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1. Introduction

In this paper, we treat the random variable T(i) representing the time spent between the ith
and the (i − 1)th lost unit or ith interloss time, in the M/M/1/1 loss system.

TheM/M/1/1 model is characterized by the Markov property of entering and exiting
processes, by one service channel and by the system capacity to accommodate one customer
at a time (for an overview see Medhi [1, page. 77]).

Our work has been inspired by the location problem of emergency vehicles
(ambulances). Each vehicle can be regarded as an M/M/1/1 (or M/Ek/1/1) system,
because its clients cannot wait in the queue.

In Emergency Medical Systems (EMSs), the nearest ambulance to the accident place is
called “district unit”, and it assures the best performance to the system. If an emergency
call arrives at EMS while its “district unit” is busy, the nearest ambulance among those
available is dispatched (see Larson [2] or Larson [3]). The length of interloss times affects
the performance of the system and provides an informative support on efficiency of EMS.

For the exponentialM/M/1/1 loss model it was conducted, in Ferrante [4], a detailed
description of the process of losses

{L(t)}t>0, (1.1)
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where L(t) represent the random number of losses in the time interval [0, t). Let P (k)
m (t) be the

conditional probability to lose m clients in [0, t) with k customers in the system at time t = 0:

P
(k)
m (t) = P{L(t) = m | k}, k = 0, 1, (1.2)

the main results found in Ferrante [4] are the explicit values of the conditional probabilities
of no losses in [0, t):
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(1.3)

and the iterative procedure to determine the distribution of the total number of losses in
[0, t).All is obtained by solving the inhomogeneous differential equations
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with P (k)
−1 (t) = 0 and the initial conditions depending on the k (= 0, 1) customers in the system

at t = 0. Furthermore, the generating probability functions Gk(s, t) of P (k)
m (t) were evaluated

and their explicit values are the following:
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(1.5)

The aim of this work is to identify the type of the process of interloss times

{
T(i)

}
i∈Z+ (1.6)
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for the M/M/1/1 loss model and to find the differential equation which governs it, in order
to determine the probability density functions

fT(i) (t) =
d

dt
P
{
T(i) < t

}
, (1.7)

with i = 1, 2, . . . and the related properties.
Our results show unexpected connections among very different branches of prob-

ability such as random motion on hyperbolic space and queueing systems. In effect, the
probabilities appearing below have a structure quite similar to the Hyperbolic distances of
moving particles envisaged in Cammarota and Orsingher [5].

In Section 2, we establish that {T(i)}i∈Z+ is a renewal process for the M(λ)/M(μ)/1/1
loss system and that the density functions (1.7) solve the second-order linear homogeneous
differential equations

d2

dt2
fT(i) (t) = −

(
2λ + μ

) d
dt
fT(i) (t) − λ2fT(i) (t). (1.8)

Let ν(t) be the number of customers in the system at the moment t, and let tli be the
moment of the ith loss with tl0 = 0. The initial conditions for (1.8) depend on ν(tli−1), and the
renewal process {T(i)}i∈Z+ has the following property:

fT(1) (t) = fT(i) (t), if ν(0) = 1,

fT(1) (t)/= fT(i) (t), if ν(0) = 0
(1.9)

for i > 1.
In Section 2, we also present the derivation of (1.8) and its solution conditionally by

ν(0).
Let fT(1) (t; i) be the conditional density function of the 1th interloss time with i (= 0,1)

customers in the system at time t = 0:

fT(1) (t; i) =
d

dt
P
{
T(1) < t | ν(0) = i

}
. (1.10)

For the M(λ)/M(μ)/1/1 model, the explicit values obtained for (1.10) are the
following:

fT(1) (t; 1) = λe−(t/2)(2λ+μ)

⎡
⎢⎣cosh

t
√
μ
(
4λ + μ

)

2
−

μ√
μ
(
4λ + μ

) sinh
t
√
μ
(
4λ + μ

)

2

⎤
⎥⎦,

fT(1) (t; 0) =
2λ2e−(t/2)(2λ+μ)

√
μ
(
4λ + μ

) sinh
t
√
μ
(
4λ + μ

)

2
.

(1.11)
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In Section 3, we compute the laplace transforms of (1.10):

F∗T(1) (s; i) =
∫∞

0
e−stfT(1) (t; i)dt (1.12)

for i = 0, 1, using (1.8).
The explicit values obtained for (1.12) are the following:

F∗T(1) (s; 1) =
λ(λ + s)

(λ + s)2 + sμ
,

F∗T(1) (s; 0) =
λ2

(λ + s)2 + sμ
.

