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ABSTRACT

We propose two new methods of constructing the solutions of linear
multi-point discrete boundary value problems. These methods are
applied to solve some continuous two-point boundary value problems
which are known to be numerically unstable.
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1. INTRODUCTION

The purpose of this paper is to provide two new algorithms to compute the solution
of the linear discrete system

u(k + 1) = A(k)u(k) + b(k), k e N(k1, kr) (1.1)

satisfying the multi-point boundary conditions

r n
up(k ) = lq, 1 < q < n (1.2)

i=l p=l
Xqp

where A(k) is a given nonsingular n x n matrix with elements aqp(k), 1 q, p< n; b(k) is a
given n x 1 vector with components bq(k), 1 <_ q n; u(k) is an finknown n x 1 vector with
components uq(k), 1 < q _< n; 0 _< k1 < k2 < ...< kr (r > 2 ) where each k is a positive

,tq, 1 <q,p<n,integer, N(k1, kr) is the discrete interval [k1, kl+ 1,...,kr]; Oqp
1 _< i <_ r are given constants.

In particular we shall also consider the system (1.1) together with the implicit
separated boundary conditions

n
0q(si),p up(ki) = li,i(si) 1 _< i _< r _< (2 _< r _< n),

p=l

r
where Sl = 1, 2, ..., 131; ..-; Sr = 1, 2, ..., [r and [i = n. The subscript i(si) allows the

i=l
possibility that at the same point k several boundary conditions are prescribed.
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Motivated by the work of Angel and Kalaba [4] on two-point boundary value
problems for difference equations, recently in [ 1, 3, 7, 12 ], we have discussed several
new methods of constructing the solutions of linear as well as nonlinear multi-point discrete
boundary value problems. In this paper we shall develop adjoint identifies which are in
terms of solutions of (1.1) and its adjoint system. These identifies lead to the backward-
forward and forward-backward methods, which seem to be new processes for computing
the solutions of (1.1) and (1.2). However, the application of adjoint equations to solve
discrete problems is not new, e.g., Clenshaw [6] used adjoint difference equations to sum
the Chebyshev series. To demonstrate the usefulness of the proposed methods we solve
some continuous two-point boundary value problems which are known to be unstable.

2. BACKWARD-FORWARD AND FORWARD-BACKWARD METHODS

The adjoint system of the difference system (1.1) is defined as

v(k) = AT(k) v(k + I), k N(kI, kr) (2.1)

where AT(k) is an n x n matrix with elements aqp(k), 1 _< p, q < n and v(k) is an n x 1
vector with components vq(k), 1 < q _< n.

obtain
We multiply the qth equation of (1.1) by vq(k + 1) and sum over all n equations to

n n n n
Z uq(k + l)vq(k + I) = Z vq(k + I) Z aqp(k)up(k) + Z bq(k)vq(k + I). (2.2)
q=l q=l p=l q=l

Next we multiply the qth equation of (2.1) by uq(k) and sum over all n equations to get

n n n
uq(k)vq(k)= uq(k) aqp(k)vp(k+ 1).

ql ql 11
(2.3)

On subtracting (2.3) from (2.2), we find

n n
Z [uq(k + 1)vq(k + 1) uq(k)vq(k)] = Z bq(k)vq(k + 1). (2.4)
q=l q=l

Let k0 e N(k1, kr) be fixed. In (2.4) letting k = t and summing from k0 to k 1 N(k1, kr)
results in

n k n
Z [uq(k)vq(k)- uq(kOlVq(kO)] = Y. Z Vq(t) bq(t- 11, (2.5/
q=l t=k0+l q=l

for all k0 <_ k N(kl, kr)
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and, similarly

n
Z [uq(k)vq(k)- uq(k0)vq(k0)]
ql

n
X X Vq(t) bq(t I),

t=k+1 q=l
(2.6)

for all k0>_k N(kl, kr).

