Consider the Cauchy problem

η′(t) = σ(t, η(t)) + γ(h), η(0) = α0(h). (3.29)

It follows from Assumption (H[σ]) that there is ε̃ > 0 such that for ‖h‖ ≤ ε̃ the maximal
solution η(·, h) of (3.29) is defined on [0, a] and

lim
h→ 0

η(t, h) = 0 uniformly on [0, a]. (3.30)

Since η(·, h) is convex function then we have the difference inequality

η
(
t(r+1), h

) ≥ η
(
t(r), h

)
+ h0σ

(
t(r), η

(
t(r), h

))
+ h0γ(h), (3.31)
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where 0 ≤ r ≤ N0 − 1. Since βh satisfies (3.24), the above relations imply the estimate

β
(r)
h ≤ η

(
t(r), h

) ≤ η(a, h), 0 ≤ r ≤ N0. (3.32)

It follows from (3.30) that condition (3.20) is satisfied with α(h) = η(a, h). This completes the
proof.

Lemma 3.5. Suppose that Assumption (H[f]) is satisfied and

(1) v : Ω → R is a solution of (1.4), (1.5) and v is of class C2 on Ω,

(2) h ∈ H∗, h0 < ε and ϕh : E0.h ∪ ∂0Eh → R
k and there is α0 : H∗ → R+ such that

∥∥ϕ(r,m) − ϕ
(r,m)
h

∥∥
∞ ≤ α0(h) on E0.h ∪ ∂0Eh, lim

h→ 0
α0(h) = 0. (3.33)

(3) there exists L ∈ R+ such that estimates

fi(t, x,w, q) − fi(t, x, w̃, q) ≤ L‖w − w̃‖D, i = 1, . . . , k, (3.34)

are satisfied for (t, x, q) ∈ E × R
n, w, w̃ ∈ C(D,Rk) and w ≥ w̃,

(4) there is C ∈ R+ such that

∥∥∂qfi(t, x,w, q)
∥∥ ≤ C on Σ for i = 1, . . . , k. (3.35)

Under these assumptions there is a solution uh : Ωh → R
k of (2.20), (2.21), and

∥∥(uh − vh

)(r,m)∥∥
∞ ≤ α̃(h) on Eh, (3.36)

where

α̃(h) = α0(h)eLa + γ̃(h)
eLa − 1

L
if L > 0,

α̃(h) = α0(h) + aγ̃(h) if L = 0,

γ̃(h) = 0.5 C̃h0(1 + C) + LC̃‖h′‖2 + 0.5CC̃‖h‖

(3.37)

and C̃ ∈ R+ is such that

∥∥∂ttv(t, x)
∥∥
∞,

∥∥∂txiv(t, x)
∥∥
∞,

∥∥∂xixj v(t, x)
∥∥
∞ ≤ C̃ (3.38)

on Ω for i, i = 1, . . . , n.
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Proof. It follows that the solution βh : Jh → R+ of the difference problem

β(r+1) =
(
1 + Lh0

)
β(r) + h0γ(h), 0 ≤ r ≤ N0 − 1,

β(0) = α0(h)
(3.39)

satisfies the condition: β(r)
h

≤ α̃(h) for 0 ≤ r ≤ N0. Moreover we have

∥∥Γ(r,m)
h

∥∥
∞ ≤ γ̃(h) on E′

h, (3.40)

where Γh is given by (3.21). Then we obtain the assertion from Lemma 3.2 and Theorem 3.4.

Remark 3.6. In the result on error estimates we need estimates for the derivatives of the
solution v of problem (1.4), (1.5). One may obtain them by the method of differential
inequalities, see [10, Chapter 5].

4. Numerical Examples

Example 4.1. For n = 2 we put

E = [0, 0.5] × [−1, 1] × [−1, 1], E0 = {0} × [−1, 1] × [−1, 1]. (4.1)

Consider the differential integral equation

∂tz(t, x, y) = arctan
[
2x∂xz(t, x, y) + 2y∂yz(t, x, y) − t

(
2x2y2 − x2 − y2)z(t, x, y)

]

+ t
(
1 − y2)

∫x

−1
sz(t, s, y)ds + t

(
1 − x2)

∫y

−1
sz(t, x, s)ds

+ z(t, x, y)
[
4 + 0.25

(
x2 − 1

)(
y2 − 1

)] − 4

(4.2)

with the initial boundary condition

z(0, x, y) = 1, (x, y) ∈ [−1, 1] × [−1, 1],
z(t,−1, y) = z(t, 1, y) = 1, (t, y) ∈ [0, 0.5] × [−1, 1],
z(t, x,−1) = z(t, x, 1) = 1, (t, x) ∈ [0, 0.5] × [−1, 1].

