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1. Introduction

In [1] (see also [21 Section 5.3), several existence theorems were established for

the BVP of nonlinear second order differential equation in Banach space"

-x"= f(t,x,x’), 0 < t <_ 1;
(1)

ax(O) bx’(O) = Zo, cx(1)+ dx’(1) = x.

Now, in this paper, we shall combine the fixed point theory, fixed point index theory

and cone theory to extend some results of [1] to the BVP of nonlinear second order

integrodifferential equation of mixed type in Banach space:

-x" = f(t, x, x’, Tx, Sx),
ax(O)- bx’(O) = xo,

0_<t_<l;
(2)

cx(1) + dx’(1) = x,

where

T (t) = S (t) = h(t,

We get more results about the existence of nontrivial non.negative solutions and

multiple nonnegative solutions. As application, we obtain some results for the

following BVP of third order integrodifferential equation:

= z’ "-x’" f(t,x, ,x

x(O) = O, ax’(O) bx"(O) = xo,

0 <_ t _< 1;
(4)

cz’(1) + dx"(1) = X1.

Finally, we give severn examples for both infinite and finite systems of ordinary

nonlinear integrodifferential equations.

2. Several Lemmas

Let E be a real Banach space and P be a cone in E which defines a

partial ordering in E by z < y iff y-x P. P is said to be normal if

there exists a positive constant N such that 0 _< x _< y implies I[=ll Nil,all,
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where 19 denotes the zero element of E, and N is called the normal constant

of P. P is said to be solid if its interior int(P) is not empty. In this case.,

we write x << y if y- x int(P). For details on cone theory, see [3]. In the

following, I = [0, 1].

LEMMA 1. Let P be a solid cone in E, uo E, 0 <_ to <_ tx <_ 1 and

F= {x t C[I, El x(t) >> uo /’or t0_<t_<t,}. Then F is e convex open set

in C[I, El.

PROOF" The convexity of F is obvious, so, we need only to prove that F is

open. Choose v e in(P) and let x0 e F. For anyfixed t’ [t0,t], there

exists a sma21 r(t’)> 0 such that xo(t’), uo +r(t’)v. Since xo(t) is

continuous, there is a small interval I(t’) = (t’- r’,t’ + r’) such that

o(t) > o + (t’)v o t e

Now, {I(t’)" t’ e [to,t1]} forms an open coveting of [to,tl], so, Heine-Borel

theorem implies that a finite set {I(ti)" i = 2,3,...,m} already covers [t0,t].

Hence

where r0 = min{r(t2),...,r(tm)} > 0. Since v e int(P), there exists rl > 0

such that

v + z 0 fo ny z e E, ilzll x. (6)

Let x e C[I, E satisfying i[x x011 < 0. Then, for any t e [to, t], we

have by (5) and (6),

(t) = o(t)+ (t) o(t) > ,o + o[v ’ ((t) o(t))] >_ ,o,
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i.e. z F, and the proof is complete.

COROLLARY 1. Le P be a solid cone in E, uo E, 0 < to <_ ti <_ 1 and

F= {x C[I,E] x(t) > uo for to <_ t <_ t}. Then F is a convex open

se i12 C1 [I, El.

REMARK 1" The norm in space C(’)[I,E] will be defined by

[[xl[, = max{[Ix[[o, I[x’l[o,..., ][x(m)llo }, (7)

where

(n = 0,1,...,m). (8)

In particular, when rn = 1 we have

Ilxll = mx{llxllo, I!’11o} mx{mxllz(t)ll, maxllz’(t)ll}.,e. (9)

LEMMA 2. Let H be a bounded set of C[I,E]. Suppose that H’ = {x’"

x e H} is equicontinuous. Then

a(H) max{sup a(H(t)), sup a(H’(t)) }
tel tel

(10)

a(S) = max{a(H(i)), a(H’(i)) }, (li)

where a denotes the Kuratowski measure of noncompactness, H(t)

{x(t) x e H}, H’(t)= {x’(t) x e H}, H(I)= {x(t) x e S,t e I} and
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r,() =

