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The expected number of real zeros of an algebraic polynomial ao+a1x+a2x
2+· · ·+anx

n with random
coefficient aj , j = 0, 1, 2, . . . , n is known. The distribution of the coefficients is often assumed to be
identical albeit allowed to have different classes of distributions. For the nonidentical case, there
has been much interest where the variance of the jth coefficient is var (aj) =

( n
j

)
. It is shown

that this class of polynomials has significantly more zeros than the classical algebraic polynomials
with identical coefficients. However, in the case of nonidentically distributed coefficients it is
analytically necessary to assume that the means of coefficients are zero. In this work we study a
casewhen themoments of the coefficients have both binomial and geometric progression elements.
That is we assume E(aj) =

( n
j

)
μj+1 and var (aj) =

( n
j

)
σ2j . We show how the above expected

number of real zeros is dependent on values of σ2 and μ in various cases.
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1. Origin of Polynomials

Let (Ω,Pr,A) be a fixed probability space, and for ω ∈ Ω let {aj(ω)}n
j=0 be a sequence

of independent identically distributed random variables defined on Ω. There has been
considerable work on obtaining the expected number of real zeros of algebraic

Pn(x,ω) ≡ Pn(x) =
n∑

j=0

aj(ω)xj, (1.1)

and trigonometric
∑n

j=0aj(ω) cos jθ polynomials with random coefficients aj(ω)s. The study
of the random algebraic polynomials was initiated by Kac [1], and the recent works include
[2, 3]. It is shown that under general assumptions for the distribution of coefficients the
expected number of real zeros is asymptotic to (2/π) logn as n → ∞. For the case of
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random trigonometric polynomials, Dunnage [4] obtained the first result which was later
generalized by Wilkins Jr. [5, 6] and recently studied in [7, 8]. It is shown that, again for a
wide class of distributions for the coefficients, there are significantly more real zeros in the
case of trigonometric polynomial compared with the algebraic case. The asymptotic value
for the expected number of zeros for the latter case is 2n/

√
3. Besides the comprehensive

book of Bharucha-Reid and Sambandham [9], the earlier results of general topics on random
polynomials are reviewed in [10].

Motivated by the interesting work of Edelman and Kostlan [11], who, among others,
considered polynomials of the form

∑n
j=0aj(ω)

( n
j

)1/2
xj , [2, 12] obtainedmany characteristics,

like the number of real zeros or the number of maxima of these types of polynomials. This
is interesting as they showed that for this case of nonidentically distributed coefficients
the expected number of real zeros is O(

√
n), which is significantly more than the classical

algebraic case but less than that of trigonometric polynomials. Also in this direction of
nonidentical coefficients, a case in which the mean of coefficients aj(ω) increases with j is
studied in [3, 13]. Now it would be interesting to study a random polynomial formed by
combining the above two distribution laws. It is natural to ask, for instance, what would be
the behavior of Pn(x) in (1.1) if for constants μ and σ the mean and variance of coefficients
are E(aj(ω)) =

( n
j

)
μj+1 and var (aj(ω)) =

( n
j

)
σ2j .

With the latter assumption of the distribution of the coefficients, we first show that
if μ = 0, the expected number of real zeros of Pn(x) denoted by ENn,P (0,∞) ≡ ENn(0,∞)
is independent of σ. The case of nonzero μ is studied in Theorem 1.2. The analysis for the
general case is complicated, and we only give the result for a case that μ = σ2. We prove the
following theorem.

Theorem 1.1. For μ = 0 and σ2 > 0, the expected number of real zeros of Pn(x) is independent of σ2.
That is

ENn(−∞, 0) = ENn(0,∞) =
√
n

2
. (1.2)

The analysis for the case of μ/= 0 would be complicated. Without loss of much
generality and certainly interest, we restrict ourselves to the case of μ = σ2. We prove the
following theorem.

Theorem 1.2. The expected number of real zeros of Pn(x) for different values of μ satisfies

ENn(0,∞)

⎧
⎪⎪⎨

⎪⎪⎩

= O(1), if μ = σ > 1,

∼
(√

n

2

){
1 − arctan

( 2√μ

1 − μ

)}
, if 0 < μ = σ < 1.

(1.3)

For x negative and for every μ = σ2,

ENn(−∞, 0) ∼
√
n

2
. (1.4)
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2. Moments

In order to obtain the expected number of real zeros we use a generalization of the well-
known Kac-Rice formula initiated in [1, 14, 15]. To this end, we need the following moments
of Pn(x) and its dervative P ′

n(x). First, we assume the general assumptions on the means and
the variances of coefficients as stated above. That is, E(aj) =

( n
j

)
μj+1 and var (aj) =

( n
j

)
σ2j .

