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Let H be a real Hilbert space, let S, T be two nonexpansive mappings such that F(S) ∩ F(T)/=∅,
let f be a contractive mapping, and let A be a strongly positive linear bounded operator on H. In
this paper, we suggest and consider the strong converegence analysis of a new two-step iterative
algorithms for finding the approximate solution of two nonexpansive mappings as xn+1 = βnxn +
(1 − βn)Syn, yn = αnγf(xn) + (I − αnA)Txn, n ≥ 0, where γ > 0 is a real number and {αn}, {βn}
are two sequences in (0, 1) satisfying the following control conditions: (C1) limn→∞ αn = 0, (C3)
0 < lim infn→∞ βn≤ lim supn→∞ βn < 1, then ‖xn+1 − xn‖ → 0. We also discuss several special cases
of this iterative algorithm.
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1. Introduction

Let H be a real Hilbert space. Recall that a mapping f : H → H is a contractive mapping on
H if there exists a constant α ∈ (0, 1) such that

∥
∥f(x) − f

(

y
)∥
∥ ≤ α

∥
∥x − y

∥
∥, x, y ∈ H. (1.1)

We denote byΠ the collection of all contractive mappings onH, that is,

∏

=
{

f : H −→ H is a contractive mapping
}

. (1.2)
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Let T : H → H be a nonexpansive mapping, namely,

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, x, y ∈ H. (1.3)

Iterative algorithms for nonexpansive mappings have recently been applied to solve
convex minimization problems (see [1–4] and the references therein).

A typical problem is to minimize a quadratic function over the closed convex set of the
fixed points of a nonexpansive mapping T on a real Hilbert space H:

min
x∈C

1
2
〈Ax, x〉 − 〈x, b〉, (1.4)

where C is a closed convex set of the fixed points a nonexpansive mapping T on H, b is a
given point inH and A is a linear, symmetric and positive operator.

In [5] (see also [6]), the author proved that the sequence {xn} defined by the iterative
method below with the initial point x0 ∈ H chosen arbitrarily

xn+1 = (1 − αnA)Txn + αnb, n ≥ 0, (1.5)

converges strongly to the unique solution of the minimization problem (1.4) provided the
sequence {αn} satisfies certain control conditions.

On the other hand, Moudafi [3] introduced the viscosity approximation method for
nonexpansive mappings (see also [7] for further developments in both Hilbert and Banach
spaces). Let f be a contractive mapping onH. Starting with an arbitrary initial point x0 ∈ H,
define a sequence {xn} inH recursively by

xn+1 = (1 − αn)Txn + αnf(xn), n ≥ 0, (1.6)

where {αn} is a sequence in (0, 1), which satisfies some suitable control conditions.
Recently, Marino and Xu [8] combined the iterative algorithm (1.5) with the viscosity

approximation algorithm (1.6), considering the following general iterative algorithm:

xn+1 = (I − αnA)Txn + αnγf(xn), n ≥ 0, (1.7)

where 0 < γ < γ/α.
In this paper, we suggest a new iterative method for finding the pair of nonexpansive

mappings. As an application and as special cases, we also obtain some new iterative
algorithms which can be viewed as an improvement of the algorithm of Xu [7] and Marino
and Xu [8]. Also we show that the convergence of the proposed algorithms can be proved
under weaker conditions on the parameter {αn}. In this respect, our results can be considered
as an improvement of the many known results.
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2. Preliminaries

In the sequel, we will make use of the following for our main results:

Lemma 2.1 (see [4]). Let {sn} be a sequence of nonnegative numbers satisfying the condition

sn+1 ≤ (1 − αn)sn + αnβn, n ≥ 0, (2.1)

where {αn}, {βn} are sequences of real numbers such that

(i) {αn} ⊂ [0, 1] and
∑∞

n=0αn = ∞,

(ii) limn→∞βn ≤ 0 or
∑∞

n=0αnβn is convergent.

Then limn→∞sn = 0.

Lemma 2.2 (see [9, 10]). Let {xn} and {yn} be bounded sequences in a Banach space X and {βn} be
a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1. (2.2)

Suppose that xn+1 = (1−βn)yn +βnxn for all n ≥ 0 and lim supn→∞(‖yn+1 −yn‖−‖xn+1 −xn‖) ≤ 0.
Then limn→∞‖yn − xn‖ = 0.

