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1. Introduction

The pricing of contingent claims in the continuous-time financial market that consists of a
bank account and a stock account has been a subject of extensive research for the last decades.
In the literature (e.g., [1–5]), the equations that describe the bank account and the price of the
stock are typically written, respectively, as

dB(t) = rB(t)dt, B(0) = x,

dS(t) = αS(t)dt + σS(t)dW(t), S(0) = y,
(1.1)

where W = {W(t), t ≥ 0} is a one-dimensional standard Brownian motion defined on
a complete filtered probability space (Ω, F,P; {F(t), t ≥ 0}) and r, α, and σ are positive
constants that represent, respectively, the interest rate of the bank account, the stock
appreciation rate, and the stock volatility rate. The financial market that consists of one bank
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account and one stock account will be referred to as a (B, S)-market, where B stands for the
bank account and S stands for the stock.

A European option contract is a contract giving the buyer of the contract the right to
buy (sell) a share of a particular stock at a predetermined price at a predetermined time in the
future. The European option problem is, briefly, to determine the fee (called the rational price)
that the writer of the contract should receive from the buyer for the rights of the contract and
also to determine the trading strategy the writer should use to invest this fee in the (B, S)-
market in such a way as to ensure that the writer will be able to cover the option if it is
exercised. The fee should be large enough that the writer can, with riskless investing, cover
the option, but be small enough that the writer does not make an unfair (i.e., riskless) profit.

In [6], we noted reasons to include hereditary price structures to a (B, S)-market model
and then introduced such a model using a functional differential equation to describe the
dynamics of the bank account and a stochastic functional differential equation to describe
those of the stock account. The paper then obtained a solution to the option pricing problem
in terms of conditional expectation with respect to a martingale measure. The importance of
including hereditary price structure in the stock price dynamics was also recognized by other
researchers in recent years (see, e.g., [7–14]).

In particular, [6]was one of the firsts that took into consideration hereditary structure
in studying the pricing problem of European option. There the authors obtained a solution to
the option pricing problem in terms of conditional expectation with respect to a martingale
measure. The two papers [7, 9] developed an explicit formula for pricing European options
when the underlying stock price follows a nonlinear stochastic delay equation with fixed
delays (resp., variable delays) in the drift and diffusion terms. The paper [8] computed the
logarithmic utility of an insider when the financial market is modelled by a stochastic delay
equation. There the author showed that, although the market does not allow free lunches and
is complete, the insider can draw more from his wealth than the regular trader. The paper
also offered an alternative to the anticipating delayed Black-Scholes formula, by proving
stability of European call option proces when the delay coefficients approach the nondelayed
ones. The paper [10] derived the infinite-dimensional Black-Scholes equation for the (B, S)-
market, where the bank account evolves according to a linear (deterministic) functional
differential equation and the stock dynamics is described by a very general nonlinear
stochastic functional differential equation. A power series solution is also developed for
the equation. Following the same model studied in [10], the work in [11] shows that
under very mild conditions the pricing function is the unique viscosity solution of the
infinite-dimensional Black-Scholes equation. A finite difference approximation scheme for
the solution of the equation is developed and convergence result is also obtained.Wemention
here that option pricing problems were also considered by [12–14] for a financial market that
is more restricted than those of [10, 11].

This paper considers the pricing of a European option using a (B, S)-market, such as
those in [6], in which the stock price and the asset in the riskless bank account both have
hereditary price structures. Under the smoothness assumption of the payoff function, it is
shown that the pricing function is the unique classical solution of the infinite-dimensional
Black-Scholes equation. A spectral approximation scheme is developed using the Fourier
series expansion in the space C[−h, 0] for the Black-Scholes equation. It is also shown
that the nth approximant resembles the celebrated classical Black-Scholes equation in finite
dimensions (see, e.g., [4, 5]).

This paper is organized as follows. Section 2 summarizes the definitions and key
results of [6] that will be used throughout this paper. The concepts of Fréchet derivative
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and extended Fréchet derivative are introduced in Section 3, along with results needed to
make use of these derivatives. In Section 4, the results regarding the infinite-dimensional
Black-Scholes equation and its corollary are restated from [6, 10]. Section 5 details the spectral
approximate solution scheme for this equation. Section 6 is the paper’s conclusion, followed
by an appendix with the proof of Proposition 3.2.

2. The European Option Problem with Hereditary Price Structures

To describe the financial model with hereditary price structures, we start by defining our
probability space. Let 0 < h < ∞ be a fixed constant. This constant will be the length of the
time window in which the hereditary information is contained. If a, b ∈ R with a < b, denote
the space of continuous functions φ : [a, b] → R by C[a, b]. Define

C+[a, b] =
{
φ ∈ C[a, b] | φ(θ) ≥ 0 ∀θ ∈ [a, b]

}
. (2.1)

Note that C[a, b] is a real separable Banach space equipped with the uniform topology
defined by the sup-norm ‖φ‖ = supt∈[a,b]|φ(t)| and C+[a, b] is a closed subset of C[a, b].
Throughout the end of this paper, we let C = C[−h, 0] and

C+ =
{
φ ∈ C | φ(θ) ≥ 0 ∀θ ∈ [−h, 0]} (2.2)

for simplicity. If ψ ∈ C[−h,∞) and t ∈ [0,∞), let ψt ∈ C be defined by ψt(θ) = ψ(t + θ),
θ ∈ [−h, 0].

Let Ω = C[−h,∞), the space of continuous functions ω : [−h,∞) → R, and let F =
B(C[−h,∞)), the Borel σ-algebra of subsets of C[−h,∞) under the topology defined by the
metric d : Ω ×Ω → R, where

d
(
ω,ω′) =

∞∑

n=1

1
2n

sup−h≤t≤n|ω(t) −ω′(t)|
1 + sup−h≤t≤n|ω(t) −ω′(t)| . (2.3)

Let P be the Wiener measure defined on (Ω, F)with

P{ω ∈ Ω | ω(θ) = 0 ∀θ ∈ [−h, 0]} = 1. (2.4)

Note that the probability space (Ω, F,P) is the canonical Wiener space under which the
coordinate maps W = {W(t), t ≥ 0}, W(t) : C[−h,∞) → R, defined by W(t)(ω) = ω(t)
for all t ≥ −h and ω ∈ Ω is a standard Brownian motion and P{W0 = 0} = 1. Let the filtration
FW = {F(t), t ≥ −h} be the P-augmentation of the natural filtration of the Brownian motion
W , defined by F(t) = {∅,Ω} for all t ∈ [−h, 0] and

F(t) = σ(W(s), 0 ≤ s ≤ t), t ≥ 0. (2.5)

Equivalently, F(t) is the smallest sub-σ-algebra of subsets of Ω with respect to which
the mappingsW(s) : Ω → R are measurable for all 0 ≤ s ≤ t. It is clear that the filtration FW
defined above is right continuous in the sense of [15].
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Consider the C-valued process {Wt, t ≥ 0}, where W0 = 0 and Wt(θ) = W(t + θ),
θ ∈ [−h, 0] for all t ≥ 0. That is, for each t ≥ 0,Wt(ω) = ωt andW0 = 0. In [10], it is shown that
F0 = F(t) for t ∈ [−h, 0] and F(t) = Ft for t ≥ 0, where

Ft = σ(Ws, 0 ≤ s ≤ t), t ≥ 0. (2.6)

The newmodel for the (B, S)-market introduced in [6] has a hereditary price structure
in the sense that the rate of change of the unit price of the investor’s assets in the bank account
B and that of the stock account S depend not only on the current unit price but also on their
historical prices. Specifically, we assume that B and S evolve according to the following two
linear functional differential equations:

dB(t) = L(Bt)dt, t ≥ 0, (2.7)

dS(t) =M(St)dt +N(St)dW(t), t ≥ 0, (2.8)

with initial price functions B0 = φ and S0 = ψ, where φ and ψ are given functions in C+. In the
model, L,M, andN are bounded linear functionals on the real Banach space C. The bounded
linear functionals L,M,N : C → R can be represented as (see [6])

L
(
φ
)
=
∫0

−h
φ(θ)dη(θ),

M
(
φ
)
=
∫0

−h
φ(θ)dξ(θ),

(2.9)

N
(
φ
)
=
∫0

−h
φ(θ)dζ(θ), φ ∈ C, (2.10)

where the above integrals are to be interpreted as Lebesgue-Stieltjes integrals and η, ξ, and ζ
are functions that are assumed to satisfy the following conditions.

Assumption 2.1. The functions η, ξ : [−h, 0] → R, are nondecreasing functions on [−h, 0] such
that η(0) − η(−h) > 0 and ξ(0) − ξ(−h) > 0, and the function ζ : [−h, 0] → R is a function of
bounded variation on [−h, 0] such that

∫0
−hφ(θ)dζ(θ) ≥ σ > 0 for every φ ∈ C+.

We will, throughout the end, extend the domain of the above three functions to R by
defining η(θ) = η(−h) for θ ≤ −h and η(θ) = η(0) for θ ≥ 0, and so forth.

Proposition 2.3 in [6] provides an existence and uniqueness result under mild
conditions, so the model makes sense mathematically to use. Note that the equations
described by (2.7)-(2.8) include (1.1) as a special case. Therefore, the model considered in
this paper is a generalization of that considered in most of the existing literature (see, e.g.,
[5]).
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For the purpose of analyzing the discount rate for the bank account, let us assume that
the solution process B(L;φ) = {B(t), −h ≤ t < ∞} of (2.7) with the initial function φ ∈ C+

takes the following form:

B(t) = φ(0)ert, t ≥ 0, (2.11)

and B0 = φ ∈ C+. Then the constant r satisfies the following equation:

r =
∫0

−h
erθdη(θ). (2.12)

The existence and uniqueness of a positive number r that satisfies the above equation is
shown in [6].

Throughout the end, we will fix the initial unit price functions φ, and ψ ∈ C+, and the
functional N : C → R for the stock price described in (2.8) and (2.10). For the purpose of
making the distinction when we interchange the usage of M : C → R and L : C → R in
(2.8), we write the stock price process S(M,N;ψ) as S(M) = {S(t), t ≥ −h} for simplicity.
And, when the functional K : C → R, K(φt) = rφ(t) is used in place ofM : C → R in (2.8),
its solution process will be written as S(K) = {S(t), t ≥ −h}.