Since these coefficients are independent, it is easy to show

α = E(Pn(x)) = μ
n∑

j=0

(
n
j

)
(xμ)j = μ(1 + μx)n, (2.1)

β = E(P ′
n(x)) = μ2

n∑

j=0

j

(
n
j

)
(μx)j−1 = nμ2(1 + μx)n−1, (2.2)

A2 = var (Pn(x)) =
n∑

j=0

(
n
j

)
(σx)2j = (1 + σ2x2)n, (2.3)

B2 = var (P ′
n(x)) = σ2

n∑

j=0

j2
(
n
j

)
(σx)2 = nσ2(1 + σ2x2)n−2(1 + nσ2x2), (2.4)

and finally

C = cov (Pn(x), P ′
n(x)) = σ2x

n∑

j=0

j

(
n
j

)
(σx)2j−2 = nσ2x(1 + σ2x2)n−1. (2.5)

Then from (2.3)–(2.5)we can obtain

Δ2 = A2B2 − C2 = nσ2(1 + σ2x2)2n−2. (2.6)

With the above notations, we can now write the Kac-Rice for the expected number of real
zeros of Pn(x) in the interval (a, b) as, see also [10, page 43],

ENn(a, b) = I1(a, b) + I2(a, b), (2.7)

where

I1(a, b) =
∫b

a

Δ
πA2

exp
(
− α2B2 + β2A2 − 2αβC

2Δ2

)
dx, (2.8)

I2(a, b) =
∫b

a

√
2|βA2 − Cα|

πA3
exp

(
− α2

2A2

)
erf

( |βA2 − Cα|√
2AΔ

)
dx, (2.9)

where as usual erf(x) =
∫x
0 exp(−t2)dt. Now we can progress and evaluate further the

following terms required in the Kac-Rice formulae (2.7)–(2.9). From (2.1)–(2.5)we can derive

α2B2 + β2A2 − 2αβC

= nμ2(1 + μx)2n−2(1 + σ2x2)n−2(nσ4x2 + σ2 + 2μxσ2 + μ2x2σ2 + nμ2 − 2nμσ2x).
(2.10)
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This together with (2.6) yields

α2B2 + β2A2 − 2αβC
2Δ2

=
μ2(1 + μx)2n−2{n(σ2x − μ)2 + σ2(1 + μx)2}

2σ2(1 + σ2x2)n
. (2.11)

3. Proof of Theorems

First in the case of μ = 0 from (2.7) and (2.3)–(2.6) by letting y = σx we can show

ENn(0,∞) =
√
n

π

∫∞

0

σ

1 + σ2x2
dx

=
√
n

π

∫∞

0

dy

1 + y2
=

√
n

2
.

(3.1)

This proves Theorem 1.1. Now we proceed with the more general case of μ/= 0. As explained
above, in order to simplify the analysis we let μ = σ2. This yields (2.11) to

α2B2 + β2A2 − 2αβC
2Δ2

= fn(x, μ)gn(x, μ), (3.2)

where

gn(x, μ) = nμ2(x − 1)2 + μ(1 + μx)2, (3.3)

and for all sufficiently large n,

fn(x, μ) =
(1 + μx)2n−2

(1 + μx2)n
∼ (1 + μx)2n

(1 + μx2)n
=
(
1 + μ2x2 + 2μx

1 + μx2

)n

. (3.4)

Now we assume x > 0. Then if we let μ > 1, since

1 + μ2x2 + 2μx
1 + μx2

> 1, (3.5)

we can see that fn(x, μ) → ∞ as n → ∞. Therefore the exponential term that appears in (2.8)
tends to zero exponentially fast. Hence the only contribution to ENn(0,∞) is from I2(0,∞).
In the following, we show that the latter is O(1). To this end, we note that since from the
definition for all x, erf(x) ≤ √

π/2, then

I2(0,∞) <
1√
2π

∫∞

0

βA2 − Cα

A3
exp

(
− α2

2A2

)
dx. (3.6)
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Now we let u = α/A, and since (d/dx)(α/A) = (βA2 − αC)/A3 from (3.6)we obtain

I2(0,∞) <
1√
2π

∫∞

0
exp

(
− u2

2

)
du ≤ 1

2
. (3.7)

This completes the first part of Theorem 1.2. On the other hand, if μ < 1, the behavior of
fn(x, μ) will depend on x. That is for 0 < x < 2/(1 − μ), fn(x, μ) → ∞ as n → ∞ and for
x > 2/(1 − μ), fn(x, μ) → 0 as n → ∞. Therefore the only contribution to ENn(0,∞) from I1
is in the interval (2/(1−μ),∞) as I1(0, 2/(1−μ))will tend to zero exponentially fast. Also for
ν = √

μx,

I1

(
2

1 − μ
,∞

)
∼

√
n

π

∫∞

2/(1−μ)

√
μ

1 + μx2
dx =

√
n

π

∫∞

2/(1−μ)

dν

1 + ν2

∼
(√

n

2

){
1 − arctan

( 2√μ

1 − μ

)}
.

(3.8)

The above argument for I2(0,∞) in (3.7) remains valid, and therefore we have proof of the
first part of Theorem 1.2.

For x < 0 without loss of generality, we only consider the case of μ > 0 (since
μ = σ2). For this case gn(x, μ) remains positive. However, for x2 > ε/μ, where for a =
1 − log logn10/ logn we let ε = n−a, we have, (see also [10, page 31]),

(1 + μx2)n > (1 + ε)n{(1 + n−a)n
a}n1−a

= exp(n1−a) ∼ n10. (3.9)

Hence

fn(x, μ) < (1 + μx2)−n < n−10, (3.10)

which tends to zero very fast as n → ∞. Therefore the exponential term in I1 tends to be one,
and hence

I1

(√
ε

μ
,∞

)
∼
√

n

π

∫∞
√

ε/μ

dx

1 + x2
∼

√
n

2
. (3.11)

Also in the interval (0,
√
ε/μ),

I1

(
0,

√
ε

μ

)
<

∫√ε/μ

0

Δ
πA2

dx <

√
nμ

π

∫√ε/μ

0

dx

1 + μx2
∼

√
n

2π
arctan ε, (3.12)

which is small. This completes the proof of Theorem 1.2.
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