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Abstract.

We study a C(1) parabolic and a C() quartic spline which are determined by

solution of a tridiagonal matrix and which interpolate subinterval midpoints. In

contrast to the cubic C() spline, both of these algorithms converge to any continuous

function as the length of the largest subinterval goes to zero, regardless of "mesh ratios".

For parabolic splines, this convergence property was discovered by Marsden [1974]. The

quartie spline introduced here achieves this convergence by choosing the second

derivative zero at the breakpoints. Many of Marsden’s bounds are substantially

tightened here. We show that for functions of two or fewer coninuous derivatives the

quartie spline is shown to give yet better bounds. Several of the bounds given here are

optimal.
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1. Introduction.

M. Marsden [1974, 1978] gave results concerning the approximation of functions

by even degree splines, including the simple parabolic splines. If the breakpoints are the

same as the interpolated points, then the resulting spline is ill-behaved, as can be seen

by simple examples (deBoor [1978] ). On the other hand, if we take the interpolated

points midway between breakpoints, the parabolic splines are rather nicely behaved.

Many of Marsden’s error bounds are improved in the present paper. At the

same time, we introduce a class of quartie splines for which very similar arguments give

better bounds. In order to be more explicit, we introduce some definitions and notation.

Let f be a continuous function of period b a and let us denote by {Xi}ki=O the

Received, October 1989; Revised, March 1990



118 Journal of Applied Mathematics and Stochastic Analysis Volume 3, Number 2, 1990

partition

a=x0<zi<xl <z2<...<x_ <z <x=b
Denote

h = x xi_ h = max h

ho=h,

Ilfll -- sup{If(x)l, a<_x<b},

(f,d) = SUPl_l<a If(x)- f(y) I.

A function s(x) is defined to be a periodic

x kassociated with f and { i}i=o if

(1.2) a) s(x) is a parabola when restricted to any interval [xi_i, xi]

) (x) c()b,bl,
) () = f(.,), i= 1, ,.., k,

d) s(a) = s(b), s’(a) = s’(b).

where z = (xi + xi+) / 2.

(i.i)

quadratic spline interpolant

Denote e(x) = f(x) s(x) s = s(xi) and e = e(xi) The following theorem

was obtained by Marsden.

Theorem 1_ (Marsden). Let {xi}i=0 be a partition of [a,b], f(x) be a continuous function

of period b a and s(x) be the periodic quadratic spline interpolant assoeated with f and

{xi}io Then

(1.3) II s il <- 2 II fi II, II s il <_ 2 II f II,
II e II _< 2 (f, ),
II e II <_ 3 (f, ).

The constant 2 which appears in the first of the above equations cannot, in general, be

decreased.

Theorem 1 is of interest as it indicates that the parabolic spline, in contrast to

the cubic spline, gives good approximations to continuous functions, provided only that

subintervals are sufficiently small and that w( f, is small.

Keeping the same notation as above, we define a quartic spline S(x) as follows:

(1.4) a) S(x) is a quartic polynomial on each interval (xi_t, xi),

b) S(x) e C()[a,bl,
c) S"(x) = o,
d) S() = f(z), = l, 2,.., k,
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e) S(a) = S(b), S’(a) = S’(b).

For this quartic spline we will prove the following:

Theorem 1..t. Let {x/}/0 be a partition of In,b], f(x) be a continuous function of period

b a and S(x) be the periodic quartic spline interpolant associated with f and {xi} k
i----0

II S il _< - II f(z)

The constant 8/5 which appears in the first of the above equations cannot, in general,

be decreased.

As Marsden predicted, many of the other bounds he gives can be improved.

The0re 2_ Let f and t4 be continuous functions of period b- a.

spline s(x) we have

(1.6) II e(x)II < c0,t h [I f II,

Then for the parabolic

where a0 = 4=g-:0 and e0,1 = 1 + a0 -8a02 + 4a0a

from Marsden was 5/4.