In [6], the basic theory of European option pricing using the (B, S)-market model
described in (2.7)-(2.8) is developed. We summarize the key definitions and results below.

A trading strategy in the (B, S)-market is a progressively measurable vector process
π = {(π1(t), π2(t)), 0 ≤ t <∞} defined on (Ω, F,P;FW) such that for each a > 0,

∫a

0
E
[
π2
i (t)
]
dt <∞, i = 1, 2, (2.13)

where π1(t) and π2(t) represent, respectively, the number of units of the bank account and
the number of shares of the stock owned by the writer at time t ≥ 0, and E is the expectation
with respect to P.

The writer’s total asset is described by the wealth processXπ(M) = {Xπ(t), 0 ≤ t <∞}
defined by

Xπ(t) = π1(t)B(t) + π2(t)S(t), 0 ≤ t <∞, (2.14)

where again B(L;φ) and S(M,N;ψ) are, respectively, the unit price of the bank account and
the stock described in (2.7) and (2.8). This wealth process can clearly take both positive and
negative values, since it is permissible that (π1(t), π2(t)) ∈ R2.

We will make the following basic assumption throughout this paper.

Assumption 2.2 (self-financing condition). In the (B, S)-market, it is assumed that all trading
strategies π satisfy the following self-financing condition:

Xπ(t) = Xπ(0) +
∫ t

0
π1(s)dB(s) +

∫ t

0
π2(s)dS(s), 0 ≤ t <∞, a.s. (2.15)
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or equivalently,

dXπ(t) = π1(t)dB(t) + π2(t)dS(t), 0 ≤ t <∞. (2.16)

Using the same notation as in [6] (see also [10]) the set of all self-financing trading
strategies π will be denoted by SF(L,M,N;φ, ψ) or simply SF if there is no danger of
ambiguity.

For the unit price of the bank account B(L;φ) = {B(t), t ≥ 0} and the stock
S(M,N;ψ) = {S(t), t ≥ 0} described in (2.7) and (2.8), define

W̃(t) =W(t) +
∫ t

0
γ(Bs, Ss)ds, t ≥ 0, (2.17)

where γ : C+ × C+ → R is defined by

γ
(
φ, ψ
)
=
φ(0)M

(
ψ
) − ψ(0)L(φ)

φ(0)N
(
ψ
) . (2.18)

Define the process Z(L,M,N;φ, ψ) = {Z(t), t ≥ 0} by

Z(t) = exp

{∫ t

0
γ(Bs, Ss)dW(s) − 1

2

∫ t

0

∣∣γ(Bs, Ss)
∣∣2ds

}

, t ≥ 0. (2.19)

The following results are proven in [6].

Lemma 2.3. The process Z(L,M,N;φ, ψ) = {Z(t), t ≥ 0} defined by (2.19) is a martingale defined
on (Ω, F,P;FW).

Lemma 2.4. There exists a unique probability measure P̃ defined on the canonical measurable space
(Ω, F) such that

P̃(A) = E[1AZ(T)] ∀A ∈ FT , 0 < T <∞, (2.20)

where 1A is the indicator function of A ∈ FT .

Lemma 2.5. The process W̃ defined by (2.17) is a standard Brownian motion defined on the filtered
probability space (Ω, F, P̃;FW).

From the above, it has been shown (see [6, equation (14)]) that

dS(t) = rS(t)dt +N(St)dW̃(t), (2.21)

with S0 = ψ ∈ C+. It is also clear that the probabilistic behavior of S(M) under the probability
measure P is the same as that of S(K) under the probability measure P̃; that is, they have the
same distribution.
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Define the process Yπ(L,M,N;φ, ψ) = {Yπ(t), t ≥ 0}, called the discounted wealth
process, by

Yπ(t) =
Xπ(t)
B(t)

, t ≥ 0. (2.22)

We say that a trading strategy π from SF(L,M,N;φ, ψ) belongs to a subclass SFς ⊂ SF if P̃ a.s.

Yπ(t) ≥ −Ẽ[ς | Ft], t ≥ 0, (2.23)

where Ẽ is the expectationwith respect to P̃, ς is a nonnegative F-measurable random variable
such that Ẽ[ς] <∞. We say that π belongs to SF+ ⊂ SF if ς ≥ 0.

In [6, 10], it is shown that Yπ is a local martingale; for π ∈ SFς, Yπ is a supermartingale,
and is a nonnegative supermartingale if π ∈ SF+.

Throughout, we assume the reward function Λ is an FT -measurable nonnegative
random variable satisfying the following condition:

E
[
Λ1+ε

]
<∞, (2.24)

for some ε > 0. Here, T > 0 is the expiration time. (Note that the above condition on Λ implies
that Ẽ[Λ] <∞.)

Let Λ be a nonnegative FT -measurable random variable satisfying (2.24). A trading
strategy π ∈ SF is a (M;Λ, x)-hedge of European type if

Xπ(0) = π1(0)φ(0) + π2(0)ψ(0) = x (2.25)

and P̃ a.s.

Xπ(T) ≥ Λ. (2.26)

We say that a (M;Λ, x)-hedge trading strategy π∗ ∈ SF(M) is minimal if

Xπ(T) ≥ Xπ∗
(T) (2.27)

for any (M;Λ, x)-hedge strategy π ∈ SF(M).
Let Π(M;Λ, x) be the set of (M;Λ, x)-hedge strategies from SF+(M). Define

C(M;Λ) = inf{x ≥ 0 : Π(M;Λ, x)/= ∅}. (2.28)

The value C(M;Λ) defined above is called the rational price of the contingent claim of
European type. If the infimum in (2.28) is achieved, then C(M;Λ) is the minimal possible
initial capital for which there exists a trading strategy π ∈ SF+(M) possessing the property
that P̃ a.s. Xπ(T) ≥ Λ.
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Let Y (M) = {Y (t), 0 ≤ t ≤ T} be defined by

Y (t) = Ẽ
[

Λ
B(T)

| F̃t
]
, 0 ≤ t ≤ T, (2.29)

where F̃t = σ(W̃s, 0 ≤ s ≤ t). In [10], it is shown that the process Y (M) is a martingale
defined on (Ω, F, P̃;FW̃) and can be represented by

Y (t) = Y (0) +
∫ t

0
β(s)dW̃(s), (2.30)

where β = {β(t), 0 ≤ t ≤ T} that is FW̃ -adapted and
∫T
0β

2(t)dt <∞ (P a.s.).
The following lemma and theorem provide the main results of [6, 10]. Let π∗ =

{(π∗
1(t), π

∗
2(t)), 0 ≤ t ≤ T} be a trading strategy, where

π∗
2(t) =

β(t)B(t)
N(St)

,

π∗
1(t) = Y (t) −

S(t)
B(t)

π∗
2(t), t ∈ [0, T].

(2.31)

Lemma 2.6. π∗ ∈ SF(M) and for each t ∈ [0, T], Y (t) = Yπ∗
(t) for each t ∈ [0, T] where again Yπ∗

is the process defined in (2.22) with the minimal strategy π∗ defined in (2.31).

Theorem 2.7. Let Λ be an FT -measurable random variable defined on the filtered probability space
(Ω, F,P;FW) that satisfies (2.24). Then the rational price C(M;Λ) defined in (2.28) is given by

C(M;Λ) = Ẽ
[
e−rTΛ

]
, (2.32)

where r is the positive constant that satisfies (2.12). Furthermore, there exists a minimal hedge π∗ =
{(π∗

1(t), π
∗
2(t)), 0 ≤ t ≤ T}, where

π∗
2(t) =

β(t)B(t)
N(St)

,

π∗
1(t) = Y

π∗
(t) − π∗

2(t)
S(t)
B(t)

,

(2.33)

and the process β = {β(t), 0 ≤ t ≤ T} is given by (2.30).
If in addition, the reward Λ is intrinsic, that is, Λ = Γ(S(M)) for some measurable function

Γ : C+ → R, then the rational price C(M;Λ) does not depend on the mean growth rate M of the
stock and

C(Λ) = Ẽ
[
e−rTΛ

]
. (2.34)
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3. Fréchet and Extended Fréchet Derivatives

In this section, results are proven that allow the use of a Dynkins formula for stochastic
functional differential equation as found in [16, 17]. We assume contingent claims of
European type in which the FT -measurable reward function Λ has the explicit expression
Λ = f(ST ), where again ST (θ) = S(T + θ), θ ∈ [−h, 0] and S(K) = {S(t), t ≥ 0} is the unit
price of the stock described by the following equation:

dS(t) = rS(t)dt +N(St)dW̃(t), t ≥ 0, (3.1)

where S0 = ψ ∈ C+. Throughout this section, we assume that S(t), and therefore N(St), are
uniformly bounded almost surely. This assumption is realistic for the price of a stock during
time interval [0, T] in a financial system with finite total wealth.

The remaining sections make extensive use of Fréchet derivatives. Let C∗ be the space
of bounded linear functionals Φ : C → R. C∗ is a real separable Banach space under the
supremum operator norm

‖Φ‖ = sup
φ/= 0

∣∣Φ
(
φ
)∣∣

∥∥φ
∥∥ . (3.2)

For Ψ : [0, T] × C → R, we denote the Fréchet derivative of Ψ at φ ∈ C by DΨ(t, φ). The
second Fréchet derivative at φ is denoted as D2Ψ(t, φ).

Let Γ be the vector space of all simple functions of the form v1{0}, where v ∈ R and
1{0} : [−h, 0] → R is defined by

1{0}(θ) =

⎧
⎨

⎩

0, for θ ∈ [−h, 0),
1, for θ = 0.

(3.3)

Form the direct sum C ⊕ Γ and equip it with the complete norm

∥∥φ + v1{0}
∥∥ = sup

θ∈[−h,0]

∣∣φ(θ)
∣∣ + |v|, φ ∈ C, v ∈ R. (3.4)

ThenDΨ(t, φ) has a unique continuous linear extension fromC⊕Γ to R which we will denote
by DΨ(t, φ), and similarly for D2Ψ(t, φ); see [16] or [17] for more details.

Finally, we define

G(Ψ)
(
t, ψ̃t
)
= lim

u→ 0+

1
u

[
Ψ
(
t, ψ̃t+u

) −Ψ
(
t, ψ̃t
)]

(3.5)

for all t ∈ [0,∞) and ψ ∈ C+, where ψ̃ : [−h,∞) → R is defined by

ψ̃(t) =

⎧
⎨

⎩

ψ(t) if t ∈ [−h, 0)
ψ(0) if t ≥ 0.