Lemma 2.3 (see [2] (demiclosedness Principle)). Assume that T is a nonexpansive self-mapping
of a closed convex subset C of a Hilbert space H. If T has a fixed point, then I − T is demiclosed, that
is, whenever {xn} is a sequence in C weakly converging to some x ∈ C and the sequence {(I − T)xn}
strongly converges to some y, it follows that (I − T)x = y, where I is the identity operator of H.

Lemma 2.4 (see [8]). Let {xt} be generated by the algorithm xt = tγf(xt) + (I − tA)Txt. Then {xt}
converges strongly as t → 0 to a fixed point x∗ of T which solves the variational inequality

〈(

A − γf
)

x∗, x∗ − x
〉 ≤ 0, x ∈ F(T). (2.3)

Lemma 2.5 (see [8]). Assume A is a strong positive linear bounded operator on a Hilbert space H
with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1 − ργ .

3. Main Results

Let H be a real Hilbert space, let A be a bounded linear operator on H, and let S, T be two
nonexpansive mappings on H such that F(S) ∩ F(T)/=∅. Throughout the rest of this paper,
we always assume that A is strongly positive.

Now, let f ∈ Π with the contraction coefficient 0 < α < 1 and let A be a strongly
positive linear bounded operator with coefficient γ > 0 satisfying 0 < γ < γ/α. We consider
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the following modified iterative algorithm:

xn+1 = βnxn +
(

1 − βn
)

Syn,

yn = αnγf(xn) + (I − αnA)Txn, n ≥ 0,
(3.1)

where γ > 0 is a real number and{αn}, {βn} are two sequences in (0, 1).
First, we prove a useful result concerning iterative algorithm (3.1) as follows.

Lemma 3.1. Let {xn} be a sequence in H generated by the algorithm (3.1) with the sequences {αn}
and {βn} satisfying the following control conditions:

(C1) limn→∞αn = 0,

(C3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Then ‖xn+1 − xn‖ → 0.

Proof. From the control condition (C1), without loss of generality, we may assume that αn ≤
‖A‖−1. First observe that ‖I − αnA‖ ≤ 1 − αnγ by Lemma 2.5.

Now we show that {xn} is bounded. Indeed, for any p ∈ F(S) ∩ F(T),

∥
∥yn − p

∥
∥ =

∥
∥αn

(

γf(xn) −Ap
)

+ (I − αnA)
(

Txn − p
)∥
∥

≤ αn

∥
∥γf(xn) − γf

(

p
)∥
∥ + αn

∥
∥γf

(

p
) −Ap

∥
∥ +

(

1 − αnγ
)∥
∥Txn − p

∥
∥

≤ αnγα
∥
∥xn − p

∥
∥ + αn

∥
∥γf

(

p
) −Ap

∥
∥ +

(

1 − αnγ
)∥
∥xn − p

∥
∥

=
[

1 − (

γ − γα
)

αn

]∥
∥xn − p

∥
∥ + αn

∥
∥γf

(

p
) −Ap

∥
∥.

(3.2)

At the same time,

∥
∥xn+1 − p

∥
∥ =

∥
∥βn

(

xn − p
)

+
(

1 − βn
)(

Syn − p
)∥
∥

≤ βn
∥
∥xn − p

∥
∥ +

(

1 − βn
)∥
∥Syn − p

∥
∥

≤ βn
∥
∥xn − p

∥
∥ +

(

1 − βn
)∥
∥yn − p

∥
∥.