PROOF" (10) is known, see [2] Theorem 1.4.3. To prove (11), we first show that

(12)

For any e>0, H can be expressed as H= USi such that
i----1

diam(Si) < a(H) + e, i = 1,2,..., m. (13)

Since H’ is equicontinuous, there exists a partition

I such tha

{t} (j =0,1,...,n) of

(14)

Leg Tij = {x’(t)" x Si, t I} then H’(I)= O U Tij. For any x’(t)
j=l i=1

V’(s) Tij (z,V Si, t,s Ij), we have by (13) and (14),

_< s + diam(Si) < a(H) + 2e,

and therefore diam(Tij) _< a(H)+ 2s (i = 1,...,m; j = 1,...,n).

a(H’(I)) _< a(H)+ 2s, which implies (12) since e is arbitrary.

On the other hand, i is known (see [2] Lemma 1.4.4)

Hence

((z)) _< (n). (15)

Observing

(n(t)) _< (n(z)), (n’(t)) _< (n’(z)), t e z,
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(11) follows from (10), (12) and (15). Our 1emma is proved.

tEMARK 2" (a) If we only assume that H is a bouaded set in C[I,E], then

(see [2] Lemma 1.4.4)

(H’(Z))> (6)

(b) We will also use the following conclusion (see [2] Remark 1.4.1): Let B be a

bounded set of E and S be a bounded set of real numbers. Then, for

SB = {tx x B,t S}, we have

(7)

(c) By the same method, we can prove the following extension of Lemma 2" Let H

be a bounded set of c(m)[I,E] (m > 1). Suppose that H(m) = {x(m) x H}

is equicontinuous. Then

a(H) = max{sup a(S(t)), sup a(H’(t)),... ,sup a(H(m)(t))}
t.I t.I t.I

(18)

and

a(H) max{a (H(I)), a(H’(I)),..., a (H(m)(I))}. (19)

In order to investigate BVP (2), we first consider the integral operator

1

Am(t) = a(t, s)f (s, x(s), x’(s), Tx(s), Sz(s))ds + y(t), (20)

where f C[I x P x E x P x P, P], V e C2[I,E], y(t) >_ 8 for tI and

]-a b) c( s
a(t,s)=

(at+ ( 1- )+d),
J-(as + b)(c(1 t)+ d),

(.91)
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here a_>0, b>0, c>_0, d>0 and J=ac+ad+bc>0. Moreover, T and

S are defined by (3), where k e C[D,R+], h e C[Do,R+], D = {(t,s) e R"
a,< s _< t_< 1} and Do = {(t,s) R2 0 <_t, s < 1}. in the following, let

BR = { e P" Ilxll < FR = {x e E" Ilxll < R) ( > 0) d

k0 = max k(t,s), ho = max h(t,s). (22)
(t,s)6D (t,s)6Do

Furthermore, let

cone in C1[I, E].

P(O {x e C[I,E]lx(t) >_ 0 for t e I}.

Usually, P(I) is not normal even if P

Then, P(I) is a

is a normal cone in

LEMMA 3. Let f be uniformly continuous on I x BR x FR x BR x BR
R > O. Suppose tha here exis constants Li >_ 0 (i = 1, 2, 3, 4) wih

[or any

L + 2L2 + koLa + hoL4 < p (23)

such that

a(f(t,X,Y,,Z,W)) <_ L,a(X) + La(Y) + La(Z) + L4o(’V) (24)

for any bonded X, Z, W C P, Y C E and t 6 I, where

p = min{1, q-’} (25)

( max{J-l(bc + bd), J-l(ad
q=

max{
ac # 0;
ac-- 0o

A is bounded and continuous and there exists 0 < r < 1

a(A(Q)) <_ r(Q) for any bounded Q C P(I).

into P(I),

such that



5,$ DAJUN GUO

PROOF" By direct differentiation of (20), we have for x e P(I),

1

(Ax(t))’ = C(t, s)f (s, x(s), x’(s), Tx(s), Sx(s))ds -t- (27)

where

j-1 (--c)(as + b)
t <

(es)

and

(Ax(t))" = -f (t,x(t),x’(t),Tz(t),Sx(t)) + y"(t). (29)