(3.6)



10 Journal of Applied Mathematics and Stochastic Analysis

Let f : C → R. We say that f ∈ C1(C) if f has a continuous Fréchet derivative. Similarly,
f ∈ Cn(C) if f has a continuous nth Fréchet derivative. For f : R+ × C → R, we say that
f ∈ C∞,n([0,∞) × C) if f is infinitely differentiable in its first variable and has a continuous
nth partial derivative in its second variable.

Proposition 3.1. Let ϕ ∈ C and f : C → R with f ∈ C2(C). Define Ψ : [0, T] × C → R by

Ψ
(
t, ϕ
)
= e−r(T−t)Ẽ

[
f(ST ) | St = ϕ

]
. (3.7)

Then Ψ ∈ C∞,2([0,∞) × C).

Proof. That e−r(T−t) is C∞[0,∞) is clear, so we have only to show that Υ ∈ C2(C), where Υ(ϕ) =
Ẽ[f(ST ) | St = ϕ] given that f ∈ C2(C).

We have that

dS(t) = rS(t)dt +N(St)dW̃(t), t ≥ 0, (3.8)

with S0 = ψ ∈ C+. Under Assumption 2.1 on N : C → R and the properties of Υ, it can be
shown that there existsH : R × R × C → C such that St = H(t, W̃(t), ψ). Therefore,

Υ
(
ϕ
)
= Ẽ
[
f(ST ) | St = ϕ

]

=
1√
2π

∫∞

−∞
f
(
H
(
T − t, y, ϕ))e−y2/2dy.

(3.9)

By Theorem 3.2, Chapter 2 of [16], H(t, y, ·) ∈ C1(C) as a function of ψ. By a second
application of the same theorem (since f ∈ C2(C)), we have that H(t, y, ·) ∈ C2(C) as a
function of ψ. Define g : R×R×C → R by g = f ◦H. Since f ∈ C2(C) andH(t, y, ·) ∈ C2(C)
in its third variable, g(t, y, ·) ∈ C2(C). Hence, for ϕ, φ ∈ C,

Ẽ
[
f(ST ) | St = ϕ + φ

] − Ẽ
[
f(ST ) | St = ϕ

]

=
1√
2π

∫∞

−∞

[
f
(
H
(
T − t, y, ϕ + φ

)) − f(H(T − t, y, ϕ))]e−y2/2dy

=
1√
2π

∫∞

−∞
Dg
(
T − t, y, ϕ)(φ)e−y2/2dy +

1√
2π

∫∞

−∞
o
(
φ
)
e−y

2/2dy,

(3.10)

where o(φ) is a function mapping continuous functions into the reals such that

o
(
φ
)

‖φ‖ −→ 0 as ‖φ‖ −→ 0. (3.11)

The last integral is clearly o(φ) and

1√
2π

∫∞

−∞
Dg
(
T − t, y, ϕ)(φ)e−y2/2dy (3.12)
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is bounded and linear in φ, so this integral is the first Fréchet derivative with respect to ϕ.
Since g(t, y, ·) ∈ C2(C), the process can be repeated, giving a second Fréchet derivative with
respect to ϕ and so Υ ∈ C2(C).

Proposition 3.2. Let ϕ ∈ C and f : C → R. Further assume f ∈ C2(C) and letΨ : [0, T]×C → R

be defined by

Ψ
(
t, ϕ
)
= e−r(T−t)Ẽ

[
f(ST ) | St = ϕ

]
. (3.13)

Then if Df and D2f are globally Lipschitz, then so is D2Ψ.

Recall from Proposition 3.1 that g : R × R × C → R is f ◦H where St = H(t, W̃(t), ψ)
with S0 = ψ ∈ C+.

Proposition 3.3. Let ϕ ∈ C and f : C → R. Further assume f ∈ C2(C) and letΨ : [0, T]×C → R

be defined by

Ψ
(
t, ϕ
)
= e−r(T−t)Ẽ

[
f(ST ) | St = ϕ

]
. (3.14)

Then if f and G(g)(T − t, y, ψ̃t) are globally bounded, then so isG(Ψ)(t, ψ̃t).

Proof. We have that

G(Ψ)
(
t, ψ̃t
)
= lim

u→ 0+

1
u

[
Ψ
(
t, ψ̃t+u

) −Ψ
(
t, ψ̃t
)]

= lim
u→ 0+

1
u

1√
2π

∫∞

−∞

[
g
(
T − t, y, ψ̃t+u

) − g(T − t, y, ψ̃t
)]
e−y

2/2dy

=
1√
2π

∫∞

−∞
lim
u→ 0+

1
u

[
g
(
T − t, y, ψ̃t+u

) − g(T − t, y, ψ̃t
)]
e−y

2/2dy

≤ 1√
2π

∫∞

−∞
Me−y

2/2dy

=M <∞,

(3.15)

where we used the assumption that f and hence g are globally bounded to move the limit
inside the integral and G(g)(T − t, y, ψ̃t) ≤M <∞.

Remark 3.4. Note that since G(Ψ)(ψ̃s) is bounded for all s ∈ [0, T],
∫ t
0DΨ(s, ψ̃s)(dψ̃s) exits.

Also, if D2f is bounded,
∫ t
0D

2Ψ(s, ψ̃s)(dψ̃s, dψ̃s) exits (see [18]).

4. The Infinite-Dimensional Black-Scholes Equation

It is known (e.g., [4, 5]) that the classical Black-Scholes equation is a deterministic parabolic
partial differential equation (with a suitable auxiliary condition) the solution of which gives
the value of the European option contract at a given time. Propositions 3.1 through 3.3 allow
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us to use the Dynkin formula in [16]. With it, a generalized version of the classical Black-
Scholes equation can be derived for when the (B, S)-market model is (2.7) and (2.8). The
following theorem is a restatement of Theorem 3.1 in [10].

Theorem 4.1. Let Ψ(t, ϕ) = e−r(T−t)Ẽ[f(ST ) | St = ϕ], where S0 = ψ ∈ C+ and t ∈ [0, T]. Let f be
a C2(C) function with Df and D2f globally Lipschitz and let Λ = f(ST ) and x = Xπ∗

(0). Finally,
let f and G(g)(T − t, y, ψ̃t) be globally bounded. Then if Xπ∗

(t) = Ψ(t, St) is the wealth process for
the minimal (Λ, x)-hedge, one has

rΨ
(
t, ϕ
)
=
∂

∂t
Ψ
(
t, ϕ
)
+G(Ψ)

(
t, ϕ̃t
)
+DΨ

(
t, ϕ
)(
rϕ(0)1{0}

)

+
1
2
D2Ψ

(
t, ϕ
)(
N
(
ϕ
)
1{0},N

(
ϕ
)
1{0}
)
, a.s. ∀(t, ϕ) ∈ [0, T) × C+,

(4.1)

where

Ψ
(
T, ϕ
)
= f
(
ϕ
) ∀ϕ ∈ C+, (4.2)

and the trading strategy (π∗
1(t), π

∗
2(t)) is defined by

π∗
2(t) = DΨ

(
t, ϕ
)(
1{0}
)

a.s.,

π∗
1(t) =

1
B(t)

[
Xπ∗

(t) − ϕ(0)π∗
2(t)
]
.

(4.3)

Furthermore, if (4.1) and (4.2) hold, then Ψ(t, St) is the wealth process for the (Λ, x)-hedge with
π∗
2(t) = DΨ(t, St)(1{0}) and π∗

1(t) = (1/B(t))[Xπ∗
(t) − S(t)π∗

2(t)].

Proof. The theorem is a restatement of Theorem 3.1 in [10] and is therefore omitted.

Note

Equations (4.1) and (4.2) are the generalized Black-Scholes equation for the (B, S)-market
with hereditary price structure as described by (2.7) and (2.8).

5. Approximation of Solutions

In this section, wewill solve the generalized Black-Scholes equation (4.1)-(4.2) by considering
a sequence of approximations of its solution. By a (classical) solution to (4.1)-(4.2), we mean
Ψ : [0, T] × C → R satisfying the following conditions:

(i) Ψ ∈ C1,2([0, T] × C),

(ii) Ψ(T, ϕ) = f(ϕ) for all ϕ ∈ C,

(iii) Ψ satisfies (4.1).

The sequence of approximate solutions is constructed by looking at finite-dimensional
subspaces of C, solving (4.1)-(4.2) on these subspaces, and then showing that as the
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dimension of the subspaces goes to infinity, the finite-dimensional solutions converge to
a solution of the original problem. Theorem 5.2, Remark 5.3, and Corollary 5.4 show that
the generalized Black-Scholes equation can be solved by solving two simpler equations.
The first of these, a first-order partial differential equation, can be handled by traditional
techniques once the second equation is solved. Theorem 5.5 provides a solution to the second.
Proposition 5.7, which uses Lemma 5.6, gives a generalized Black-Scholes formula for the
standard European call option when used in conjunction with Theorem 5.2.

We start by noting that C ⊂ L2[−h, 0] where L2[−h, 0] is the space of all square-
integrable functions on the interval [−h, 0]. Furthermore, C is dense in L2[−h, 0]. It is well
known (e.g., [19]) that even extensions of a function ϕ in L2[−h, 0] may be represented by a
cosine Fourier series where

∥
∥
∥
∥
∥
ϕ −

N∑

i=0

ai cos
(
2πi·
h

)∥∥
∥
∥
∥
2

−→ 0 (5.1)

asN → ∞ where

a0 =
1
h

∫0

−h
ϕ(θ)dθ,

ai =
2
h

∫0

−h
ϕ(θ) cos

(
2πiθ
h

)
dθ, i = 1, 2, 3, . . . .

(5.2)

Here,

∥∥f
∥∥2
2 =
∫0

−h
f2(θ)dθ (5.3)

for f ∈ L2[−h, 0]. If ϕ is Hölder-continuous, then the convergence is also point wise (see, e.g.,
[20]).