Equations (2.5) and (2.6) will be referred to as adjoint identities. We compute backward
solutions once for each uq(ki), 2 _< i _< r appearing in (1.2) with the conditions

Vq
p(i) (ki) q 2 _<i_< r, 1 < p, q _< n (2.7)

where v(i) (ki) is the qth component at k for the pth backward solution. Substituting (2.7)
into the adjoint identity (2.5) with k0 = k1, we obtain

n n
qp(i) ki n

pq(i)uq(ki). v (kl) uq(kl) = v (t)bq(t 1), 2 < i _< r. (2.8)10;tN q=l t=kl+1 ql

Summing (r 1) equations (2.8) and making use of (1.2), we get

n r (i) r ki
X [xt + X V (kl)]uq(kl)=tp- X X
q=l i=2 i=2 t=kl+l

vPq(i)(t)bq(t 1),
q=l

l_<p_<n. (2.9)

r
(i)If the matrix [:ilN + v (kl)] is nonsingular, then the system (2.9) provides

i--2

the unknowns uq(kl), 1 _< q < n. The solution of the problem (1.1) and (1.2) is obtained
by computing the solution of (1.1) with these values of uq(kl), 1 < q < n. However, to
evaluate the summation term in (2.9) we need to store the solutions of (2.1). This can be
avoided at the cost of solving another (r 1) system. For this, we denote

Wp(i)(k) =
ki (i)(t)bq(t 1); l<p<n, 2<i<r,Z Zv

t=k+l q=l

which is equivalent to solving
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n
.,t.tj)(k + 1) bq(k) + + 1)Wp(i)(k)=- E v Wp(i)(k

q=l
(2.10)

Wp(i)(ki) = 0; 1 _< p n, 2 i _< r. (2.11)

Thus, at the point ki, 2 < i _< r, we solve a system of order 2n given by (2.1) and (2.10)
subject to the conditions (2.7) and (2.11).

With this adjustment system (2.9) takes the form

n q n
qi)

r
X [or + X v (kl)] uq(k1) = tp + X Wp(i)(kl), 1 <_ p _< n.
q=l i=2 i=2

(2.12)

This method of constructing the solution of (1.1) and (1.2) is called the backward-
forward process and requires (r 1)n backward solutions of the adjoint system (2.1)
satisfying (2.7), (r 1) backward solutions of (2.10) satisfying (2.11), and 1 forward
solution of (1.1) with the obtained values of u(k1), 1 _< q _< n, from the system (2.12),
i.e., a total of (r 1) (n + 1) + 1 solutions of ntfi order systems. In particular, if r=2 then
we need (n + 2) solutions. Similar to the backward-forward process we have the forward-
backward process. For this we solve (2.1) forward once for each uq(ki), 1 < i < r 1,
appearing in (1.2) with the conditions

l<i<r-l,l<p,q_<n,v i) (ki) = lXl (2.13)

where vP). (ki) is t_he qth component at ki for the pth forward solution.

Substituting (2.13) into the adjoint identity (2.6) with k0 = kr, we obtain

n n ,,ti) kr
Y. O;pq uq(ki)- vt’ (kr) uq(kr) =
q=l q=l t=ki+l

vP_q(i) (t)bq(t 1),
q=l

l_<i<r- 1. (2.14)

Summing (r- 1) equations (2.14) and making use of (1.2), we get

n r-1 ..a r-1 kr
q=l i=l i=l t=ki+l

X v (t)bq(t 1),
q=l

l_<p<n. (2.15)
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We introduce

W.p(i)(k) = v (t)bq(t 1); 1 _< p _< n,1 i _< r 1,
t=ki+ 1 q=l

which is equivalent to solving

W.p(i)(k) =
n

qp(i) 1) bq(k) + + 1)v (k + W.p(i)(k
q=l

(2.16)

W.p(i)(ki) = O; 1 < p <_ n, 1 <_ i _< r 1. (2.17)

Thus, the system (2.15) is the same as

n
E [a q+

r-1r-1
p)Z v. (kr)] uq(kr) = tp + Z W-p(i)(kr), 1 <_ p < n.

i=l i=l

The solution of the problem (1.1) and (1.2) is obtained by solving backward
the system (1.1) with the obtained values of uq(kr), 1 < q < n from the system (2.18).