1.0323. The analogous constant

To further improve this bound, we can employ the quartic spline S(x).

Theorem 2_t. Let f and ft be contiuous functions of period b- a. Then for the quartic

spline S(x) we have

(1.7) IE(xi) < 8 hi :

If we choose even spaced knots, we obtain

(1.8)
where C0,1 , .846056.

Theorem . Let f, ft, and fft be continuous functions of period b a. Then for the

parabolic spline s(x)

(1.9)

(1.10)

17 it(1.11) II e’ II _< iB h II II
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where eit = ft(xi) st(x/) The constant 9/16 in (1.10) was due to Marsden. Equations

(1.9) and (1.11) represent substantial improvements over Marsden’s results. For

comparison, Marsden’s constant for (1.9) was 5/8 while in (1.11) the value was 2. If

we make the additional assumption that the partition consists of equally spaced

intervals, then we can improve (1.11) to

(1.12) II ’ ii -< .7431 h II ’ II.
Concerning the quartic S(x) we can show

Theorem . Let f, it, and ftt be continuous functions of period b- a. Then

(1.13) II E(x)II _< 20 h2 II f" II,

137 hi 2 + hi-x fit(-l) Itl_< hi + hi,x II II,
51 ftt(x.x5) II E II _< h II II.

Again each of these bounds represents an improvement over the parabolic spline.

Finally concerning the parabolic spline s(x), we can show

Theorem 4. Let f, ft, ftt, and fttt be continuous functions of period b a. Then

(-a) II e II _< h II f’" II,

(X,XT) II e,’ I! _< h2 II f’" II,

(1.18) II e II <_ h3 II ft,, II,

(1.19) II e’ II _< 2 h2 II f’" il,

hi ha fttt < x < x(1.20) e’t(x) <_ {- / 3-h= } !1 II, x_x

narsden’s analogous constants for (1.16) to (1.20) are 1/8 1/3, 17/96, and

11/24 respectively. In each case a substantial improvement is indicated. Furthermore,

(1.16) and (1.18) are best possible. In fact we also have the pointwise bound for

arbitrarily spaced breakpoints which is exact for equally spaced knots,

(1.21) e(x) <_ Qz(t) h3 il f’" I!, x _< x+,
X- X

where t = XiI---z---Xi and

1 t2 t3Q3(t) = 2- " + -is the "Euler spline" of degree three.
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The techniques used in proofs of Theorems 2, 2t, 3 and 31 are similar to those

used by Hall and Meyer [1976] to give optimal bounds for derivatives of cubic spline and

in previous joint work with A. K. Varma [1989]. For a given partition subinterval

xi+l] we write

(1.22) f(i)(x) s(i)(x) _< If(i) LCi)(x) + LC)(x) s()(x)
(or S in place of s) where L is a polynomial interplation of f. We then proceed by

obtaining pointwise estimates of the quantities on the right hand side of (1.22) Due

to the similarity of most of these derivations, we will show only a few in detail,

confining ourselves in most eases to mentioning the necessary choice (or choices) of L to

derive a given bound.

2. Existence of the CC2) Quartie Spline Interpolant S(x)

We wish to show the unique construction of the quartie spline defined by

X+l + Xi x X
equations (1.4 a)-e). Define zi+ = 2 hi = xi+l xi and t = --hi We

can write the unique quartie polynomial Pi(x) interpolating fix/), ftt(xi), f(zi+l),

f(xi+l), and ftt(xi+) as

Pi(x) = f(xi) Ao(t) + ft’(xi) Co(t) hi + f(zi+) A/2(t)

+ f(xi+) Al(t) + ftt(xi+) Cl(t) hi 2

where

Ao(t)= 1- t + tz ta,
t2 17 t3 t4c0(t)=- t + y-

A1/:(t) = t- t3 + t4,

A(t)=-t + tz t’,
t 7 t3 t4

We set Stt(xi) = Stt(xi+x) = 0 and S(zi+) = f(zi+) Then the quartie S on

[Xi, Xi+1] iS given by
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S(x) = S(xi) A0(t) + f(zi+l) A1/2(t) + S(xi+l) A(t)

Then

S’(x,+) = s(,) (- + f(+’) r, (-

Setting St(x/+) = St(x/-) we have on rearranging and multiplying by 5 h hi+

(2.3) 3hiS(xi_l) + 13(hi+hi_1)S(xi) + 3hi_1S(xi+x)

= 16 hi_t f(zi+x) + 16 h f(zi).