Throughout this section, we let L2
n[−h, 0] be the subspace of L2[−h, 0] consisting of

functions that can be represented as a finite Fourier series, that is, ϕ(n) ∈ L2
n[−h, 0] if

ϕ(n)(θ) =
n∑

i=0

ai cos
(
2πiθ
h

)
(5.4)

for all θ ∈ [−h, 0].
We will see that it is convenient having a spanning set {fi}∞i=0 for L2

n[−h, 0] where fi :
[−h, 0] → R for i = 0, 1, . . . such that fi(0) = 1 for all i and N(fi) =

∫0
−hfi(θ)dζ(θ) = δ for all

i. Here, δ =
∫0
−hdζ(θ) ∈ R. Let q : [−h, 0] → R be any function such thatN(q) = q(0)/= 0. For

example, let

q(θ) = 1 +
1 − δ − d2

d1
θ + θ2, (5.5)
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where d1 =
∫0
−hθdζ(θ) and d2 =

∫0
−hθ

2dζ(θ). To this end, we define the following functions.
Let

f0(θ) = 1 ∀θ ∈ [−h, 0],
f1(θ) = α1,1 + α1,2q(θ) ∀θ ∈ [−h, 0],

f2(θ) = α2,1q(θ) + α2,2 cos
(
2πθ
h

)
∀θ ∈ [−h, 0],

(5.6)

and for i = 3, 4, . . .,

fi(θ) = αi,1 cos
(
2π(i − 2)θ

h

)
+ αi,2 cos

(
2π(i − 1)θ

h

)
∀θ ∈ [−h, 0]. (5.7)

Recall thatN : L2[−h, 0] → R is defined by

N
(
ϕ
)
=
∫0

−h
ϕ(θ)dζ(θ), (5.8)

and let

ci =N
(
cos
(
2πi·
h

))
=
∫0

−h
cos
(
2πiθ
h

)
dζ(θ). (5.9)

Here again q : [−h, 0] → R is any function such thatN(q) = q(0)/= 0. For example, q can be
chosen as in (5.5). In this case, the constant α1,2 is nonzero but otherwise arbitrary,

α1,1 = 1 − α1,2q(0),

α2,1 =
δ − c1

q(0)(1 − c1) ,

α2,2 = 1 − α2,1q(0),

(5.10)

and so on with

αi,2 =
δ − ci−2
ci−1 − ci−2 ,

αi,1 = 1 − αi,2
(5.11)

for i ≥ 3.
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Lemma 5.1. The set {fi}∞i=0 defined in (5.6) and (5.7) forms a spanning set for L2[−h, 0] in the sense
that

∥
∥
∥
∥
∥
ϕ −

n+1∑

i=0

xifi

∥
∥
∥
∥
∥
2

−→ 0 (5.12)

as n → ∞, where the xi are defined by

xn+1 =
an

αn+1,2
,

xn =
an−1 − xn+1αn+1,1

αn,2
,

(5.13)

and continuing using

xi =
ai−1 − xi+1αi+1,1

αi,2
(5.14)

until

x1 = −x2α2,1
α1,2

,

x0 = a0 − x1α1,1.
(5.15)

This set of functions has the properties that fi(0) = 1 andN(fi) = δ for all i = 0, 1, . . . .

Proof. For any ϕ ∈ L2[−h, 0], we can construct an even extension φ ∈ L2[−h, h] where φ(θ) =
ϕ(θ) for all θ ∈ [−h, 0] and φ(θ) = ϕ(−θ) for all θ ∈ [0, h]. The function φ may be represented
by a Fourier series of cosine functions

φ(θ) ∼
N∑

i=0

ai cos
(
2πiθ
h

)
, (5.16)

where the “∼” is used to indicate that

∥∥∥∥∥
φ −

N∑

i=0

ai cos
(
2πi·
h

)∥∥∥∥∥
2

−→ 0 (5.17)

asN → ∞. In what mentioned before,

a0 =
1
h

∫0

−h
φ(θ)dθ,

ai =
2
h

∫0

−h
φ(θ) cos

(
2πiθ
h

)
dθ

(5.18)
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for all i = 1, 2, . . . . For simplicity, we will replace the “∼” with an equality sign knowing that
mean-square convergence is implied.

For the Fourier series, the basis is

{
cos
(
2πiθ
h

)}∞

i=0
, (5.19)

so the first term of this basis and {fi}∞i=0 are the same, namely, the constant “1.” Clearly f0(0) =
1 and N(f0) = δ. The first part of this proof is to show that for all i = 0, 1, . . ., fi(0) = 1 and
N(fi) = δ.

For f1, we have that f1(0) = α1,1 + α1,2q(0) = 1 which implies that

α1,1 = 1 − α1,2q(0). (5.20)

Also,N(f1) = α1,1δ + α1,2N(q) = δ. Since we do not want α1,2 = 0, we require that

N
(
q
)
= q(0). (5.21)

There are no restrictions on α1,2 other than α1,2 /= 0.
For f2, α2,1q(0) + α2,2 = 1 requires that

α2,2 = 1 − α2,1q(0). (5.22)

Since we want α2,1N(q) + α2,2c1 = δ, then

α2,1 =
δ − c1

N
(
q
) − q(0)c1

=
δ − c1

q(0)(1 − c1) . (5.23)

The rest of the fi, that is, where i ≥ 3, are handled alike. In order that fi(0) = 1, we
require that αi,1 = 1 − αi,2. To ensure thatN(fi) = δ,

αi,2 =
δ − ci−2
ci−1 − ci−2 .

(5.24)

We have now shown that the sequence of functions {fi}∞i=0 is such that fi(0) = 1 andN(fi) = δ
for all i = 0, 1, . . . . Now it must be shown that this sequence is a spanning set for L2[−h, 0].
To do this, we will compare this sequence of functions with the cosine Fourier sequence of
functions.

Consider ϕ(n) : [−h, 0] → R where

ϕ(n)(θ) =
n∑

i=0

ai cos
(
2πiθ
h

)
. (5.25)
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We would like

ϕ(n)(θ) =
n+1∑

i=0

xifi(θ) (5.26)

for some set {xi}n+1i=0 of real numbers. By the Fourier expansion,

ϕ(n)(θ) = a0 + a1 cos
(
2πθ
h

)
+ · · · + an cos

(
2πnθ
h

)
. (5.27)

We want {xi}n+1i=0 where

ϕ(n)(θ) = x0 + x1
(
α1,1 + α1,2q(θ)

)

+ x2
(
α2,1q(θ) + α2,2 cos

(
2πθ
h

))

+ x3
(
α3,1 cos

(
2πθ
h

)
+ α3,2 cos

(
4πθ
h

))

+ · · · + xn
(
αn,1 cos

(
2π(n − 2)θ

h

)
+ αn,2 cos

(
2π(n − 1)θ

h

))

+ xn+1
(
αn+1,1 cos

(
2π(n − 1)θ

h

)
+ αn+1,2 cos

(
2πnθ
h

))

= (x0 + x1α1,1) + q(θ)(x1α1,2 + x2α2,1)

+ cos
(
2πθ
h

)
(x2α2,2 + x3α3,1)

+ · · · + cos
(
2πiθ
h

)
(xi+1αi+1,2 + xi+2αi+2,1)

+ · · · + cos
(
2π(n − 1)θ

h

)
(xnαn,2 + xn+1αn+1,1)

+ cos
(
2πnθ
h

)
(xn+1αn+1,2).

(5.28)

Equating the last coefficients gives

xn+1 =
an

αn+1,2
,

xn =
an−1 − xn+1αn+1,1

αn,2
.

(5.29)
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Continuing,

xi =
ai−1 − xi+1αi+1,1

αi,2
, (5.30)

and finally

x1 = −x2α2,1
α1,2

,

x0 = a0 − x1α1,1.
(5.31)

Hence, with the above choice of {xi}n+1i=0 ,

n∑

i=0

ai cos
(
2πiθ
h

)
=

n+1∑

i=0

xifi(θ), (5.32)

and so

∥∥∥∥∥
ϕ −

n+1∑

i=0

xifi

∥∥∥∥∥
2

=

∥∥∥∥∥
ϕ −

n+1∑

i=0

xifi +
n∑

i=0

ai cos
(
2πi·
h

)
−

n∑

i=0

ai cos
(
2πi·
h

)∥∥∥∥∥
2

=

∥∥∥∥∥
ϕ −

n∑

i=0

ai cos
(
2πi·
h

)
+

n∑

i=0

ai cos
(
2πi·
h

)
−
n+1∑

i=0

xifi

∥∥∥∥∥
2

≤
∥∥∥∥∥
ϕ −

n∑

i=0

ai cos
(
2πi·
h

)∥∥∥∥∥
2

+

∥∥∥∥∥

n∑

i=0

ai cos
(
2πi·
h

)
−
n+1∑

i=0

xifi

∥∥∥∥∥
2

=

∥∥∥∥∥
ϕ −

n∑

i=0

ai cos
(
2πi·
h

)∥∥∥∥∥
2

−→ 0

(5.33)

as n → ∞.

To find an approximate solution to the generalized Black-Scholes equation we start by
letting Xπ∗

(t) = Ẽ[f(ST ) | St = ϕ] (from [6]) and approximating ϕ by

ϕ(n) =
n+1∑

i=0

xifi. (5.34)

We define the space Cn as the set of all continuous functions that can be represented by this
summation for some {xi}∞i=0. Note that Cn ⊂ L2

n[−h, 0]. Also define en : Rn+2 → R by

en
(−→x) =

n+1∑

i=0

xifi, (5.35)
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so that Ψ(t, ϕ(n)) = Ψ(t, en(
−→x)). Define Ψn : [0, T] × Rn+2 → R by Ψn(t,

−→x) = Ψ(t, ϕ(n))
provided that the −→x is formed by the coefficients of ϕ(n) in the spanning set {fi}∞i=0. In general,
−→x(t) is formed by the coefficients of ϕ(n)

t in the spanning set {fi}∞i=0. Also, define vn : [−h, 0] →
R by

vn(θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, for θ ∈
[
−h,− 1

n

)
,

nθ + 1, for θ =
[
− 1
n
, 0
]
.