It is easy to see that the uniform continuity of f on I X BR X FR X BR X BR

implies the boundednessof f on IxBRxFRXBRXBR, so, (20) and (27) imply

that A is abounded and continuous operator from P(I) into P(.[). Now,

let Q C P(I) be bounded. By virtue of(29), {[[(Ax(t))"[] x e Q, t e I} is a

bounded set of E, so (A(Q))’ is equicontinuous, and hence Lemma 2 implies

(see (10))

a(A(Q)) = max{sup a(AQ(t)), sup a((AQ)’(t)) }.
tEI tel

(30)

On the other hand, it is easy to know from (21), (26) and (28) that

O <_G(t,s) <_ S-(as+ b)(c(1-s) + d) <_ q, t, s e I (31)

and

[Gt(t,s)l_<l, t, s e I, t7 s. (32)
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Consequently, for t e I, we have by (20), (17) and (31),

((t)) _< ({fo C(t, s)f(s, =(s), =’(s), Tx(s), Sx(s))ds x c= Q})

<_ a(-c6{G(t,s)f(s,z(s),=’(s),Tz(s),S=(s)) x . Q, . I})

= a({G(t,s)f(s,x(s),x’(s),Tx(s),Sx(s)), x .. Q, s c= I})

<_ qcz({f(s,x(s),x’(s), Tx(s),Sx(s)). x e Q, s e/})

< qa(f(I, Q(I), Q’(I), TQ(I), SQ(I)). (33)

Since f is uniformly continuous on IBRFRBRBR for any R>0,

we have (see [2], Lemma 1.4.1)

a(f(I, Q(I), Q’(I), TQ(I), SQ(I))) = sup a(f(t, Q(I), Q’(I), TQ(I), SQ(I))).
(34)

It follows from (33), (34) and (24) that

a(AQ(t)) <_ q{La(Q(I)) + L:a(Q’(I)) + Laa(TQ(I)) + L,a(SQ(I))}, t I.

(35)

By (16) and (17), we have

.(Q’(Z)) < :.(Q). .(Q(Z)) < .(Q) (36)

and

a(TQ(I)) = a,({fo k(t,s)x(s)ds x e Q, t e

<_ a(’C6{tk(t, s)x(s) x e Q,s e [0, t], t e I})

= a({tk(t,s)x(s)" x Q, s e [O,t], t e

<_ o.(Q(Z)) <_ o.(Q). (37)
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Similarly,

-(SQ(O) _< (38)

Hence, (35)-(38)imply

a(AQ(t)) <_ q(L + 2L: + koLa + hoL)a(Q), t e I. (39)

In the same way by using (27) and (32)instead of (20) and (31), we get

a((AQ)’(t)) <_ (L + 2L + koLa + hoL4)a(Q), t e I. (40)

It follows from (39), (40), (23) and (30) that a(A(Q)) <_ ra(Q), where

r -- max{q(L + 2L2 + koLa + hoL), L1 + 2L2 + koLa / hoL} < 1, and our

lemma is proved.

3. Main Theorems

Let us list some conditions for convenience

(H1) XO O, Xl O; f is uniformly continuous on I x BR x FR x BR X,BR

for any R > 0 and there exist Li >_ 0 (i = 1,2, 3, 4) such that (23) and

(H:)

(24) hold.

M(R)lim -R < 2.. where
R---,+c m

I X BR X FR x BR X BR},

M(R) = sup{Ill(t, x, y, z, w)[[ (t, x, y, z, w) e

rn=max{1, k0,h0} and p is defined by(25)

and (26).