(1.13)

Finally, let Θ(i)
1 be the conditional means of the 1th interloss time

Θ(i)
1 = E

[
T(1) | ν(0) = i

]
, (1.14)

with i = 0,1; it has been checked that their values are

Θ(1)
1 =

1
r
, Θ(0)

1 =
1
r
+

1
λ
, (1.15)

where r is the Erlang loss rate, and λ−1 is the interarrival mean time.

2. First Interloss Time

In the M(λ)/M(μ)/1/1 model, let ν(t) be the number of customers in the system at the
moment t, let τ(k) be the kth interarrival time, let tk be the moment when the kth client enters
the system, let Sk be the service time of the kth served customer, let T(i) be the ith interloss
time. Furthermore, let li(t) be the arrival order of ith loss happened in t, starting from the
(i − 1)th loss, and let tli be the moment when the ith loss happen, with tl0 = 0 and tli(t) = t.

If we consider that the system is busy at time t = 0, the event “The 1th interloss time ist”
is represented by Figure 1.

The random variable T(1) can be expressed as follows:

T(1) =
l1(t)∑
k=1

τ(k), (2.1)

where l1(t) represents the arrival order of the 1th loss happened in tl1(t) = t, starting from zero.
Now, let P

(1)
n (t) be the conditional probability that the arrival order of 1th loss

happened in t with ν(0) = 1 is equal to n :

P
(1)
n (t) = P{l1(t) = n | ν(0) = 1}, (2.2)
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τ(1) τ(2) τ(3) τ(l1(t))

tl1(t) = tSl1(t)−1tl1(t)−1· · ·t3S2t2S1t1S00

Figure 1: The 1th interloss time is t with P{ν(0) = 1} = 1.

and it can be expressed as follows

P
(1)
n (t) = P

{
S0 < τ(1), . . . , Sn−2 < τ(n−1), Sn−1 > t − tn−1

}
(2.3)

and can be computed conditionally by the (n − 1) moments when the served customers have
arrived at the system

P
(1)
n (t) =

(n − 1)!
tn−1

∫ t
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(2.4)

where
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Lemma 2.1. The functions

F
(s)
n,1(t) =

∫ t

s

dt1 · · ·
∫ t

tn−1

dtne
−μ(t−tn)

n∏
i=1

[
1 − e−μ(ti−ti−1)

]
(2.6)

with t0 = s do not depend on t but on the time interval [s, t):
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Proof. We proceed by showing that (2.7) is true for n = 1:
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Then, we suppose that it is true for n − 1, and we obtain that

F
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where
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∫ t1

s

dxμe−μ(t1−x). (2.10)

Finally, by the Markov property of the exponential distribution, the (2.7) appears
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The conditional density function

fT(1) (t; 1) =
d

dt
P
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T(1) < t | ν(0) = 1

}
(2.12)

can be evaluated as mean of convolution of l1(t) exponential probability density functions,
and thus we have that

fT(1) (t; 1) =
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At first, we state the following result concerning the evaluation of the integrals F(0)
n,1(t), n ≥ 1.

Lemma 2.2. The functions

F
(0)
n,1(t) =

∫ t

0
dt1 · · ·

∫ t

tn−1

dtne
−μ(t−tn)

n∏
i=1

[
1 − e−μ(ti−ti−1)

]
(2.14)

satisfy the difference-differential equations
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d

dt
F
(0)
n,1(t) + μF

(0)
n−1,1(t), (2.15)

where t0 = 0, t > 0, n ≥ 1.
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Proof. We first note that

d

dt
F
(0)
n,1(t) =

d

dt

∫ t

0
dt1 · · ·

∫ t

tn−1

dtne
−μ(t−tn)

n∏
i=1

[
1 − e−μ(ti−ti−1)

]

=
∫ t

0
dt1 · · ·

∫ t

tn−2

dtn−1

[
1 − e−μ(t−tn−1)

] n−1∏
i=1

[
1 − e−μ(ti−ti−1)

]

− μ
∫ t

0
dt1 · · ·

∫ t

tn−1

dtne
−μ(t−tn)

n∏
i=1

[
1 − e−μ(ti−ti−1)

]
,

(2.16)

and therefore
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In view of Lemma 2.2 we can prove also the following.