(4.3)

The function v(t, x, y) = exp[0.25 t(x2 − 1)(y2 − 1)] is the solution of the above
problem. Let us denote by zh an approximate solution which is obtained by using the implicit
difference scheme.
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Table 1: Table of errors.

t(r) 0.25 0.30 0.35 0.40 0.45 0.50

ε
(r)
h

0.0006 0.0007 0.0009 0.0010 0.0012 0.0014

The Newton method is used for solving nonlinear systems generated by the implicit
difference scheme. Writem = (m1, m2) and

ε
(r)
h =

1
(
2N1 − 1

)(
2N2 − 1

)
∑

m∈Π

∣∣z(r,m)
h − v(r,m)∣∣, 0 ≤ r ≤ N0, (4.4)

where

Π =
{
m =

(
m1, m2

)
: ∈ Z

2 : −N1 + 1 ≤ m1 ≤ N1 − 1, −N1 + 1 ≤ m2 ≤ N2 − 1
}

(4.5)

and N1h1 = 1, N2h2 = 1, N0h0 = 0.5. The numbers ε
(r)
h can be called average errors of the

difference method for fixed t(r). We put h0 = h1 = h2 = 0.005 and we have the values of the
above defined errors which are shown in Table 1.

Note that our equation and the steps of the mesh do not satisfy condition (1.10)which
is necessary for the explicit difference method to be convergent. In our numerical example
the average errors for the explicit difference method exceeded 102.

Example 4.2. Let n = 2 and

E = [0, 0.5] × [−0.5, 0.5] × [−0.5, 0.5], E0 = {0} × [−0.5, 0.5] × [−0.5, 0.5]. (4.6)

Consider the differential equation with deviated variables

∂tz(t, x, y) = 2x∂xz(t, x, y) + 2y∂yz(t, x, y)

+ cos
[
2x∂xz(t, x, y) − 2y∂yz(t, x, y) − t

(
x2 − y2)z(t, x, y)

]

+
√
z
(
t2, x, y

)
+ f(t, x, y)z(t, x, y) − 1,

(4.7)

with the initial boundary conditions

z(0, x, y) = 1, (x, y) ∈ [−0.5, 0.5] × [−0.5, 0.5]
z(t,−0.5, y) = z(t, 0.5, y) = 1, (t, y) ∈ [0, 0.5] × [−0.5, 0.5],
z(t, x,−0.5) = z(t, x, 0, 5) = 1, (t, x) ∈ [0, 0.5] × [−0.5, 0.5],

(4.8)

where

f(t, x, y) =
(
x2 − 0.25

)(
0.25 − y2) + t

[
8x2y2 − x2 − y2]

− exp
{(

0.5t2 − t
)(
x2 − 0.25

)(
0.25 − y2)}.

(4.9)
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Table 2: Table of errors.

t(r) 0.25 0.30 0.35 0.40 0.45 0.5

ε
(r)
h

0.0002 0.0003 0.0004 0.0004 0.0005 0.0006

The function v(t, x, y) = exp[[t(x2 − 0.25)(0.25 − y2)] is the solution of the above
problem. Let us denote by zh an approximate solution which is obtained by using the implicit
difference scheme.

The Newton method is used for solving nonlinear systems generated by the implicit
difference scheme.

Let εh be defined by (4.4) with N1h1 = 0.5, N2h2 = 0.5, N0h0 = 0.5. We put h0 = h1 =
h2 = 0.005 and we have the values of the above defined errors which are shown in Table 2.

Note that our equation and the steps of the mesh do not satisfy condition (1.10)which
is necessary for the explicit difference method to be convergent. In our numerical example
the average errors for the explicit difference method exceeded 102.

The above examples show that there are implicit difference schemes which are
convergent, and the corresponding classical method is not convergent. This is due to the fact
that we need assumption (1.10) for explicit difference methods. We do not need this condition
in our implicit methods.

Our results show that implicit difference schemes are convergent on all meshes.
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