(H3) there exist uo > 0 and 0 < to < t < 1 such that f(t, x, y, z, w) >_

rouo for t[t0,t], xku0, yE, zk0, w>_0, where

ro = J{(ato + b) (c(l 11)-" d)(1 tO)} -1 (41)
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cone P is solid and there exist uo >>O and 0 < to < t < 1 such

that f(t, x, y, z, w) > ruo for t e [to,t], x > uo, y E, z > 0, w >_ 0,

where r > r0 and r0 is defined by (41).

there exists Ro > m such that

M( 0) <
p __),Ro m Ro (42)

where

fl = J-(a + b + c + d)mx{llxoll, IIxll}. (43)

THEOREM 1. Le (Hx) and (H) be satisfied. Then BVP (2) has a leas one

nonnegaive solution in Ce[I,E], i.e. solution in C[I,E] P(I).

PaOOF" It is well known, the C2 [I, E] solution of (2) is equivalent to the C1 [I, E]

solution of the following integral equation

1

x(t) = G(t, s)f (, z(s), x’(), Tx(s), Sx(s))ds + y(t), (44)

where G(t,s) is the Green function given by (21) and y(t) denotes the unique

solution of BVP

xl

(o) b’(O) = o,

0 _< t _< 1;
(45)

CX(1) + dxt(I) = Xl,

which is given by

v(t) :- {(c(1 t) + d)0 + (t + 6)x }. (46)

Evidently, y C2[I,E] f3 P(I). Let operator A be defined by (20). Then

condition (H1) and Lemma 3 imply that A is a strict set contraction from
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P(I) into P(I). By (H2), there exist r/>0 and Ro >0 such that

M(R) p
< for R>_mRo.

R m+/
(47)

Choose R such that

+ <Im+r R (48)

and let U= {x eP(I)" Ilxli <R}. For xeU, we have

[Ix’[[0 <_ R, ][Tz[10 _< koR, ll&,llo < hoR,

so, it follows from (20), (27), (31), (32), (47) and (48) that

ilA:llo < qM(,.) + i111o < ,Zp m.R + I1illm -!- r

<- (m+, + )R < , (49)

and

II(A,)’llo < M(mR) + ilY’llo < P m.R + I111m+r
I111<- (m+ + .)R < R, (50)

hence IIAII < . Thus, we have shown

A(G) C U. (51)

Since - {z E P(1)" Ilzlll _< R} is a nonempty bounded closed convex set

of CI[I,E], Darbo theorem (see [4])implies that A has a fixed point in U,

which is a solution of (44), and our theorem is proved.
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TtIEOItEM 2. Le (H), (H) and (H) be satisfied. Then BVP (2) has a

leas one nonrivil nonnegaive solution x C2[I, E] which satisfies

() > 0, e [0,]. ()

PItOOF" As in the proof of Theorem 1, we can choose R > [lu011 such that (51)

holds. Now, let F = {z e P(I)" IIii n and x(t) >_ uo for t e [t0,tl]}.

Obviously, F is bounded closed convex set of C [I, E], and F is nonempty

since u F, where u(t) Uo.

For xF, we have by (H3)"

Consequently, Ax F, and hence

implies that A has a fixed point in

A(F) C F. Finally, again Darbo theorem

F, and the proof is complete.

TttEOREM 3. Let cone P

and (Hs) are satisfied and

be normal and solid. Suppose that (n ), (n), (n, )

lifo I!
R0g

(54)
m

where N is the normal constant of P. Then BVP (2) has at least three non-

negative solutions 5i 6 C2[I,E] (i = 1,2,3) such that

R0
m

fo t e [to,t]. ()
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PROOF" By Lemma 3, A is a strict set contraction from

is y to om () .d (3) that

P(I) into P(I). It

(56)

Let V = {x P(I)"

(42) and (56) imply

]] I]1 < R-’0" }" For x { 1, we have ])x ]I < R_
rn m

IlAxl[o <_ qM(no) + IlYllo < q--p (no m) / <_ 1__ (Ro m) + R.._o
m rn m

II(A)’ll0 _< M(0) / llY’ll0 < p-- (0 m#) / Z < (0 roB) / # -- R__0.
m m m

Consequently, [[AxII1 < R_ and hence

A(U1) C U. (57)