(3.3)

It follows from (3.2) and (3.3) that

∥
∥xn+1 − p

∥
∥ ≤ βn

∥
∥xn − p

∥
∥ +

(

1 − βn
)[

1 − (

γ − γα
)

αn

]∥
∥xn − p

∥
∥

+ αn

(

1 − βn
)∥
∥γf

(

p
) −Ap

∥
∥

=
[

1 − (

γ − γα
)

αn

(

1 − βn
)]∥
∥xn − p

∥
∥

+
(

γ − γα
)

αn

(

1 − βn
)

∥
∥γf

(

p
) −Ap

∥
∥

γ − γα
,

(3.4)
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which implies that

∥
∥xn − p

∥
∥ ≤ max

{

∥
∥x0 − p

∥
∥,

∥
∥γf

(

p
) −Ap

∥
∥

γ − γα

}

, n ≥ 0. (3.5)

Hence {xn} is bounded and so are {ATxn} and {f(xn)}.
From (3.1), we observe that

∥
∥yn+1 − yn

∥
∥ =

∥
∥αn+1γf(xn+1) + (I − αn+1A)Txn+1 − αnγf(xn) − (I − αnA)Txn

∥
∥

=
∥
∥αn+1γ

(

f(xn+1) − f(xn)
)

+ (αn+1 − αn)γf(xn)

+(I − αn+1A)(Txn+1 − Txn) + (αn − αn+1)ATxn‖
≤ αn+1γ

∥
∥f(xn+1) − f(xn)

∥
∥ +

(

1 − αn+1γ
)‖Txn+1 − Txn‖

+ |αn+1 − αn|
(∥
∥γf(xn)

∥
∥ + ‖ATxn‖

)

≤ αn+1γα‖xn+1 − xn‖ +
(

1 − αn+1γ
)‖xn+1 − xn‖

+ |αn+1 − αn|
(∥
∥γf(xn)

∥
∥ + ‖ATxn‖

)

=
[

1 − (

γ − γα
)

αn+1
]‖xn+1 − xn‖ + |αn+1 − αn|

(∥
∥γf(xn)

∥
∥ + ‖ATxn‖

)

.

(3.6)

It follows that

∥
∥Syn+1 − Syn

∥
∥ − ‖xn+1 − xn‖

≤ ∥
∥yn+1 − yn

∥
∥ − ‖xn+1 − xn‖

=
(

γ − γα
)

αn+1‖xn+1 − xn‖ + |αn+1 − αn|
(∥
∥γf(xn)

∥
∥ + ‖ATxn‖

)

,

(3.7)

which implies, from (C1) and the boundedness of {xn}, {f(xn)}, and {ATxn}, that

lim sup
n→∞

(∥
∥Syn+1 − Syn

∥
∥ − ‖xn+1 − xn‖

) ≤ 0. (3.8)

Hence, by Lemma 2.2, we have

∥
∥Syn − xn

∥
∥ −→ 0 as n −→ ∞. (3.9)

Consequently, it follows from (3.1) that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(

1 − βn
)∥
∥Syn − xn

∥
∥ = 0. (3.10)

This completes the proof.
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Remark 3.2. The conclusion ‖xn+1 − xn‖ → 0 is important to prove the strong convergence
of the iterative algorithms which have been extensively studied by many authors, see, for
example, [3, 6, 7].

If we take S = I in (3.1), we have the following iterative algorithm:

xn+1 = βnxn +
(

1 − βn
)

yn,

yn = αnγf(xn) + (I − αnA)Txn, n ≥ 0.
(3.11)

Now we state and prove the strong convergence of iterative scheme (3.11).

Theorem 3.3. Let {xn} be a sequence in H generated by the algorithm (3.11) with the sequences
{αn} and {βn} satisfying the following control conditions:

(C1) limn→∞αn = 0,

(C2) limn→∞αn = ∞,

(C3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Then {xn} converges strongly to a fixed point x∗ of T which solves the variational inequality

〈(A − γf
)

x∗, x∗ − x〉 ≤ 0, x ∈ F(T). (3.12)

Proof. From Lemma 3.1, we have

‖xn+1 − xn‖ −→ 0. (3.13)

On the other hand, we have

‖xn − Txn‖ ≤ ‖xn+1 − xn‖ + ‖xn+1 − Txn‖
= ‖xn+1 − xn‖ +

∥
∥β(xn − Txn) +

(

1 − βn
)(

yn − Txn

)∥
∥

≤ ‖xn+1 − xn‖ + βn‖xn − Txn‖ +
(

1 − βn
)∥
∥yn − Txn

∥
∥

≤ ‖xn+1 − xn‖ + βn‖xn − Txn‖
+
(

1 − βn
)