(5.36)

Last, let gn : [0, T] × Cn × Rn+1 × C1,2([0, T] × C) → R be defined by

gn
(
t, ϕ(n), −→x,Ψ

)
= r

(
n+1∑

i=0

xi

)[

DΨ(t, ϕ(n))
(
1{0}
) −

n+1∑

i=0

ki
∂

∂xi
Ψn

(
t, −→x)

]

+
δ2

2

(
n+1∑

i=0

xi

)2
⎡

⎣D2Ψ(t, ϕ(n))
(
1{0}, 1{0}

) −
n+1∑

i,j=0

kikj
∂2

∂xi∂xj
Ψn

(
t, −→x)

⎤

⎦,

(5.37)

where the ki are the coefficients of vn using the spanning set {fi}∞i=0. Finally, define the
operator (·)n : C → Cn by

(
ϕ
)
n =

n+1∑

i=0

xifi, (5.38)

where the right-hand side is the first n + 2 terms of the {fi}-expansion of ϕ.
We are now ready for a theorem which enables us to approximate the solution of

the infinite-dimensional Black-Scholes equation by solving a first-order real-valued partial
differential equation and an equation similar to the generalized Black-Scholes equation but
without the G(Ψ)(t, ϕ̃t) term. The lack of this term allows approximate solutions to be found
using traditional techniques.

Theorem 5.2. Let S0 = ψ ∈ C+ and t ∈ [0, T]. Let f be a C2(C) function satisfying the conditions of
Theorem 4.1 and let Λ = f(ST ). Then

rΨ
(
t, ϕ(n)

)
=
∂

∂t
Ψ
(
t, ϕ(n)

)
+G(Ψ)

(
t,
(
ϕ̃t
)
n

)
+DΨ

(
t, ϕ(n)

)(
rϕ(n)(0)1{0}

)

+
1
2
D2Ψ

(
t, ϕ(n)

)(
N
(
ϕ(n)
)
1{0},N

(
ϕ(n)
)
1{0}
)
, ∀

(
t, ϕ(n)

)
∈ [0, T) × Cn,

(5.39)

where

Ψ
(
T, ϕ(n)

)
= f
(
ϕ(n)
)

∀ϕ(n) ∈ Cn (5.40)
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has a solution of the form

V
(
t,
(
ϕ̃t
)
n

)
F
(
t, ϕ(n)

)
. (5.41)

Here, V (t, (ϕ̃t)n) = wn(t, 0) is a solution to

F
(
t, ϕ(n)

)∂wn

∂t
(t, u) + F

(
t,
(
ϕ̃t
)
n

)∂wn

∂u
(t, u) (5.42)

+G(F)
(
t,
(
ϕ̃t
)
n

)
wn(t, u) = 0 (5.43)

for t ∈ [0, T] and u ∈ [0, ε) for some ε > 0 and wn(T, 0) = 1, and F : R+ × Cn → R is a solution of

rF
(
t, ϕ(n)

)
=
∂

∂t
F
(
t, ϕ(n)

)
+DF

(
t, ϕ(n)

)(
rϕ(n)(0)1{0}

)

+
1
2
D2F

(
t, ϕ(n)

)(
N
(
ϕ(n)
)
1{0},N

(
ϕ(n)
)
1{0}
)

∀
(
t, ϕ(n)

)
∈ [0, T) × Cn,

(5.44)

where

F
(
T, ϕ(n)

)
= f
(
ϕ(n)
)

∀ϕ(n) ∈ Cn, (5.45)

and f is a uniformly bounded C2(C) function satisfying the conditions of Theorem 4.1.

Proof. We assume a solution of the form Ψ(t, ϕ(n)) = V (t, (ϕ̃t)n)F(t, ϕ
(n)), then

rV
(
t,
(
ϕ̃t
)
n

)
F
(
t, ϕ(n)

)

=
∂

∂t

(
V
(
t,
(
ϕ̃t
)
n

)
F
(
t, ϕ(n)

))
+G(VF)

(
t,
(
ϕ̃t
)
n

)
+D(VF)

(
t, ϕ(n)

)(
rϕ(n)(0)1{0}

)

+
1
2
D2(VF)

(
t, ϕ(n)

)(
N
(
ϕ(n)
)
1{0},N

(
ϕ(n)
)
1{0}
)

= F
(
t, ϕ(n)

)∂V
∂t

(
t,
(
ϕ̃t
)
n

)
+ V
(
t,
(
ϕ̃t
)
n

) ∂
∂t
F
(
t, ϕ(n)

)

+ F
(
t, ϕ(n)

)
G(V )

(
t,
(
ϕ̃t
)
n

)
+ V
(
t,
(
ϕ̃t
)
n

)
G(F)

(
t, ϕ(n)

)
+ V
(
t,
(
ϕ̃t
)
n

)

×
{
D(F)

(
t, ϕ(n)

)(
rϕ(n)(0)1{0}

)

+
1
2
D2(F)

(
t, ϕ(n)

)(
N
(
ϕ(n)
)
1{0},N

(
ϕ(n)
)
1{0}
)}

, ∀
(
t, ϕ(n)

)
∈ [0, T) × Cn.

(5.46)
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If F(t, ϕ(n)) is the solution to (5.44), then

F
(
t, ϕ(n)

)∂V
∂t

(
t,
(
ϕ̃t
)
n

)
+ F
(
t,
(
ϕ̃t
)
n

)
G(V )

(
t,
(
ϕ̃t
)
n

)
+G(F)

(
t,
(
ϕ̃t
)
n

)
V
(
t,
(
ϕ̃t
)
n

)
= 0. (5.47)

Define Tu : C → C by Tu(ϕ) = ϕu, that is, Tu is a shift operator. Now let V (t, (ϕ̃t+u)n) =
V (t, (Tu(ϕ̃t))n) = wn(t, u) for a fixed ϕ ∈ C. Then

G(V )
(
t,
(
ϕ̃t
)
n

)
=
∂wn

∂u
(t, 0+), (5.48)

where the superscript + denotes a right-hand derivative with respect to u. Then

F
(
t, ϕ(n)

)∂wn

∂t
(t, 0) + F

(
t,
(
ϕ̃t
)
n

)∂wn

∂u
(t, 0+) +G(F)

(
t,
(
ϕ̃t
)
n

)
wn(t, 0) = 0. (5.49)

A slightly more restrictive, but more familiar form is

F
(
t, ϕ(n)

)∂wn

∂t
(t, u) + F

(
t,
(
ϕ̃t
)
n

)∂wn

∂u
(t, u) +G(F)

(
t,
(
ϕ̃t
)
n

)
wn(t, u) = 0, (5.50)

where t ∈ [0, h] and u ∈ [0, ε) for some ε > 0. There is the additional requirement that
wn(T, 0) = 1 so that (5.44) holds.

Remark 5.3. It can be easily shown that St is α-Hölder continuous a.s. for 0 < α < 1/2 provided
that S0 is α-Hölder continuous for the same α. Therefore,

∣∣Fn
(
t, −→x) − F(t, ϕ)∣∣ −→ 0 (5.51)

for each t as n → ∞ where F(t, ϕ) is a solution to (5.44) and Fn(t,
−→x) = F(t, ϕ(n)) is an

approximate solution, since F is C2(C) in its second variable and

Fn
(
t, −→x) = F(t, en

(−→x)) = F
(
t, ϕ(n)

)
. (5.52)

The proof of the following corollary is identical to that of Theorem 5.2, with the use of
Remark 5.3 to obtain Ψ(t, ϕ).

Corollary 5.4. If S0 is Hölder continuous, then

rΨ
(
t, ϕ
)
=
∂

∂t
Ψ
(
t, ϕ
)
+G(Ψ)

(
t, ϕ̃t
)
+DΨ

(
t, ϕ
)(
rϕ(0)1{0}

)

+
1
2
D2Ψ

(
t, ϕ
)(
N
(
ϕ
)
1{0},N

(
ϕ
)
1{0}
)
, ∀(t, ϕ) ∈ [0, T) × C+,

(5.53)
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where

Ψ
(
T, ϕ
)
= f
(
ϕ
) ∀ϕ ∈ C+ (5.54)

has a solution of the form V (t, ϕ̃t)F(t, ϕ). Here, V (t, ϕ̃t) = w(t, 0) is a solution to

F
(
t, ϕ
)∂w
∂t

(t, u) + F
(
t, ϕ̃t
)∂w
∂u

(t, u) +G(F)
(
t, ϕ̃t
)
w(t, u) = 0 (5.55)

for t ∈ [0, T] and u ∈ [0, ε) for some ε > 0. F(t, ϕ) is the solution to (5.44) where one lets n → ∞.
In addition, w(T, 0) = 1.

Nowwe must solve (5.44), which is done in the following theorem. With this solution,
the first-order partial differential equation can be solved by traditional means.

Theorem 5.5. Let

rΨ
(
t, ϕ(n)

)
=
∂

∂t
Ψ
(
t, ϕ(n)

)
+DΨ

(
t, ϕ(n)

)(
rϕ(n)(0)1{0}

)

+
1
2
D2Ψ

(
t, ϕ(n)

)(
N
(
ϕ(n)
)
1{0},N

(
ϕ(n)
)
1{0}
)

∀
(
t, ϕ(n)

)
∈ [0, T) × Cn,

(5.56)

where

Ψ
(
T, ϕ(n)

)
= f
(
ϕ(n)
)

∀ϕ(n) ∈ Cn, (5.57)

and f is a uniformly bounded C2(C) function satisfying the conditions of Theorem 4.1. Let fn :
Rn+2 → R be defined by fn = f ◦ en, then

Ψn

(
t, −→x) = e−r(T−t)√

2π

∫∞

−∞
fn

(

exp

[(

rB − δ2

2
B2

)

(T − t) + δBy
√
T − t

]
−→x
)

e−y
2/2dy

+
∫T

t

gn
(
s, ϕ

(n)
s , −→x(s),Ψ

)
e−r(s−t)ds.

(5.58)

Here,

B =

⎡

⎢⎢⎢⎢⎢
⎣

k0 k0 · · · k0

k1 k1 · · · k1
...

...
...

...

kn+1 kn+1 · · · kn+1

⎤

⎥⎥⎥⎥⎥
⎦
,

vn =
n+1∑

i=0

kifi

(5.59)

from (5.36).
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Proof. SinceΨn : [0, T]×Rn+2 → R, the definition of the Fréchet derivatives and the properties
of the set {fi}∞i=0 give

rΨn

(
t, −→x) = ∂

∂t
Ψn

(
t, −→x) + r

(
n+1∑

i=0

xi

)
n+1∑

i=0

ki
∂

∂xi
Ψn

(
t, −→x)

+
δ2

2

(
n+1∑

i=0

xi

)2 n+1∑

i,j=0

kikj
∂2

∂xi∂xj
Ψn

(
t, −→x)

+ gn
(
t, ϕ

(n)
s , −→x,Ψ

)
, ∀(t, −→x) ∈ [0, T) × Rn+2,

Ψ
(
T, −→x(T)) = fn

(−→x(T)).