This is the tridiagonal system to be solved in order to obtain a twice continuous

piecewise quartic interpolating interval midpoints and having second derivatives zero at

the breakpoints xi. Since the resulting system of equations is diagonally dominant, it is

clear that for the periodic case there exists a unique spline satisfying Eqs. 1.4).

3. Proof of Theorem 1

where II

From (2.3), It follows easily that

IIS(x)ll _< 11 II

!1 denotes the supremum over the values It remains to show that this

bound is best. Essentially, we would like to produce a sequence of values S(xi) of equal

size and alternating sign. In the limit as hi_ > > h (2.3) reduces to

3 S(x) + S(x+) = 6 f(z+).

By choosing f(zi) = (-1)TM for 0 <_ <_ n, we get arbitrarily close to (3.1). In fact,

let hi=thi_ wheret < 1. We then have forl <_i <_n- 1

(3.2) 3tS(xi_l) + 13(1 + t) S(xi) + 3S(xi+l) = 16(1-t).

Using (3.1), it follows that sign(S(xi)) = (-1) I <_ < n- 1. Therefore
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16 (1- t)IS(x,)l >_ l(l:t) 2 <_ < n- 2.

Using this inequality in (3.2), we have

1 (:- t)13 (l+t)}S(xi) > 16(1-t) + 1,3(,i+t) 3(1 + t)

> 16(i-t)[1 +1 3 <_i_<n-3

and hence

IS(x)l
16 (i- t) i13(i +t) [I+ 3 <i <n-3

Inductively, for k _< _< n- k, we have

IS(x)l >_ ::((11- t) 1"t)[ :+ +... (:)-l k <_ <_ - k,

which in the limit as t -, 0 and n, k --, oo gives

IS(x)i > i0 = ’
completing the demonstration that 8/5 is in fact the best possible constant in (3.1).

Also from (2.3), we have

3 hi S(xi_:)- f(xi_:) + 13 ( h + hi_ )[ S(xi)- f(xi)

+ 3 hi_ [S(xi)- f(xi)]

= 3 h f(zi) f(xi_:) + 13 h f(zi) f(xi)

+ 13 hi_: f(zi+:) f(xi) + 3 hi_: f(zi+:) f(xi+:)

If we assume that IS(x/)- f(xi)l > IS(x/_:)- f(xi_:)l and

IS(x/)- f(xi)i >_ IS(x/+:)- f(xi+:)l then we have

lO ( hi + hi_x )IS(xi)- f(x)l

_< 3h, w(f;h/2) + 13 h co(f;h/2)

+ 13 hi_ w(f; h/2) + 3 hi_: w(f; h/2)

= 16(hi_:+ hi)w(f;h/2)

and hence
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II S(x)- f(x,) il (f; h/2).

We next wish to bound If(x)- S(x) As

Ao(t)+A1/2(t +Al(t = 1

and S(x) = S(xi) Ao(t) + f(zi+x) A1/2(t + S(Xi+l) A(t) we have

S(x)- f(x) = Ao(t) S(xi) f(x)] + A1/:(t f(zi.i) f(x)

+ Al(t) S(xi+l) f(x)

Assume that x < x _< zi+ We have

s()- r(x) = Ao(t) [S- r + r- r(x)] + A/(t) r(+)- f(x)

+ Al(t) Si+- fi+ + f(zi+) f(zi+) + fi+1- fix)]

and thus

IS(x)-f(x)l = IA0(t)l { IS-fl-t-If-f(x)l }

+ [A/z(t)l { If(zi+x)-f(x)l }

+ IA(t)l { ISi+x-fi+xi +

Replacing t by 1 t, symmetry gives the same arguments for

zi+l < x < xi+l. By taking the maximum for 0 <_ t _< 1/2, it follows that

it(x)- S(x)l <_ (r; /).