αn

(∥
∥γf(xn)

∥
∥ + ‖ATxn‖

)

,

(3.14)

that is,

‖xn − Txn‖ ≤ 1
1 − βn

‖xn+1 − xn‖ + αn

(∥
∥γf(xn)

∥
∥ + ‖ATxn‖

)

, (3.15)

this together with (C1), (C3), and (3.13), we obtain

lim
n→∞

‖xn − Txn‖ = 0. (3.16)
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Next, we show that, for any x∗ ∈ F(T),

lim sup
n→∞

〈yn − x∗, γf(x∗) −Ax∗〉 ≤ 0. (3.17)

In fact, we take a subsequence {xnk} of {xn} such that

lim sup
n→∞

〈xn − x∗, γf(x∗) −Ax∗〉 = lim
k→∞

〈xnk − x∗, γf(x∗) −Ax∗〉. (3.18)

Since {xn} is bounded, we may assume that xnk ⇀ z, where “⇀” denotes the weak
convergence. Note that z ∈ F(T) by virtue of Lemma 2.3 and (3.16). It follows from the
variational inequality (2.3) in Lemma 2.4 that

lim sup
n→∞

〈xn − x∗, γf(x∗) −Ax∗〉 = 〈z − x∗, γf(x∗) −Ax∗〉 ≤ 0. (3.19)

By Lemma 3.1 (noting S = I), we have

∥
∥yn − xn

∥
∥ −→ 0. (3.20)

Hence, we get

lim sup
n→∞

〈yn − x∗, γf(x∗) −Ax∗〉 ≤ 0. (3.21)

Finally, we prove that {xn} converges to the point x∗. In fact, from (3.2)we have

∥
∥yn − x∗∥∥ ≤ ‖xn − x∗‖ + αn

∥
∥γf(x∗) −Ax∗∥∥. (3.22)

Therefore, from (3.16), we have

‖xn+1 − x∗‖2 = ∥
∥βn

(

xn − x∗) + (1 − βn
)(

yn − x∗)
∥
∥
2

≤ βn‖xn − x∗‖2 + (

1 − βn
)∥
∥yn − x∗∥∥2

= βn‖xn − x∗‖2 + (

1 − βn
)∥
∥αn(γf

(

xn

) −Ax∗) + (I − αnA)(Txn − x∗)
∥
∥
2

≤ βn‖xn − x∗‖2 + (

1 − βn
)[

(1 − αnγ)
2‖xn − x∗‖2 + 2αn〈γf(xn) −Ax∗, yn − x∗〉

]

=
[

1 − 2αnγ +
(

1 − βn
)

α2
nγ

2
]

‖xn − x∗‖2 + 2αn〈γf(xn) − γf(x∗), yn − x∗〉

+ 2αn〈γf(x∗) −Ax∗, yn − x∗〉
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≤
[

1 − 2αnγ +
(

1 − βn
)

α2
nγ

2
]

‖xn − x∗‖2

+ 2αnγα‖xn − x∗‖∥∥yn − x∗∥∥ + 2αn〈γf(x∗) −Ax∗, yn − x∗〉

≤ [

1 − 2αn

(

γ − γα
)]‖xn − x∗‖2 + (

1 − βn
)

α2
nγ

2‖xn − x∗‖2

+ 2α2
nγα‖xn − x∗‖∥∥γf(x∗) −Ax∗∥∥ + 2αn〈γf(x∗) −Ax∗, yn − x∗〉.

(3.23)

Since {xn}, f(x∗) and Ax∗ are all bounded, we can choose a constant M > 0 such that

1
γ − γα

{(

1 − βn
)

γ2

2
‖xn − x∗‖2 + γα‖xn − x∗‖∥∥γf(x∗) −Ax∗∥∥

}

≤ M, n ≥ 0. (3.24)

It follows from (3.23) that

‖xn+1 − x∗‖2 ≤ [

1 − 2
(

γ − αγ
)

αn

]‖xn − x∗‖2 + 2
(

γ − αγ
)

αnδn, (3.25)

where

δn = αnM +
1

γ − γα
〈γf(x∗) −Ax∗, yn − x∗〉. (3.26)

By (C1) and (3.17), we get

lim sup
n→∞

βn ≤ 0. (3.27)

Now, applying Lemma 2.1 and (3.25), we conclude that xn → x∗. This completes the proof.