As in the proof of Theorem 1, we can choose R > 2[[u0[[ such that (51) holds,

where U = {x e P(I)" IIll < }. Let U: = {x e P(I)" Ilx[[1 < R, x(t) > uo

for t [t0,tl]}. By Corollary 1, U2 is a bounded open convex set of P(I). U2

is nonempty since v U2, where v(t) = 2u0. Moreover, we have

Yl C U U2 C U Vl [* U2 = . (58)

In fact, (54) and N k 1 imply

2RoN 2R0R > 11oll >_ >_
m m

so U c U. If x U2, then x(t) >> uo for t [to,t], and therefore

Nllxll >_ iluol] >_ Ro vhich implies x-U2. So, U and U2 have no

common elements, and (158)is proved. For z U, we have I!11 <- and
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x(t) >_ uo for t 6 [t0,t]. (51)implies IIAxlI < R, and, simnar to (53), (Ha)

implies:

t e [to, t] == Ax(t) >_ (/tl rJ-(ato + b)(c(1 t) + d)da)ruo = Uo > Uo.

Hence Az 6 U2, and so

A(V) C U. (59)

It follows from (51), (57)-(59) that the fixed point indices of strict set contraction

(see [4])

(A,U,P(+/-)) = , i(a,V,P(Z)) = ( = ,)

and

i(A, U\(’I LI 2), P(/)) -i(A, U,P(I)) -i(A,U,P(I)) -i(A, U2,P(I))

Consequently, A has three fixed points

and (55) is obviously satisfied. The proof is complete.

tEMARK 3" In case x0 x i = 0, we have fl = 0. So, (H) and (54) are

satisfied if

li-- M(R)< p
(60)

R--+0 R m

As an application, we consider the following B\,’P for third order integrodif-

ferential equation"

-x’" = f(t,x,x’,x",Sx), 0 <_ t <_ 1;
(61)

x(O) = O, ax’(O) bx"(O) = Xo, cx’(1) + dx"(1) = x.



62 DAJUN GUO

Let then

(t) = (o)+

so, (61) is reduced to the following BVP:

-u" = f(t, T u, , ’, S),
(0)- ’(0) = 0,

where

cu(1) + du’(1) xi,
(62)

Tl?2(t) = t%(8)d,, Sl12() hl(t, s)u(s)ds, h (t, s) = h(t, r)dr.

Since (62) is a BVP of type (2), we can apply above results to (61). For example,

by Theorem 1, we get the following

TIIEOREM 4. Let (H1) and (H) be satisfied with the change of ko = 1,

f e C[I x P x P x E x P,P] and M(R) -sup{llf(t, x, y, z, w)ll" (,, u, z, w) e

I x BR x BR x FR x BR}. Then BVP (61) has at least one nonnegative soIution

4. Examples

This section gives several examples for both infinite and finite systems of

ordinary nonlinear integrodifferential equations based on the above theorems.

EXAMPLE 1" Consider the BVP of infinite system for second order nonlinear inte-

grodifferential equations

’(o) = o,z.(O)-x. z,,(1) + z,,(1) = 0 (0 < t _< I; n = 1,2,3,...).
(63)
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CONCLUSION" BVP (63) has at least two nonnegative C solutions (t) =

(.il(t),...,.in(t),...) (i = 1, 2) such that

5x,(t) -: 0 (n = 1, 2, 3,... ) (64)

and

’2,(t) >
1

for
1 2

n 5 <t< (n=l 2,3,...) and e,,(t)0
3

as r --+co

for e [o,

PROOF" We need only to prove that BVP (63) has a normegative solution 2(t)

which satisfies (65) since ’(t) = (0,..., 0,... ) is evidently the trivial solution of