This completes the demonstration of Theorem It.
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4. Proof of Theorem 4

We will give the proof of Theorem 4 in some detail. The remaining proofs are

quite similar and we will confine ourselves to giving the appropriate interpolation to be

used in (1.22). We first show that if f, ft, ftl, and ftll are continuous and of period b a

then

h3 fill(4.) IIf- sll <_ II II
where s is the parabolic and periodic once differentiable spline interpolating subinterval

midpoints. Furthermore," 1/24" cannot be improved.

For a given partition and subinterval [xi, xi+l], we write

(4.2) If(x)-s(x)l < If(x)- L(x) + IL(x)-s(x)l

where L(x) is the Lagrange parabola saitsfying

(4.3) L(xi) = f(x/) L(zi+I) = f(zi+x) L(xi+.) = f(xi+)

where zi+l = xi+ ’ Xi L(x) may be uniquely expressed as2

(4.4) L(x) = f(xi)A0(t) + f(zi+l)A1/2(t) + f(xi+l)A(t)
x x

where t = and

A0(t)= (1-2t) (l-t),

A1/2 = 4t(1-t),

A(t) = t ( 1- 2t ).

(4.5)

Proceeding by using the well-known Cauchy error one obtains

[fix)- L(x)[ _< hi a It_ t- 1/2)(6 t- 1 )1 II f" 11.

In order to bound L(x) s(x), we use the fact that

s(x) = s(x,) A0(t) + f(zi+l) A(t) + s(xi+l) A2(t)

and hence
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(-) L(x)- () = If(x,)- (x)

+ [f(x+,)- (x+x)] A(t)

Iiell {IAo()l + IA2(t) }

=llell 1-2tl-

We now turn to bound II e !1 = maxl<_j<{ e1 } where e1 = f(xj) s(xj)

We resort to the tridiagonal system given by Marsden,

(4.7) h si_ 3 h -I- hi_ s hi_ si+

= 4 h f(zi) + 4 hi_ f(zi+x)

from which it follows that

(4.8) h ei_1 + 3 h -t- hi._ e + hi_ ei+

= hi fi-1 4 h f(zi) + 3 (h + hi_ ) fi

4 hi_ f(zi+l) + hi_ f/+t

=: Bo (f).

Bo(f) so defined, is a linear functional identically zero for polynomials of

degree two or less. We thus have by the Peano theorem, (see P. J. Davis [1963] )

(4.9) Bo(f) -’- ?+ K(y) f"(y) dy / 2!
xi-1

where

K(y) = Bo (x- y)+2]

2= hi_ [(xi+-y)+:] -4hi_ [(zi+-y)+

2+ 3(hi+hi_t) [(xi-Y)+

-4h [(zi-y)+2] + hi [(xi_l

= h_l [h (y-x/)]2

hi_ [h (y-x/)]2

hi-- <_ y-x/ <h

hi4 hi_ [-- (y-xi)]2

0 < y-x <hi



Error Bounds For Two Even Degree Tridiagonal Splines: Howell 127

h [hi_ + (y-x/) ] + 4 h [ + (y-x,) ]:

:h_ <_ y-x <0

h [hi_ + (y-xi)]2, .h

Then we have

(4.10) hi ei-1 + 3 h + hi_ e + hi_ ei+xl

< rX’+’l K(y)I dy II f II/2t
.,Xi_I

3 3 l= (hi-t hi-t + hi hi- )11 II/12.