Next we shall consider the system (1.1) together with the implicit separated
conditions (1.3). We compute (n I]1) solutions of (2.1) backward with the
conditions

vSi)(ki) = cti(si),q; 2 < i < r, 1 < s _< [I 1 < q < n,

where Viq(Si)(ki) is the qth component at k for the sith backward solution.

(2.19)

Substituting (2.19) into (2.5) with k0 = k1 and using (1.3), we obtain

kin i(si) k ZZ *q (l)Uq(kl) = ti,i(si)
t=kl+Iq=l

n vi(Si)X (t)bq(t 1)"
1 q

2_<i <r, 1 < si< i.
We introduce

ki
Wi(si)(k) =- Z

t=k+l

n
Z "i(si) (t)bq(t I);
q=l "q 2<i_<r, 1 si_< i

(2.20)



Journal of Applied Mathematics and Stochastic Analysis Volume 3, Number 1, 1990

which is equivalent to solving
n

wi(sil(k) =" Z vi(Si) (k + 1) bq(k) + Wi(si)(k + 1)
ql q

Wi(si)(ki) = 0; 2 _< i _< r, 1 < s <_ [i.

Thus, the system (2.20) can be written as
n

iq(Si)v (kl)Uq(kl) = 1.i,i(si) + Wi(si)(kl); 2 i <_ r, 1 < s _< i.
q=l

(2.21)

(2.22)

(2.23)

System (2.23) together with (1.3) for i = 1, i.e.,

n

O;l(Sl), q uq(kl) = tl,l(s1), 1 _< s < i, (2.24)

forms a system of n equations in n unknowns uq(kl), 1 _< q <_ n. The solution of (1.1)
and (1.3) is obtained by solving forward the system (1.1) with these values of uq(kl),
l_<q_<n.

In practice we couple the adjoint system (2.1) with the equation (2.21) and solve
this system of (n + 1) equations from the point ki, 2 < i _< r to k1 with the conditions (2.19)
and (2.22).

Similarly, in the forward-backward process for (1.1) and (1.3), the unknowns
uq(kr), 1 _< q _< n are computed from the system

n vi(Si)E (kr)uq(kr) = ti,i(si) + w-i(si)(kr); 1 _< i < r- 1 1 < s < i,
q=l q (2.25)

n
Z (XrCsr) q uq(kr) = tr,rCsr), 1 < Sr< r, (2.26)
ql

where vi,Si,t (k) is the qth component of the sith forward solution from the point k of the

adjoint system (2.1) satisfying
i(si)

V_q (ki) = Oq(si), q; 1 < i _< r 1, 1 s <_ li, 1 < q _< n (2.27)

and w.i(si)(k) is the forward solution of the initial value problem
n vi(Si)w.i(si)(k) = (k + 1)bq(k) + w.i(si)(k + 1)

w.i(si)(ki) = O; 1 < i _< r 1, 1 s _< i.

(2.28)

(2.29)
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The solution of (1.1) and (1.3) is obtained by solving backward the system (1.1)
with the obtained values of uq(kr), 1 _< q < r.

3. NUMERICAL EXAMPLES

We shall construct an appproximate solution of the continuous boundary value problem

y"= f(t)y + g(t)

y(cc) = A, Y(I) = B (3.1)

by employing the discrete variable method due to Nomerov. Let h =K+i’ tk = cc + kh,

k N(O,K+I), fk = f(tk), gk = g(tk), and u(k) be the approximation to the true solution of
y(t) at tk, satisfies the second order difference equation,

1-h 10 2 l_h2fk+1(- 1 + 2fk.1)u(k- 1) + (2 + -ih. fk)u(k) + (- 1 + )u(k+1)