Taking T = I in (3.1), we have the following iterative algorithm:

xn+1 = βnxn +
(

1 − βn
)

Syn,

yn = αnγf(xn) + (I − αnA)xn, n ≥ 0.
(3.28)

Now we state and prove the strong convergence of iterative scheme (3.28).

Theorem 3.4. Let {xn} be a sequence in H generated by the algorithm (3.28) with the sequences
{αn} and {βn} satisfying the following control conditions:

(C1) limn→∞αn = 0,

(C2) limn→∞αn = ∞,

(C3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.
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Then {xn} converges strongly to a fixed point x∗ of S which solves the variational inequality

〈(A − γf
)

x∗, x∗ − x〉 ≤ 0, x ∈ F(S). (3.29)

Proof. From Lemma 3.1, we have

∥
∥xn − Syn

∥
∥ −→ 0. (3.30)

Thus, we have

‖xn − Sxn‖ ≤ ∥
∥xn − Syn

∥
∥ +

∥
∥Syn − Sxn

∥
∥

≤ ∥
∥xn − Syn

∥
∥ +

∥
∥yn − xn

∥
∥

≤ ∥
∥xn − Syn

∥
∥ + αn

(∥
∥γf(xn)

∥
∥ + ‖Axn‖

) −→ 0.

(3.31)

By the similar argument as (3.17), we also can prove that

lim sup
n→∞

〈yn − x∗, γf(x∗) −Ax∗〉 ≤ 0. (3.32)

From (3.28), we obtain

‖xn+1 − x∗‖2 = ∥
∥βn

(

xn − x∗) + (1 − βn
)

(Syn − x∗)
∥
∥
2

≤ βn‖xn − x∗‖2 + (

1 − βn
)∥
∥Syn − x∗∥∥2

≤ βn‖xn − x∗‖2 + (

1 − βn
)∥
∥yn − x∗∥∥2

= βn‖xn − x∗‖2 + (

1 − βn
)∥
∥αn(γf

(

xn

) −Ax∗) + (I − αnA)
(

xn − x∗)
∥
∥
2

≤ βn‖xn − x∗‖2 + (

1 − βn
){(

1 − αnγ
)2‖xn − x∗‖2 + 2〈γf(xn) −Ax∗, yn − x∗〉

}

.

(3.33)

The remainder of proof follows from the similar argument of Theorem 3.3. This completes
the proof.

From the above results, we have the following corollaries.

Corollary 3.5. Let {xn} be a sequence inH generated by the following algorithm

xn+1 = βnxn +
(

1 − βn
)

yn,

yn = αnf(xn) + (1 − αn)Txn, n ≥ 0,
(3.34)
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where the sequences {αn} and {βn} satisfy the following control conditions:

(C1) limn→∞αn = 0,

(C2) limn→∞αn = ∞,

(C3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Then {xn} converges strongly to a fixed point x∗ of T which solves the variational inequality

〈(I − f
)

x∗, x∗ − x〉 ≤ 0, x ∈ F(T). (3.35)

Corollary 3.6. Let {xn} be a sequence inH generated by the following algorithm

xn+1 = βnxn +
(

1 − βn
)

Syn,

yn = αnf(xn) + (1 − αn)xn, n ≥ 0,
(3.36)

where the sequences {αn} and {βn} satisfy the following control conditions:

(C1) limn→∞αn = 0,

(C2) limn→∞αn = ∞,

(C3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Then {xn} converges strongly to a fixed point x∗ of S which solves the variational inequality

〈(I − f
)

x∗, x∗ − x〉 ≤ 0, x ∈ F(S). (3.37)

Remark 3.7. Theorems 3.3 and 3.4 provide the strong convergence results of the algorithms
(3.11) and (3.28) by using the control conditions (C1) and (C2), which are weaker conditions
than the previous known ones. In this respect, our results can be considered as an
improvement of the many known results.
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