Theorem 2.3. The function fT(1) (t; 1) satisfies the second-order linear homogeneous differential
equation

d2

dt2
fT(1) (t; 1) = −

(
2λ + μ

) d
dt
fT(1) (t; 1) − λ2fT(1) (t; 1), (2.18)

with the initial conditions

fT(1) (0; 1) = λ,
d

dt
fT(1) (t; 1)|t=0 = −λ

(
λ + μ

)
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The explicit value of fT(1) (t; 1) is
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Proof. From (2.13), it follows that

d

dt
fT(1) (t; 1) = −λfT(1) (t; 1) + e−λt

∞∑
n=0

λn+1 d

dt
F
(0)
n,1(t), (2.21)

and thus, in view of (2.17) and by letting F(0)
−1,1(t) = 0 , we have that

d2

dt2
fT(1) (t; 1) = −λ d

dt
fT(1) (t; 1) − λe−λt

∞∑
n=0

λn+1 d

dt
F
(0)
n,1(t) + e

−λt
∞∑
n=0

λn+1 d
2

dt2
F
(0)
n,1(t)

= −2λ
d

dt
fT(1) (t; 1) − λ2fT(1) (t; 1) + λμfT(1) (t; 1) − μ

[
d

dt
fT(1) (t; 1) + λfT(1) (t; 1)

]

= −
(
2λ + μ

) d
dt
fT(1) (t; 1) − λ2fT(1) (t; 1).

(2.22)

While the first condition is straightforward to verify, the second one needs some explanations:
if we write

d

dt
fT(1) (t; 1)|t=0 = lim

Δt→ 0

fT(1) (Δt; 1) − fT(1) (0; 1)
Δt

, (2.23)

and observe that

fT(1) (Δt; 1) = e−λΔtλF(0)
0,1 (Δt) = λe

−(λ+μ)Δt = λ
[
1 −

(
λ + μ

)
Δt

]
+ o(Δt), (2.24)

by substituting (2.24) in (2.23) the second condition emerges.
The general solution to (2.22) has the form

e−(t/2)(2λ+μ)
[
Ae(t/2)

√
μ(4λ+μ) + Be−(t/2)

√
μ(4λ+μ)

]
. (2.25)

By imposing the initial conditions (2.19) to (2.18) we obtain (2.20).

Remark 2.4. By (2.7) derive that the functions fT(i) (t; 1) do not depend on t, but on the time
interval [tli−1 , t), in fact if tli−1 = s, we have that

fT(i) (t; 1, s) = e−λ(t−s)
∞∑
n=0

λn+1F
(s)
n,1(t) = fT(i) (t − s; 1), (2.26)

for i = 1, 2, . . . .
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τ(1) τ(2) τ(3) τ(l1(t))

tl1(t) = tSl1(t)−1tl1(t)−1· · ·t3S2t2S1t10

Figure 2: The 1th interloss time is t with P{ν(0) = 0} = 1.

Furthermore, by the Markov properties of the M/M/1/1 system, the random
variables T(1), T(2), . . . are independent, and {T(i)}i∈Z+ is a renewal process with

fT(1) (t) = fT(i) (t) if ν(0) = 1,

fT(1) (t)/= fT(i) (t) if ν(0) = 0.
(2.27)

Remark 2.5. If λ → 0 we get fT(1) (t; 1) = 0, because the 1th interloss time is greater than t,
∨t > 0, when nobody enters.

If μ → 0, we have that fT(1) (t; 1) = λe−λt because without exits and with the system
busy at t = 0, the 1th interloss time has the same distribution of the interarrival time.

Remark 2.6. The probability density function fT(1) (t; 1) can be expressed by the following
hyperbolic functions:

fT(1) (t; 1) = λe(−t/2)(2λ+μ)

⎡
⎢⎣cosh

t
√
μ
(
4λ + μ

)

2
−

μ√
μ
(
4λ + μ

) sinh
t
√
μ
(
4λ + μ

)

2

⎤
⎥⎦. (2.28)

Now, if we assume that the system is free at the starting point, the event “The 1th
interloss time ist” is represented by Figure 2.