(5.60)

The −→x(T) consists of the first n + 2 coefficients of ST in the set of functions {fi}. By the
Feynman-Kac theorem (see [15, Theorem 5.7.6]),

Ψn

(
t, −→x) = e−r(T−t)Ẽ[f(−→x(T)) | −→x(t) = −→x] +

∫T

t

gn
(
s, ϕ

(n)
s , −→x(s),Ψ

)
e−r(s−t)ds, (5.61)

where −→x(t) is the solution to

dxi(t) = bi
(
t, −→x(t))dt +

n+1∑

j=0

σij
(
t, −→x(t))dW̃ (j)(t) (5.62)

for i = 0, 1, . . . , n + 1. Noting that −→x(t) = −→x ,

bi
(
t, −→x) = rki

(
n+1∑

i=0

xi

)

,

δ2kikj

(
n+1∑

i=0

xi

)2

=
n+1∑

k=0

σik
(
t, −→x)σjk

(
t, −→x)

(5.63)

with 0 ≤ i, j ≤ n + 1. Hence,

−→
b
(
t, −→x) = r

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

k0

(
n+1∑

i=0

xi

)

k1

(
n+1∑

i=0

xi

)

...

kn+1

(
n+1∑

i=0

xi

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (5.64)
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and so

−→
b
(
t, −→x) = rB

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x0

x1

...

xn+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.65)

Also,

σ
(
t, −→x)σ�(t, −→x) = δ2

(
n+1∑

i=0

xi

)2

⎡

⎢
⎢
⎢
⎢⎢⎢
⎣

k20 k0k1 · · · k0kn+1
k0k1 k21 · · · k1kn+1
...

...
...

...

k0kn+1 k1kn+1 · · · k2n+1

⎤

⎥
⎥
⎥
⎥⎥⎥
⎦

. (5.66)

Therefore,

σ
(
t, −→x) = δB

⎡

⎢⎢⎢⎢⎢⎢
⎣

x0

x1

...

xn+1

⎤

⎥⎥⎥⎥⎥⎥
⎦

(5.67)

as well. Thus,

d−→x(t) = rB −→x(t)dt + δB −→x(t)dW̃(t) (5.68)

which has the solution

−→x(t) = exp

[(

rB − δ2

2
B2

)

t + δBW̃(t)

]
−→x(0). (5.69)

Notice that
−→
b (t, −→x) and σ(t, −→x) satisfy the conditions necessary for applying the Feynman-

Kac formula. Also note that (5.58) satisfies the polynomial growth condition

max
0≤t≤T

∣∣Ψn

(
t, −→x)∣∣ ≤M

(
1 +
∥∥−→x∥∥2μ

)
(5.70)

forM > 0 and μ ≥ 1 due to the boundedness of fn and gn for n sufficiently large. Therefore,
by (5.61), equation (5.58) follows.
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Lemma 5.6. Let A : [0, T] × R → R(n+2)×(n+2) be defined by

A
(
t, y
)
=

(

rB − δ2

2
B2

)

(T − t) + δBy
√
T − t, (5.71)

where

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k0 k0 · · · k0

k1 k1 · · · k1

...
...

...
...

kn+1 kn+1 · · · kn+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.72)

Then A(t, y) = QD(t, y)Q−1 where Q is the (n + 2) × (n + 2) matrix defined by

Q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

k0
α

1√
2

1√
2

· · · 1√
2

k1
α

0 0 · · · − 1√
2

...
...

...
...

...

kn+1
α

− 1√
2

0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Q−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 1 1 · · · 1
√
2kn+1
α

√
2kn+1
α

√
2kn+1
α

· · · −√2
α − kn+1

α√
2kn
α

√
2kn
α

√
2kn
α

· · ·
√
2kn
α

...
...

...
...

...
√
2k1
α

−√2
α − k1
α

√
2k1
α

· · ·
√
2k1
α

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

D
(
t, y
)
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

(

r − δ2

2
α

)

α(T − t) + δαy
√
T − t 0 0 · · · 0

0 0 0 · · · 0

...
...

...
...

...

0 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(5.73)

Here, α =
∑n+1

i=0 ki.
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Proof. It is clear that B2 = αB, so

A
(
t, y
)
=

[(

r − δ2

2
α

)

(T − t) + δy
√
T − t

]

B. (5.74)

The matrix A(t, y) is an (n + 2) × (n + 2)matrix with n + 2 eigenvalues. The n + 1 eigenvectors
associated with the eigenvalue 0 are

⎡

⎢
⎢
⎢
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1√
2

− 1√
2

0

0

...

0

⎤

⎥
⎥
⎥
⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1√
2
0

− 1√
2

0

...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (5.75)

and so forth. The remaining eigenvalue is

[(

r − δ2

2
α

)

(T − t) + δy
√
T − t

]

α (5.76)

with the associated eigenvector of

1
α

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

k0

k1

k2

...

kn+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (5.77)

The matrix Q is simply a matrix with these eigenvectors for columns, the expression for Q−1

can easily be verified, and D(t, y) = Q−1A(t, y)Q.

Next, we will derive an approximate solution to (5.44) with the auxiliary condition
being that for the standard European call option. By using Theorem 5.2, a significant piece of
the approximate solution is then known.
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Proposition 5.7. Let

rΨ
(
t, ϕ
)
=
∂

∂t
Ψ
(
t, ϕ
)
+DΨ

(
t, ϕ
)(
rϕ(0)1{0}

)

+
1
2
D2Ψ

(
t, ϕ
)(
N
(
ϕ
)
1{0},N

(
ϕ
)
1{0}
)
, ∀(t, ϕ) ∈ [0, T) × C+,

(5.78)

where

Ψ
(
T, ϕ
)
=
(
ϕ(0) −K)+ ∀ϕ ∈ C+, (5.79)

and K is the strike price of the option contract. Then

Ψn

(
t, −→x) = e−r(T−t)

{
kn+1
α

exp[rα(T − t)]
n+1∑

i=0

xi
(
Φ
(
δα

√
T − t − Y0

))
−KΦ(−Y0)

}

+
∫T

t

gn
(
s, ϕ

(n)
s , −→x(s),Ψ

)
e−r(s−t)ds,

(5.80)

where Ψn(t,
−→x) → Ψ(t, ϕ) pointwise as n → ∞. Here,

Φ(u) =
1√
2π

∫u

−∞
e−y

2/2dy,

Y0 =
ln
[
αK/kn+1

∑n+1
i=0 xi

]

δα
√
T − t

−
(
r

δ
− δα

2

)√
T − t.

(5.81)

Proof. By Theorem 5.5, the equation

rΨ
(
t, ϕ(n)

)
=
∂

∂t
Ψ
(
t, ϕ(n)

)
+DΨ

(
t, ϕ(n)

)(
rϕ(n)(0)1{0}

)

+
1
2
D2Ψ

(
t, ϕ(n)

)(
N
(
ϕ(n)
)
1{0},N

(
ϕ(n)
)
1{0}
)
, ∀

(
t, ϕ(n)

)
∈ [0, T) × Cn,

(5.82)

with

Ψ
(
T, ϕ(n)

)
= f
(
ϕ(n)
)

∀ϕ(n) ∈ Cn, (5.83)

and f being a C2(C) function has the solution

Ψn

(
t, −→x) = e−r(T−t)√

2π

∫∞

−∞
fn

(

exp

[(

rB − δ2

2
B2

)

(T − t) + δBy
√
T − t

]
−→x
)

e−y
2/2dy

+
∫T

t

gn
(
s, ϕ

(n)
s , −→x(s),Ψ

)
e−r(s−t)ds.

(5.84)
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By Lemma 5.6,

A
(
t, y
)
=

(

rB − δ2

2
B2

)

(T − t) + δBy
√
T − t (5.85)

may be expressed as A(t, y) = QD(t, y)Q−1 where Q, Q−1, and D(t, y) are defined in the
lemma. Since D(t, y) is diagonal, eD(t,y) is straightforward to find and eA(t,y) = QeD(t,y)Q−1.
Let −→v(t, y) be the (n + 2)th row of eA(t,y), expressed as a column vector. Then

−→v(t, y) = kn+1
α

exp

[(

r − δ2

2
α

)

α(T − t) + δαy
√
T − t

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢⎢⎢
⎣

1

1

1

...

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥⎥⎥
⎦

. (5.86)

Let un+1(t, y,
−→x) be the (n + 2)th component of eA(t,y) −→x , we have that

un+1
(
t, y, −→x) = −→v(t, y) · −→x

=
kn+1
α

(

exp

[(

r − δ2

2
α

)

α(T − t) + δαy
√
T − t

])
n+1∑

i=0

xi.
(5.87)

Therefore,

Ψn

(
t, −→x) = e−r(T−t)√

2π

∫∞

Y0

[
un+1

(
t, y, −→x) −K]e−y2/2dy

+
∫T

t

gn
(
s, ϕ

(n)
s , −→x(s),Ψ

)
e−r(s−t)ds

(5.88)

with

kn+1
α

(

exp

[(

r − δ2

2
α

)

α(T − t) + δαY0
√
T − t

])
n+1∑

i=0

xi = K (5.89)

since [un+1(t, y,
−→x) −K]+ is C2 in −→x on the interval (Y0,∞), with the necessary Lipschitz

properties. Solving for Y0 we have

Y0 =
ln
[
αK/kn+1

∑n+1
i=0 xi

]

δα
√
T − t

−
(
r

δ
− δα

2

)√
T − t. (5.90)
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So,

Ψn

(
t, −→x) = e−r(T−t)√

2π

∫∞

Y0

[
kn+1
α

exp

[(

r − δ2

2
α

)

α(T − t) + δαy
√
T − t

]
n+1∑

i=0

xi −K
]

e−y
2/2dy

+
∫T

t

gn
(
s, ϕ

(n)
s , −→x(s),Ψ

)
e−r(s−t)ds

=
e−r(T−t)√

2π

∫∞

Y0

[
kn+1
α

exp

[(

r − δ2

2
α

)

α(T − t) + δαy
√
T − t

]
n+1∑

i=0

xi

]

e−y
2/2dy

−Ke−r(T−t)(1 −Φ(Y0)) +
∫T

t

gn
(
s, ϕ

(n)
s , −→x(s),Ψ

)
e−r(s−t)ds

= e−r(T−t)
{
kn+1
α

exp

[(

r − δ2

2
α

)

α(T − t)
]

×
n+1∑

i=0

xi
1√
2π

∫∞

Y0

e−y
2/2+δαy

√
T−tdy −K(1 −Φ(Y0))

}

+
∫T

t

gn
(
s, ϕ

(n)
s , −→x(s),Ψ

)
e−r(s−t)ds

= e−r(T−t)
{

(1 −Φ(Y0))(−K) +
kn+1
α

exp

[(

r − δ2

2
α

)

α(T − t)
]

×
n+1∑

i=0

xie
δ2α2(T−t)/2

(
1 −Φ

(
Y0 − δα

√
T − t

))}

+
∫T

t

gn
(
s, ϕ

(n)
s , −→x(s),Ψ

)
e−r(s−t)ds

= e−r(T−t)
{
kn+1
α

exp[rα(T − t)]
n+1∑

i=0

xi
(
Φ
(
δα

√
T − t − Y0

))
−KΦ(−Y0)

}

+
∫T

t

gn
(
s, ϕ

(n)
s , −→x(s),Ψ

)
e−r(s−t)ds.