(63). Let E = co = {x = (zx,...,x,,...)" Xn 0} with norm llzll = up I,1

and P=

{Z (Z1,... ,Xn,... ) CO" Zn _> 0, n = 1,2,3,... }. Then, P is a nor-

real cone of E and (63) can be regarded as a BVP of the form (2), where

a=b=c=d= 1,

0 -- Xl : 0, ](:,8) -- 1 q- et--s, h(t,$) : sin2(t-- 3.), 27 = (Xl,...,Xn,...),

Y = (Yl,..., Yn,... ), Z = (Zl,..., Zn,... ), W = (Wl,..., Wn,... ) and f =

(f,...,f,...), in which

(0 < t < 1; n = 1,2,3,...).
(66)
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By (66), we have

(0 _< t _< I; n = 1,2,3,...),
(67)

and so

I /2 2Ill(t, ,, , z, ,)il < 16(11!1 +1111 +31111.1111)/+ (1+11!1)/i1,il ’ e,,(l+llll ),

(68)

which implies

1 13 R]/2gn(1 + ),M(R) < 16(R2 + R2 + 3R2)]/ + (1 + R)] R2

and consequently

lira
M(R) O. (69)

This shows that condition (H2) is satisfied.

Obviously, f E C[I x P x E x P x P, P] and f is uniformly continuous

on I x BR x FR x BR x BR for any R > 0. We now verify that the set

f(t, X, Y, Z, W) is relatively compact in

P Y C /3 and t E I. In fact, let

Z, {w(m)} C W and

(r) (,) y() (m) W(,)).v, = f,(t,z ,z

E= co for any bounded X,Z,W C

{(’)} c x, {(m)} c Y, {z(")} c

By (67), we have

16tI,(,,") < - (il,(m)ll + I!(’)11 + 311:(")!1 IIz(’)ll)/

+ (t + II(m)il)/llw(’)il/e,,(1 + lly(’) !1)n+l
(n, m = 1,2, 3,... ).

(7o)

()Hence {v } is bounded, so, by the diagonal method, we can select a subsequence
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{m} of {m} such that

lim v(m) = v, (n = 1, 2, 3,... ).

it is easy to see from (70) that v = (v,...,v,,,...) e co and

(k --, c).

Thus, f(t, X, Y, Z, W) is relatively compact, and therefore (H)

L = L = Lz = L4 = 0.

1 1 1Now, let u0 = (1,7,...,,...) and to = g
2

co, u0 > 0. When to _< t _< tl, x _> u0, y co, z >_ 0, w >_ 0

1
-if, zn >_ O, wn >_ 0 for n = 1, 2, 3,...), we have, by virtue of (66),

is satisfied for

Then u0

(i.e. x, >_

16t /s 16 81
f(t,x,y,z,w) > _-;-- x > >

qn n 3n 16n
(n= 1,2,3,...).

This shows that

of solution 2(t)

81(H3) is satisfied since, by (41), ro = 1--g.

satisfying (65) follows from Theorem 2.

Hence, the existence

EXAMPLE 2" Consider the BVP of the finite system for nonlinear integrodifferential

equations

II = 30t V/’n gn[1 + Xn-1 + f:(ets + 3t2a3)Xn+l(s)ds]
-’l-$in2(xtn tn_ 1 + Xn+l)’Jr" (Xtn)2/3(f: COS(t- ’-.q)Xn+l (’s)d$) 1/3

xn(0) 2x(0) o, 3z.()+ ’.() = o

where xo Xm and Xm+l = Xl.

(0 _< t _< 1; n = 1, 2,..., m),
(71)

CONCLUSION" BVP (71) has at least three nonnegative C solutions i(t)
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(il(t),... ,im(t)) (i = ,z, z) such hat

ln(t) --: O, n = 1,2,...,m (72)

1 3
,,(t)>_l for _< t_< -4’ n=l,2,...,m. (73)

PROOF" Le /3 = m-dimensional space Em = {z = (ZX,...,Zm)} wih norm

Then, P

I,! and P = {z = (Xl,...,Zm) xn O, rt 1,2,...,172}.

is a normal and solid cone in E and BVP (71) can be regarded

as a BVP of the form (2), where a = 1, b = 2, c = 3, d = 1, x0 = xx =

O, ]g(t,$) = Igta’+-3t283, h(;,$) = cos(;--..q), x (al,...,Xm), Y = (Yl,.-.,Ym), z =