Let P (0)
n (t) be the conditional probability that the nth entered customer is the 1th lost

at time t, when ν(0) = 0,

P
(0)
n (t) = P{l1(t) = n | ν(0) = 0}

= P
{
S1 < τ(2), . . . , Sn−2 < τ(n−1), Sn−1 > t − tn−1

}
,

(2.29)

it can be computed conditionally by the (n − 1) moments when the served customers have
arrived at the system

P
(0)
n (t) =

(n − 1)!
tn−1

∫ t

0
dt1 · · ·

∫ t

tn−2

dtn−1e
−μ(t−tn−1)

n−1∏
i=2

[
1 − e−μ(ti−ti−1)

]
=

(n − 1)!
tn−1

F
(0)
n−1,0(t), (2.30)

where

F
(0)
n−1,0(t) =

∫ t

0
dt1 · · ·

∫ t

tn−2

dtn−1e
−μ(t−tn−1)

n−1∏
i=2

[
1 − e−μ(ti−ti−1)

]
. (2.31)
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The function fT(1) (t; 0) can be computed as mean of convolution of l1(t) exponential
probability density functions. So we have that

fT(1) (t; 0) =
∞∑
n=2

f∑n
k=1 τ(k)

(t)P (0)
n (t) = e−λt

∞∑
n=2

λnF
(0)
n−1,0(t). (2.32)

Lemma 2.7. The functions

F
(0)
n,0(t) =

∫ t

0
dt1 · · ·

∫ t

tn−1

dtne
−μ(t−tn)

n∏
i=2

[
1 − e−μ(ti−ti−1)

]
(2.33)

satisfy the difference-differential equations

d2

dt2
F
(0)
n,0(t) = −μ

d

dt
F
(0)
n,0(t) + μF

(0)
n−1,0(t), (2.34)

where t > 0, n ≥ 1, F(0)
0,0 (t) = 0.

Proof. See proof of Lemma 2.2.

In view of Lemma 2.7 we can prove also the following.

Theorem 2.8. The function fT(1) (t; 0) satisfies the second-order linear homogeneous differential
equation

d2

dt2
fT(1) (t; 0) = −

(
2λ + μ

) d
dt
fT(1) (t; 0) − λ2fT(1) (t; 0), (2.35)

with the initial conditions

fT(1) (0; 0) = 0,
d

dt
fT(1) (t; 0)|t=0 = λ2. (2.36)

The explicit value of fT(1) (t; 0) is

fT(1) (t; 0) =
λ2

√
μ
(
4λ + μ

)e−(t/2)(2λ+μ)
[
e(t/2)

√
μ(4λ+μ) − e−(t/2)

√
μ(4λ+μ)

]
. (2.37)

Proof. By substituting in (2.21) and (2.22) F(0)
n,1(t) with F

(0)
n,0(t), (2.35) emerges. While the first

condition is straightforward to verify, the second one needs some explanations: if we write

d

dt
fT(1) (t; 0)|t=0 = lim

Δt→ 0

fT(1) (Δt; 0) − fT(1) (0; 0)
Δt

, (2.38)
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and observe that

fT(1) (Δt; 0) = e−λΔtλ2e−μΔt
∫Δt

0
eμt1dt1 = λ2Δt + o(Δt), (2.39)

by substituting (2.39) in (2.38), the second condition emerges.
By imposing the initial conditions (2.36) to (2.35), we obtain (2.37).

Remark 2.9. If λ → 0, we get fT(1) (t; 0) = 0 because the 1th interloss time is greater than t,
∨t > 0, when nobody enters.

If μ → 0, we have that fT(1) (t; 0) = λ2te−λt because without exits and with the system
free at t = 0, the 1th interloss time is equal to the sum of 1th and 2th interarrival times.

Remark 2.10. The function fT(1) (t; 0) can be expressed by the following hyperbolic function:

fT(1) (t; 0) =
2λ2e−(t/2)(2λ+μ)

√
μ
(
4λ + μ

) sinh
t
√
μ
(
4λ + μ

)

2
. (2.40)

Remark 2.11. The function fT(1) (t; 0) can also be computed as the convolution of the
exponential density with rate λ and fT(1) (t; 1):

fT(1) (t; 0) =
∫ t

0
λe−λt1fT(1) (t − t1; 1)dt1. (2.41)

In fact, if we observe that

F
(0)
n,0(t) =

∫ t

0
dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtne
−μ(t−tn)

n∏
i=2

[
1 − e−μ(ti−ti−1)

]
=
∫ t

0
dt1F

(t1)
n−1,1(t), (2.42)

by (2.7), (2.32), and (2.42) we obtain that

fT(1) (t; 0) = e−λt
∞∑
n=2

λn
∫ t

0
dt1F

(0)
n−2,1(t − t1) = fτ(1) ∗ fT(1) (t; 1). (2.43)

3. Interloss Mean Time

In this section we compute the laplace transforms of the density functions (2.20) and (2.37),
and we evaluate the averages of the 1th interloss time, conditionally by ν(0).