If we take so that. e is maximal, then we have

(4.11) 2 h + hi_ )l[ ei II
II/12< (hi-1 hi-i 3 + hi hi-1 ) II f"

and hence

(4.12) II e II _< hi_l hi 3 h h-1 "1- i-1 fl
24 (h + h,, ) il II

Combining (4.5) and (4.12), we have

(4.13) If(x)-(x)l _< If(x)- L(x) + II II l-2tl

< {.[ t (.!/2.-t .)....(. !.-.t )l
6

< Q3(t) h3 II f" II
where Q3(t) is the Euler polynomial of degree three. Equation (4.13) is precisely (1.21).

From it follow also (1.1S), (4.1), and (1.16).

To see that (1.21) cannot be improved, consider the Euler polynomial Qn(x)
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constructed by integrating a constant n times so that the nth integration is odd for n

odd and even for n even. On the unit interval, the first few Euler polynomials are

(4.4) Qo(X) = ,
Q() = x- /,

Q(x) = /- x/,

qa(x) = x/- x/4 + 1/4.

(4.15)

If we extend the Euler polynomials to the real line by setting

Qn(x) = (-1)j Qn(t+j), 0 _< t _< 1

and j integer, then Qn(x) is n 1 times continuously differentiable and piecewise n times

continuously differentiable. We call Qn the "Euler spline’. It is of period 2 and has

nth derivative of plus or minus one. Qn is thus a member of the class of functions with

nth derivative piecewise differentiable. The third derivative of Q3 can be represented as

the pointwise limit of the third derivative of a sequence {fi) of three times continuously

differentiable functions which converge uniformly to Q3" Furthermore the fi can be

defined as piecewise lines in such a way that the fi have third derivative bounded in

absolute value by one and so that the third derivative of the fi converges pointwise to

the third derivative of Q3’ i.e, to one on (2j, 2j+l) and minus one on (2j-l, 2j).

Restricting Q3(x) to any interval [0, 2k] consider the once continuously

differentiable spline s parabolic in each interval [i, i+l] and satisfying

s(z+x) = Q3(z+) = 0

(0) = (k) (0) = (:k).

The spline s thus defined is identically zero and is the unique periodic quadratic spline

interpolating Q3 and each of the {fi} on [0, 2k] It is not hard to see that the

maximum error occurs at the integer knots and is 1/24. In fact we have shown that
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Q3(x) is a pointwise exact bound.

We next demonstrate Equation (1.17),

where il ei II = maxo<_i<_lft(xi) s’(xi)l From Marsden we have the tridiagonal

system of equations

(4.17) hi_ si_l + 3 (h + hi_l) si "t" h Si+l

from which we obtain the functional B1 defined by

(4.18) hi_1 ei_ + 3 (h + hi_l) ei + hi ei+l

=hi_tfi_t + 8f(zi) + 3(hi+hi_l) fi -8f(zi+l) + hifi+t

=: Bl(f)
which is identically zero for all polynomials of degree two or less. Hence

(4.19) Bl(f) < r’+’l Bl[CX-y)+:]l dy II t"Ce)II/t
"Xi-1

where

B1[(x-y)+2 =

2 h (xi+ y)+

= 2 hi2 2 h (y-x/)

8 (zi+- y)2+ + 6 h + hi_ ) (y-x/)+

28 (y-z/)+ + 2 hi_ (Y-Xi_t)+

hi _< y-x/ <h

hi0 < y-x _<-
-hi_
,-y- < y-x <_0

-h _< y-x/

6 h (y-x/) 8 (y-x/) :

6 hi_ (y-x/) 8(y-x/)2

2 hi_t2 2 hi_ (y-x/)

where the last four expressions are the explicit form of B1 on subintervals of [xi_t,xi+t].

Conveniently, the above kernel is positive. Evaluation of the integral in (4.19) is thus

straightforward, leading to
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h + h(4.20) hi-t ei-t + 3 (h + hi_t) ei + h ei+ <_ 3 II Ii-

Assuming that j is such that ]e attains its maximum, we then have

h a h" .i-t ,, h(x.7) II e’ II _< (hj+t_x) II II _< (/a) II 11.