(5.91)

This result is the solution given ϕ(n) ∈ Cn. Notice that

gn
(
s, ϕ

(n)
s , −→x(s),Ψ

)
−→ 0 (5.92)

pointwise as n → ∞ since

lim
n→∞

DΨ
(
t, ϕ(n)

)(
1{0}
)
= lim

n→∞
DΨn

(
t, −→x)(vn) = lim

n→∞

n+1∑

i=0

ki
∂

∂xi
Ψn

(
t, −→x), (5.93)
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and similarly for the second derivatives. By dominated convergence, we have that

∫T

t

gn
(
s, ϕ

(n)
s , −→x(s),Ψ

)
e−r(s−t)ds −→ 0 (5.94)

pointwise as n → ∞. By Remark 5.3, we have that Ψn(t,
−→x) → Ψ(t, ϕ) pointwise as n →

∞.

6. Summary and Conclusions

In this paper, we have continued [6] by deriving an infinite-dimensional Black-Scholes
equation for the European option problem, where the (B, S)-market model is given by
(2.7) and (2.8). The resulting deterministic partial differential equation is a new type of
equation, one where the partial differentiation contains extended Fréchet derivatives. Given
the (B, S)-market model equations, a spanning set for the space of square-integrable function
is developed which simplifies finding an approximate solution to this equation. The solution
method detail in this paper consists of the following steps.

Step 1. Given r andN(·), use (5.6)-(5.7) with (5.5) and (5.10)-(5.11) to find the spanning set
{fi}n+1i=0 for n sufficiently large. Coefficients in this spanning set of functions are found using
(5.13)–(5.15).

Step 2. Use Theorem 5.5 or Proposition 5.7, depending on the reward function, to find
Ψn(t,

−→x). The term
∫T

t

gn
(
s, ϕ

(n)
s , −→x(s),Ψ

)
e−r(s−t)ds (6.1)

approaches zero as n approaches infinity, so this term may be assumed small for sufficiently
large n. The vector −→x is found from (5.69).

Step 3. Having found Ψn(t,
−→x), solve (5.43) for wn(t, 0), then wn(t, 0)Ψn(t,

−→x) is an approxi-
mate solution to the generalized Black-Scholes equation. By Corollary 5.4,wn(t, 0)Ψn(t,

−→x) →
Ψ(t, ϕ) pointwise as n → ∞.

Appendix

Proof of Proposition 3.2

In this appendix, we prove Proposition 3.2, which is stated again as follows.

Proposition 3.2. Let ϕ ∈ C and f : C → R. Further assume f ∈ C2(C) and let Ψ : [0, T] × C →
R be defined by

Ψ
(
t, ϕ
)
= e−r(T−t)Ẽ

[
f(ST ) | St = ϕ

]
. (A.1)

Then if Df and D2f are globally Lipschitz, then so is D2Ψ.
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Before proving the proposition, an additional result for Fréchet derivatives is needed.

Lemma A.1. Let H : [0, T] × R × C → C and f : C → R. Define g : [0, T] × R × C → R by
g(t, y, ϕ) = (f ◦H)(t, y, ϕ) for any t ∈ [0, T], y ∈ R, and ϕ ∈ C. Assume that f has a second Fréchet
derivative and likewise forH (with respect to the third variable.) Then

D2g
(
t, y, ϕ

)(
φ, φ
)
= D2f

(
H
(
t, y, ϕ

))(
DH

(
t, y, ϕ

)(
φ
)
, DH

(
t, y, ϕ + φ

)(
φ
))

+Df
(
H
(
t, y, ϕ

))(
D2H

(
t, y, φ

)(
φ, φ
))
.

(A.2)

Proof. We start by considering

Dg
(
t, y, ϕ + φ

)(
φ
) −Dg(t, y, ϕ)(φ)

= Df
(
H
(
t, y, ϕ + φ

))(
DH

(
t, y, ϕ + φ

)(
φ
)) −Df(H(t, y, ϕ))(DH(t, y, ϕ)(φ))

= Df
(
H
(
t, y, ϕ + φ

))(
DH

(
t, y, ϕ + φ

)(
φ
)) −Df(H(t, y, ϕ))(DH(t, y, ϕ + φ

)(
φ
))

+Df
(
H
(
t, y, ϕ

))(
DH

(
t, y, ϕ + φ

)(
φ
)) −Df(H(t, y, ϕ))(DH(t, y, ϕ)(φ)).

(A.3)

From here we have that

Df
(
H
(
t, y, ϕ + φ

))(
DH

(
t, y, ϕ + φ

)(
φ
))

−Df(H(t, y, ϕ)(DH(t, y, ϕ + φ
)(
φ
)))

= D2f
(
H
(
t, y, ϕ

))(
H
(
t, y, ϕ + φ

) −H(t, y, ϕ), DH(t, y, ϕ + φ
)(
φ
))

+ o1
(
H
(
t, y, ϕ + φ

) −H(t, y, ϕ), DH(t, y, ϕ + φ
)(
φ
))

= D2f
(
H
(
t, y, ϕ

))(
DH

(
t, y, ϕ

)(
φ
)
, DH

(
t, y, ϕ + φ

)(
φ
))

+D2f
(
H
(
t, y, ϕ

))(
o2
(
φ
)
, DH

(
t, y, ϕ + φ

)(
φ
))

+ o1
(
H
(
t, y, ϕ + φ

) −H(t, y, ϕ), DH(t, y, ϕ + φ
)(
φ
))

= D2f
(
H
(
t, y, ϕ

))(
DH

(
t, y, ϕ

)(
φ
)
, DH

(
t, y, ϕ + φ

)(
φ
))

+D2f
(
H
(
t, y, ϕ

))(
o2
(
φ
)
, DH

(
t, y, ϕ + φ

)(
φ
))

+ o1
(
DH

(
t, y, ϕ

)(
φ
)
+ o3
(
φ
)
, DH

(
t, y, ϕ + φ

)(
φ
))
.

(A.4)

Also,

Df
(
H
(
t, y, ϕ

))(
DH

(
t, y, ϕ + φ

)(
φ
) −DH(t, y, ϕ)(φ))

= Df
(
H
(
t, y, ϕ

))(
D2(H

(
t, y, ϕ

)(
φ, φ
))

+ o4
(
φ, φ
))
.

(A.5)
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Clearly,

D2f
(
H
(
t, y, ϕ

))(
o2
(
φ
)
, DH

(
t, y, ϕ + φ

)(
φ
))

= o5
(
φ, φ
)
, (A.6)

since the second derivative is linear. Also

o1
(
DH

(
t, y, ϕ

)(
φ
)
+ o3
(
φ
)
, DH

(
t, y, ϕ + φ

)(
φ
))

‖DH(t, y, ϕ + φ
)(
φ
)‖ −→ 0 (A.7)

as ‖DH(t, y, ϕ + φ)(φ)‖ → 0 and

‖DH(t, y, ϕ + φ
)(
φ
)‖

‖φ‖ ≤ ‖DH(t, y, ϕ + φ
)‖ · ‖φ‖

‖φ‖
= ‖DH(t, y, ϕ + φ

)(
φ
)‖

≤ K1

(A.8)

for some K1 <∞. Furthermore,

o1
(
DH

(
t, y, ϕ

)(
φ
)
+ o3
(
φ
)
, DH

(
t, y, ϕ + φ

)(
φ
))

∥∥DH
(
t, y, ϕ + φ

)(
φ
)
+ o3
(
φ
)∥∥ −→ 0 (A.9)

as ‖DH(t, y, ϕ + φ)(φ) + o3(φ)‖ → 0, and

‖DH(t, y, ϕ + φ
)(
φ
)
+ o3
(
φ
)‖

‖φ‖

≤ ‖DH(t, y, ϕ + φ
)‖ · ‖φ‖

‖φ‖ +
‖o3
(
φ
)‖

‖φ‖

= ‖DH(t, y, ϕ + φ
)‖ +

∥∥o3
(
φ
)∥∥

∥∥φ
∥∥

≤ K2 +

∥∥o3
(
φ
)∥∥

∥∥φ
∥∥

(A.10)

for some K2 <∞. Therefore

o1
(
DH

(
t, y, ϕ

)(
φ
)
+ o3
(
φ
)
, DH

(
t, y, ϕ + φ

)(
φ
))

= o6
(
φ, φ
)
. (A.11)



Journal of Applied Mathematics and Stochastic Analysis 33

Finally,

Df
(
H
(
t, y, ϕ

))(
o4
(
φ, φ
)) ≤ ∥∥Df(H(t, y, ϕ))∥∥ · ∥∥o4

(
φ, φ
)∥∥

≤ K3
∥
∥o4
(
φ, φ
)∥∥

(A.12)

for some K3 <∞, so

Df
(
H
(
t, y, ϕ

))(
o4
(
φ, φ
))

= o7
(
φ, φ
)
. (A.13)

Since

D2f
(
H
(
t, y, ϕ

))(
DH

(
t, y, ϕ

)(
φ
)
, DH

(
t, y, ϕ + φ

)(
φ
))

+Df
(
H
(
t, y, ϕ

))(
D2H

(
t, y, φ

)(
φ, φ
))

(A.14)

is bounded and linear, we are done.