Theorem 3.1. The laplace transform of fT(1) (t; 1)

F∗T(1) (s; 1) =
∫∞

0
e−stfT(1) (t; 1)dt (3.1)
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satisfies the equation

s2F∗T(1) (s; 1) − sλ + λ
(
λ + μ

)
= −

(
2λ + μ

)
sF∗T(1) (s; 1) + λ

(
2λ + μ

)
− λ2F∗T(1) (s; 1), (3.2)

and its explicit value is

F∗T(1) (s; 1) =
λ(λ + s)

(λ + s)2 + sμ
. (3.3)

Proof. By (2.18), (2.19), and the property

∫∞
0
dte−st

d

dt
fT(1) (t; 1) = sF∗T(1) (s; 1) − fT(1) (0; 1), (3.4)

the results (3.2) and (3.3) emerge.

Remark 3.2. The 1th conditional interloss mean time

Θ(1)
1 = E

[
T(1) | ν(0) = 1

]
(3.5)

can be found by evaluating the derivative of (3.3) with respect to s in s = 0, as follows:

− d
ds
F∗T(1) (s; 1)|s=0 =

λ + μ
λ2

. (3.6)

In the M/M/1/1 model, the interloss mean time (3.5) is equal to the inverse of the Erlang
loss rate.

Theorem 3.3. The laplace transform of fT(1) (t; 0)

F∗T(1) (s; 0) =
∫∞

0
e−stfT(1) (t; 0)dt (3.7)

satisfies the equation

s2F∗T(1) (s; 0) − λ2 = −
(
2λ + μ

)
sF∗T(1) (s; 0) − λ2F∗T(1) (s; 0), (3.8)

and its explicit value is

F∗T(1) (s; 0) =
λ2

(λ + s)2 + sμ
. (3.9)

Proof. By (2.35), (2.36), and (3.4), the results (3.8) and (3.9) emerge.
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Remark 3.4. The conditional interloss mean time

Θ(0)
1 = E

[
T(1) | ν(0) = 0

]
(3.10)

can be found by evaluating the derivative of (3.9) with respect to s in s = 0, as follows:

− d
ds
F∗T(1) (s; 0)|s=0 = Θ(1)

1 +
1
λ
. (3.11)

Remark 3.5. By (2.41), the result (3.9) can be obtained using (3.3), as follows:

F∗T(1) (s; 0) =
λ

λ + s
F∗T(1) (s; 1). (3.12)

Now, let Tn be the time spent between t = 0 and the nth loss, the conditional density functions

fTn(t; i) =
d

dt
P{Tn < t; i}, (3.13)

with i = 0, 1, can be evaluated by convolutions as follows: if i = 0, we have that

fTn(t; 0) = fτ(1) ∗ fT(1) (t; 1) ∗ · · · ∗ fT(n) (t; 1), (3.14)

while if i = 1, we have that

fTn(t; 1) = fT(1) (t; 1) ∗ · · · ∗ fT(n) (t; 1). (3.15)

By the independence between interloss times, the laplace transforms of (3.14) and (3.15) can
be expressed as power of (3.3) as follows:

(i) if i = 0,

F∗Tn(s; 0) = F∗τ(0)+
∑n

k=1 T(k)
(s; 1) =

λ

λ + s

[
λ(λ + s)

(λ + s)2 + μs

]n
, (3.16)

(ii) if i = 1,

F∗Tn(s; 1) = F∗∑n
k=1 T(k)

(s; 1) =

[
λ(λ + s)

(λ + s)2 + μs

]n
. (3.17)

Remark 3.6. The conditional averages

Θ(i)
n = E[Tn | ν(0) = i], (3.18)
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with i = 0, 1, can be permuted by evaluating the derivatives of (3.16) and (3.17) with respect
to s in s = 0, thus obtaining

(i) if i = 0, we have that

− d
ds
F∗Tn (s; 0)|s=0 = nΘ(1)

1 +
1
λ
, (3.19)

(ii) if i = 1, we have that

− d
ds
F∗Tn (s; 1)|s=0 = nΘ(1)

1 . (3.20)
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