In order to extend the bound (1.17) to the entire interval, choose any

subinterval [xi, xi+t] of the given partition and consider the line :I interpolating fi and

jfi+t may be represented as

(4.21) Jt(x)=(l-t) fi + tfi+xt.

By the triangle inequality, we have

e(*)- ’(*) <_ r’(x) a’(x) + a’(x)- d(.) I.
As ft is twice continuously differentiable, we have the well-known inequality

(4.23) f(x)- 3’(x) < hi t (1- t)II f" II / 2t,

As both :I and s are lines on [xi, xi+,] we have

’](4.24) I:’(x)-s’(x)l < [f’ sitl(1-t)+ [fi+t

< II e’ II { ll- tl + Itl }

< II ei II
< (1/6) ha I! f"’ II.

Adding (4.23) and (4.24) gives the desired formula

f(x)- d(x) _< 1/6 + t(1- t)/2 h II f" I!

< (7/24) h2 II f" I!.
Several further refinements of this argument are possible and may be given in future

work.

We next wish to bound fn(x) sn(x) Choosing the arbitrary partition

subinterval [xi, xi+l] we consider the parabola L matching f at x zi+t, and xi+t. By
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the triangle inequality, we have

f’(x) dr(x) _< ft’(x) LU(x) + L"(x)-

<_ f’(x)- L’(x) +

_< Ira’(x) L"(x)l + Ii e II {I Ao"(t) + Az"(t) }

_< Ira’(x) L"(x) + 1 h3 lll--II II [4+4]

where AO(t)

h3 flll<_ f"(x)- Lit(x) + il II

Al(t) and A2(t) are the fundamental functions of Lagrange

interpolation.

The bound on t4t(x) Ltt(x) is obtained by a Peano theorem technique

similar to that used by Birkhoff and Privet [1967] (or see P. J. Davis [1963] ). We

have for 0 _< t _< 1 and f e Cttt[xi, xi+l] that

II f’" II(4.27) ftt(x) Ltt(x)

where

K(t,z) = (t- z)+ 2

= (t- z)+ 2

A0(t (0- z)+2

Al(t (- z)+2 A2(t) (1- z)+2

(-z)+2 4t(1-t)- (1-z)+2 2t(t-)
and for 0 <_ t <_ 1/2,

K(’)(t,z)
2! 2z t>z

-l+2z2 t <z,z_< 1/2

-2(l+z)2 t <z,z >_ 1/2

and where the notation K(i’1) denotes the mixed ith partial derivative with respect to
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the first variable and jth partial with respect to the second variable. Of the three

terms for K(’), the first is positive and the lt two are negative. Evaluation of the

integral of 4.27)is straightforward, .giving for 0 _< t < 1/2,

(4.28) f(x)- L’(x) < h, ( 4--2 t / } II f’ II.

For other estimates of this type see Sard (1963) for theory or Varma and Howell

(1983) for application to the family of Listone polynomials.

Using 4.28) in 4.26) gives for 0 _< t <_ 1/2,

ha

hi h3 fttt-< {T / 3hi }11 II
which by symmetry holds also for 1/2 <_ t _< 1

Using the linear interpolation of fi and fi+l and the usual triangular

inequality, we may obtain the alternate estimate

h ftt(4.30) ftt(x)-stt(x)l _< {hlIt(I-t)] + )]l II
which when h is larger than h may offer a lower estimate of the error. As the proof is

very similar to those already given, we omit the details. The remaining assertions of

Theorems 2 and 3 rely on the use in (1.22) of the unique parabola L which satisifies

(4.3). The analogous results of Theorems 2 and Theorem 3 rely on the quartics L

interpolating the same points as in the parabolic case, with the additional interpolatory

conditions jtt= 0 for t = 0 and t = 1 for each subinterval.

Birkhoff, G., and Priver, A.
Mech. 13:827-836 (1967).
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