= l’h22(gk-1+ 10gk + gk+l), k N(1,K)

together with the boundary conditions
u(0) = A, u(K+1) = B. (3.3)

Theorem 3.1. (see [12])The discrete boundary value problem (3.2) and (3.3) has a unique
solution provided

(a) f(t) >_ 0 on [ct,13] and 1-h22fk < 1, k N(0,K+I); or

4sin 2K+I

max If(t)l < 1
a-<t-<l] [12]

as

if l_h22 maxf(t) < 1
a_<t then in system form the problem (3.2) and (3.3) can be written

u 1(k + 1) = u2(k) (3.4)

c2(k) 1
2

Ul(0) = A, u2(K) = B (3.5)
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10 h2 c2(k) = 1 1-h22where c0(k) = 1 2 fk, c l(k) = 2 + -- fk+ 1, fk+2 and

d(k) -- (k) x [gk + 10gk/ 1 + gk+2].

Applying the backward-forward process for the boundary value problem (3.4) and (3.5),
we note that (2.1), (2.21), (2.19) and (2.22) reduce to

c (k) v22(k l)v22(k) = v21(k + 1)+ c2(k) + (3.6)

w2(k) =- v22(k + 1) d(k) + w2(k + 1)

v(K) = O, v(K)= 1, w2(K)= 0. (3.7)

Further, the system (2.23) and (2.24) takes the form

v21(0)u1(0) + v22(0)u2(0) = B + w2(0)

u(0) =A,
which easily determines

B + w2(0) v](0)A
UI(0) = A, u2(0) = v(0) (3.8)

The solution of (3.4) and (3.5) is obtained by recursing forward the system (S.4) with the
initial values (S.8).

Similarly, applying the forward-backward process we f’md that (2.1), (2.28), (2.27)
and (2.29) reduce to

Cl(k]v.: (k + 1)= v.21(k)+c- v-ll (k) (3.9)

1 c2(k)
* + V-l 

W.l(k + 1) = W.l(k) + v.2(k + 1)d(k)

v.1 (0) = 1, (0) = 0, w.1(0).

Further, the system (2.25) and (2.26) becomes

v.11 (K)Ul(K) + v.2I(K)u2(K) = A + w.I(K)

u2(K) = B

(3.10)
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which gives

+ W.l(K)- v.](K)BA
u 1 (K) = I u2(K) = B. (3.1 I)

v (K)
The solution of (3.4) and (3.5) is obtained by recursing backward the system (3.4) with the
final values (3.11).

Example 3.1. For the discrete analogue (3.4) and (3.5) of the boundary value problem

y,, 2. y(t) 1
=

t2 ; y(2) = 0, y(3) = 0,

both the methods discussed in this section work equally well. The errors obtained, as

calculated from the exact solution y(t) =6 (19t- 5t2 0 ) and approximate solution Ul(k)
1with h = 25’ are presented in Table 1.

2.125
2.250
2.375
2.500
2.625
2.750
2.875
3.000

Table 1

Backward-Forward
Method

0.,,00000000D 00
0.10546078D-12
0.1587’801D-12
0.17716384D-12
0.16946167D-12
0.14502982D-12
0.10855900D-12
0.65239480D-12
0.16924973D-13

"Forward-Backboard
Method

0.648844!8D-14
0.10817389D-12
0.1’56465i2D-2
0.16960044D-12
0.15705492Do12
0.12977119D-12
0.93355879D- 13
Alll.l.