(zl,...,zm), w=(w,...,Wm) and f=(fx,...,fm), in which

fn(t, x, y, z, w) = 30t x/--nen(1 + x,-a + zn+a) + sin2(yn Yn-I +
1 /3+ g(.)/(w.+) n = 1,2,...,m. (74)

Evidently, f C[I x P x E x P x P, P] and (H1)

continuous and E is finite dimensional. We have

is satisfied since fn are

sin(y, y,-a + Z.+l)l _< min{1, lVn Yn--1 "}" Zn+ll}

so, (74) implies

IIf(t, z, v,, w)ll _< 30t gn(1 + Ilzll + I1=11)+ rain{l, (llvil + Ilzll)= }
1 2/3 1/3/ Ilvll Ilwll V t fi I, z P, V E, z P, w P,
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and herefore

1
M(R) <_ 30 v/ gn(1 + 2R) + min{1, 9R2 } + g R.

Hence

n--.+oo R 6’ n--.+0 R 6 (75)

On the other hand, it is easy to see that, in this case,

5
q--, p=l, re=e+3. (76)

Thus, (75) and (76)imply that

(H4). Let u0 = (1,1,...,1) and

for t e [to,t 1],

z k u0, y E, z k a, w k 0 (i.e.

1,2,...,m), (74) implies

(H) and (60) are satisfied.

1 t 1 = Z Obviously,t=i’ i"

Now, ve check

u0 >> 0 and,

> 1, zn > O, Wn > O, n =i<t<_i,z._

f,(t, x, y, z, w) > 30t n gn(1 + x._) > . en 2 (n = 1,2,...,m). (77)

On the other hand, we have by (41)

320 15
r0= 63 < --en2" (78)

Hence, (77) and (78)imply that (H4) is satisfied with

our conclusion follows from Theorem 3 and Remark 3.

r= gn 2. Finally,

EXAMPLE 3’ Consider the BVP of infinite system for third order nonlinear inte-
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grodifferentiM equation

(0) = 0,

--ts

2’(0) :(0) = , .() + ) = p

COS($- 8)xn(8)ds] 1/4,

(0_<t_<l; n=1,2,3,...).
(79/

CONCLUSION" BVP (79) has at least one nonnegative C

such that X’n(t) >_ 0 (n = 1, 2, 3,... ) and n(t) --+ 0

t e [0, 1].

solution (t) = ((t),...,(t),
as n + c for any

PROOF" Let

1,2,3,... }

(61 ), where

a=d=2,

Co

E = 0 a,nd P = {X (Xl,...,Xn,...) 6. CO Xn O, r$ =

as in Example 1. Then, (79) can be regarded as a BVP of the form

1 1 ..)6b=c= 1, xo = (1,-,...,-,...) e co, Xl = (1,,...,-,.

COS(;--8), .T = (Xl,...,Xn,...), y = (Yl,-.-,Yn,.-.), Z (Zl,... ,zn,...),

W (Wl,... Wn,... ), f = (f, .., f, ), in which

A(t,,v,z,) =

Now, (80) implies

2 /3 )/3Xn+l(1 2t y,
(+ )

I )3 2;2 1/4"" (t -[- 1)r [(X2n -[- sin t + n+lWn] (n= 1,2,3,...).
(8o)

I /3 2/3 )3 2!1/(*, =,u,z,w)ll _< ll=ll (1 + llyll) / [(ll=ll / 1 + Ilzll

SO

1
M(R) <_ R/(1 + R)2/ + [(R + 1) + R3] I/4
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and herefore

M(R) 1
lim <- (81)

R--+oo R 2

This shows that (H) is satisfied since it is easy to calculate that p = m = 1.

On the other hand, similar to Example 1, we can check that f(t, X, Y, Z, W)

is relatively compact in E = co for any bounded X,Y,W C P, Z C E and

t I, so (H) is also satisfied.

Finally, our conclusion follows from Theorem 4.
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