Proof of Proposition 3.2. From Proposition 3.1, we have that

Ψ
(
t, ϕ
)
=
e−r(T−t)√

2π

∫∞

−∞
f
(
H
(
T − t, y, ϕ))e−y2/2dy

=
e−r(T−t)√

2π

∫∞

−∞
g
(
T − t, y, ϕ)e−y2/2dy,

(A.15)

whereH : [0, T] × R × C → C is defined by St = H(t, W̃(t), S0), and g : [0, T] × R × C → R

is defined by g(t, W̃(t), S0) = (f ◦H)(t, W̃(t), S0). In the same proposition, we see that

DΨ
(
t, ϕ
)(
φ
)
=
e−r(T−t)√

2π

∫∞

−∞
Dg
(
T − t, y, ϕ)(φ)e−y2/2dy,

D2Ψ
(
t, ϕ
)(
φ, φ
)
=
e−r(T−t)√

2π

∫∞

−∞
D2g

(
T − t, y, ϕ)(φ, φ)e−y2/2dy.

(A.16)

IfD2g(T − t, y, ϕ) is globally Lipschitz, then it is clear thatD2Ψ(t, ϕ) is also globally Lipschitz.
We will now look at D2g(T − t, y, ϕ)(φ, φ).
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By Lemma A.1, we have

D2g
(
T − t, y, ϕ)(φ, φ)

= D2f
(
H
(
T − t, y, ϕ))(DH(T − t, y, ϕ)(φ), DH(T − t, y, ϕ + φ

)(
φ
))

+Df
(
H
(
T − t, y, ϕ))

(
D2H

(
T − t, y, φ)(φ, φ)

)
,

∥
∥∥D2g

(
T − t, y, ϕ + ψ

) −D2g
(
T − t, y, ϕ)

∥
∥∥

≤
∥
∥
∥D2f

(
H
(
T − t, y, ϕ + ψ

))(
DH

(
T − t, y, ϕ + ψ

)
, DH

(
T − t, y, ϕ + φ + ψ

))

−D2f
(
H
(
T − t, y, ϕ))(DH(T − t, y, ϕ), DH(T − t, y, ϕ + φ

))∥∥
∥

+
∥
∥
∥Df

(
H
(
T − t, y, ϕ + ψ

))(
D2H

(
T − t, y, ϕ + ψ

))

−Df(H(T − t, y, ϕ))
(
D2H

(
T − t, y, ϕ)

)∥∥∥

=
∥∥∥D2f

(
H
(
T − t, y, ϕ + ψ

))(
DH

(
T − t, y, ϕ + ψ

)
, DH

(
T − t, y, ϕ + φ + ψ

))

−D2f
(
H
(
T − t, y, ϕ))(DH(T − t, y, ϕ + ψ

)
, DH

(
T − t, y, ϕ + φ + ψ

))

+D2f
(
H
(
T − t, y, ϕ))(DH(T − t, y, ϕ + ψ

)
, DH

(
T − t, y, ϕ + φ + ψ

))

−D2f
(
H
(
T − t, y, ϕ))(DH(T − t, y, ϕ), DH(T − t, y, ϕ + φ

))∥∥∥

+
∥∥∥Df

(
H
(
T − t, y, ϕ + ψ

))(
D2H

(
T − t, y, ϕ + ψ

))

−Df(H(T − t, y, ϕ))
(
D2H

(
T − t, y, ϕ + ψ

))

+Df
(
H
(
T − t, y, ϕ))

(
D2H

(
T − t, y, ϕ + ψ

))

−Df(H(T − t, y, ϕ))
(
D2H

(
T − t, y, ϕ)

)∥∥∥

≤
∥∥∥D2f

(
H
(
T − t, y, ϕ + ψ

))(
DH

(
T − t, y, ϕ + ψ

)
, DH

(
T − t, y, ϕ + φ + ψ

))

−D2f
(
H
(
T − t, y, ϕ))(DH(T − t, y, ϕ + ψ

)
, DH

(
T − t, y, ϕ + φ + ψ

))∥∥∥

+
∥∥∥D2f

(
H
(
T − t, y, ϕ))(DH(T − t, y, ϕ + ψ

)
, DH

(
T − t, y, ϕ + φ + ψ

))

−D2f
(
H
(
T − t, y, ϕ))(DH(T − t, y, ϕ), DH(T − t, y, ϕ + φ

))∥∥∥

+
∥∥∥Df

(
H
(
T − t, y, ϕ + ψ

))(
D2H

(
T − t, y, ϕ + ψ

))

−Df(H(T − t, y, ϕ))
(
D2H

(
T − t, y, ϕ + ψ

))∥∥∥

+
∥∥∥Df

(
H
(
T − t, y, ϕ))

(
D2H

(
T− t, y, ϕ + ψ

))−Df(H(T − t, y, ϕ))
(
D2H

(
T − t, y, ϕ)

)∥∥∥

≤
∥∥∥D2f

(
H
(
T − t, y, ϕ + ψ

)) −D2f
(
H
(
T − t, y, ϕ))

∥∥∥
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× ∥∥DH(T − t, y, ϕ + φ + ψ
)∥∥ · ∥∥DH(T − t, y, ϕ + ψ

)∥∥ +
∥
∥
∥D2f

(
H
(
T − t, y, ϕ))

∥
∥
∥

× ∥∥DH(T − t, y, ϕ + φ + ψ
) −DH(T − t, y, ϕ + φ

)∥∥

× ∥∥DH(T − t, y, ϕ + ψ
) −DH(T − t, y, ϕ)∥∥

+
∥
∥Df

(
H
(
T − t, y, ϕ + ψ

)) −Df(H(T − t, y, ϕ))∥∥
∥
∥
∥D2H

(
T − t, y, ϕ + ψ

)∥∥
∥

+
∥
∥Df

(
H
(
T − t, y, ϕ))∥∥ ·

∥
∥
∥D2H

(
T − t, y, ϕ + ψ

) −D2H
(
T − t, y, ϕ)

∥
∥
∥.

(A.17)

Taking the terms one at a time,

∥∥∥D2f
(
H
(
T − t, y, ϕ + ψ

)) −D2f
(
H
(
T − t, y, ϕ))

∥∥∥

× ‖DH(T − t, y, ϕ + φ + ψ
)‖ · ‖DH(T − t, y, ϕ + ψ

)‖

≤ C̃1‖ψ‖,

(A.18)

sinceD2f is globally Lipschitz and there is someC1 <∞ such that ‖DH(T−t, y, ϕ+φ+ψ)‖ ≤ C1

and likewise for ‖DH(T − t, y, ϕ + φ + ψ)‖.
For the next term,

∥∥∥D2f
(
H
(
T − t, y, ϕ))

∥∥∥

× ∥∥DH(T − t, y, ϕ + φ + ψ
) −DH(T − t, y, ϕ + φ

)∥∥

× ∥∥DH(T − t, y, ϕ + ψ
) −DH(T − t, y, ϕ)∥∥

≤ C2
∥∥DH

(
T − t, y, ϕ + φ + ψ

) −DH(T − t, y, ϕ + φ
)∥∥

× ∥∥DH(T − t, y, ϕ + ψ
) −DH(T − t, y, ϕ)∥∥.

(A.19)

ButH(T − t, y, ϕ) is linear in ϕ as we will now show.
Again using the operator define by (·)n : C → Cn with

(
ϕ
)
n =

n+1∑

i=0

xifi, (A.20)

where the right-hand side is the first n + 2 terms of the {fi}-expansion of ϕ, we have that

(St)n = e−1n
(−→x(t)), (A.21)
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where e−1n is linear. Recall that

−→x(t) = exp

[(

rB − δ2

2
B2

)

t + δBW̃(t)

]
−→x(0)

= A
(
t, W̃(t)

)−→x(0),
(A.22)

where −→x(0) = (S0)n. Therefore,

−→x(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

n+1∑

i=0

A0,i

(
t, W̃(t)

)
xi

n+1∑

i=0

A1,i

(
t, W̃(t)

)
xi

n+1∑

i=0

A2,i

(
t, W̃(t)

)
xi

...
n+1∑

i=0

An+2,i

(
t, W̃(t)

)
xi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (A.23)

So,

St = lim
n→∞

n∑

i=0

⎛

⎝ lim
k→∞

k∑

j=0

Ai,j

(
t, W̃(t)

)
xj

⎞

⎠fi (A.24)

is linear in S0 = limn→∞
∑n

i=0 xifi.
SinceH(T − t, y, ϕ) is linear in ϕ,

∥∥DH
(
T − t, y, ϕ + φ + ψ

) −DH(T − t, y, ϕ + φ
)∥∥ ≤ C3

∥∥ψ
∥∥,

∥∥DH
(
T − t, y, ϕ + ψ

) −DH(T − t, y, ϕ)∥∥ ≤ C4
∥∥ψ
∥∥.

(A.25)

Since ‖ψ‖ ≤M <∞, we have that

∥∥∥D2f
(
H
(
T − t, y, ϕ))

∥∥∥ ·
∥∥DH

(
T − t, y, ϕ + φ + ψ

) −DH(T − t, y, ϕ + φ
)∥∥

× ∥∥DH(T − t, y, ϕ + ψ
) −DH(T − t, y, ϕ)∥∥ ≤ C5

∥∥ψ
∥∥.

(A.26)

We also have that

∥∥Df
(
H
(
T − t, y, ϕ + ψ

)) −Df(H(T − t, y, ϕ))∥∥ ·
∥∥∥D2H

(
T − t, y, ϕ + ψ

)∥∥∥ ≤ C6‖ψ‖ (A.27)
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for some C6 <∞ since Df is globally Lipschitz. Finally,

∥
∥Df

(
H
(
T − t, y, ϕ))∥∥ ·

∥
∥
∥D2H

(
T − t, y, ϕ + ψ

) −D2H
(
T − t, y, ϕ)

∥
∥
∥ ≤ C7

∥
∥ψ
∥
∥ (A.28)

for some C7 < ∞ since H(T − t, y, ϕ) is linear in ϕ. Combining these, we have that D2g(T −
t, y, ϕ) is globally Lipschitz and therefore so is D2Ψ(t, ϕ).
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