0.00000000D-00

Example 3.2. For the discrete analogue (3.4) and (3.5) of the boundary value problem

y" = 400y; y(0) = 1, y(5) = e-100,

we apply both the methods. The errors obtained, as calculated from the exact solution
5y(t) = e-20t and approximate solution Ul(k) with h = 1024’ are presented in Table 2.
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Table 2

0.3125
0.6250
0.9375
1.2500
1.5625
1.8750
2.1875
2.5000
2.1825
3.1250

Method Method

0.16875390D-13
0.22852524D-08
0.88231446D-11

0.65761522D-16
,, +
0.36760514D-21
0.82791852D-24

Fails 0.18265803D-26
0.39668934D-29
0.85087791D-32

3.4375
3.7500
4.0625.........., .,..,,,
4.6875

0.18068378D-34
,, .,,,,,., .,,..,.,,,.,,-,.-,
0.79577134D-40
0.16543683D-42
0.34217867D-45
O.O0000000D-O0

Example 3.3. The boundary value problem

y"= (2m + 1 + t2)y; y(0) = 13, y(oo) = 0, (3.12)

where rn >_ 0 and 13 are known constants, is known as Holt’s problem. This problem is a
typical example wherein usual shooting methods fail [2,5,7,9-11]. Replacing the boundary
condition y(,,o) = 0 by y(T) = 0 (T finite) Holt [8] used f’mite difference methods (however,

rn = 0, 13 = 1, T = 12; m = 1, 13 = -1/2, T = 8; rn = 2, 13 = , T = 8, the results arefor

unsatisfactory [8,11]), whereas Osborne [9] used a multiple shooting method and Roberts
and Shipman [10] used a multi-point approach. In [2] we have formulated a new shooting
method which gives accurate solutions of (3.12) for several different values of rn and 13 up
to T = 18. (This value ofT has been chosen in view of restricted computer capabilities.)
For the same and several other values of rn and 13 accurate solutions of (3.12) up to T = 18
have also been obtained in [5]. Here the error estimates in the solution of (3.12) when
approximating y(.o) = 0 by an appropriate boundary condition at T are also available. For
the discrete analogue (3.4) and (3.5) of (3.12) (replacing y(,o) = 0 by y(18) = 0) with rn =

10, = 1 and h =, we apply both the methods of this section. The numerical solution

u
1 (k) is shown in Table 3.
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Table 3

.O
7.0
$.0

iO.’O
’ii’.0’
i’.
13.0
14.0
15.0
16.0
17.0
18.0

Backward’-FOrward
Method

Fails

Fom-d’-Backward
Method

0.10000000D-01
0.25934255D-00
0.34564046D-01
0.19885232D-02
0.45958196D-04
0.41255769D-06
0.14129840D-08
0.i8272052D:11
0.88629857D-15
0,i(,o549o-8
0.10827935D-22
0.27128207D-27
0.25206584D-32
0.86750117Do38
0.11047255D-43

o.o480-5
0.58130757D-64
0.00000000D-00

Example 3.4. For the discrete analogue (3.4) and (3.5) of the boundary value problem

y" = (sin2t)y + cos2t; y(-1) = y(1) = 0,

1we apply both the methods. The numerical solution Ul(k) for h = 5--4-- is shown in Table 4.
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Table 4

t
Bkwd’-Forward

Method

O.O0000000D-O0
-0.54219742D-01
-0.11017210D-00
-0.16531803D-00
-0.21715198D-00
-0.26336748D-00
-0.30200211D-00
-0.33154697D-00

0.4
0.5
0.6
0.7
0.8
0.9
1.0

-0.35101159D-00
-0.35994166D-00
-0.35839390D-00
-0.34687723D-00
-0.32627260D-00
-0.29774424D-00
-0.26265376D-00
-0.22248554D-00
-0.17878818D-00
-0.13313322D-00

Fo/wardBackward
Method

0.22781405D-13
-0.54219742D-01
-0.11017210D-00
4).1653
4).217151981)-00
..0.26336748D-00
4).30200211D-00
-0.33154697D-00
-0.35101159D-00
4).35994
-0.35839390D-00
".3,687723D-00
-0.32627260D-00
-0.29774424D-00
-0.26265376D-00
-0.22248554D-00
-0.17878818D-00
-0.13313322D-00

-0.87088932D-01 -0.87088932D-01
-0.42204687D-01 -0.42687D-01
-0.58914799D-12 0.00000000D-00
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