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INTRODUCTION" The stability analysis of ordinary differential equations

with impulsive effect has been the subject of many investigations [1, 2,4] in recent

years and various interesting results are reported. However, much has not been

developed in this direction of integro-differential equations with impulsive effect

except for a few [3, 5] in which the impulsive integral inequalities are used. The

purpose of this paper is to investigate sufficient conditions for uniform stability and

uniform asymptotic stability of Linear integro-differential equations by employing the

piecewise continuous Liapunov functional without the decrescent property. It is also

proved that every solution of the integro-differential system meets any given surface

exactly once and thus there exists no pulse phenomena in the system.

Let the hyper surfaces ak be defined by the equations

o t ze(x),O<zx(x) <...<ze(x)<

where :e(x)-o as k-o.

Pc+ denote the class of piecewise continuous functions from

2R+--, Rn2 with discontinuities of the first kind at t 4: r(x), k = 1,2... and left

continuous at t= r k.

Let r0(x) -= 0 for x e R+ and

Gk= {(t,x) e IxRn: rk.l(X) < t < rk(x)},k= 1,2...

The function V: I x R+ -. R belongs to class V0 if:

(i) The function V is continuous on each of the sets Gk and V(t,0) = 0
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For each k = 1,2... and (to, Xo) Gk there exists finite limits

V(to 0,Xo) = lim V(t,x); V(to,Xo) = lim V(t,x)
(t,x)-*(to,Xo) (t,x)--, (to,Xo)
(t,x) e G (t,x) e Gk

and V(to 0,Xo) = V(to,Xo) is satisfied.

Also if (to,Xo) e Gk then V(to + 0, Xo) = V(to,Xo)

Let V e Vo For (t,x) e UGh, D+V is defined as
1

D/V(t,x) = lim Sup _1 [V(t + h, x(t + h))-V(t, x(t))]
h" -+0+ h

Consider the impulsive integro-differential system

X (A(t)X + f=0 k( t, s) x(s) ds t :k(x),k=l,2..

axially(x) I,(x) ,x( co) = xo

where A e PC+ [R+,Rn2], K e PC+[RZ+ RnZ], and Ik(0) = 0, t >_ to, k=l,2...

Let us consider:
x/ A(t) x
aX[ t-,,x =B, x) (2.2)

where det (i + Bk) 4: 0.

Not let g (t,s) be the fundamental matrix of the linear system

x: = A( )x, (_< (2.3)
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Then the solution of the linear system (2.2) can be written in the form

x(,to ,xo) =(t,to+0)xo, where

k(t,S) for rk_1<s<t<k

d/ t, t) (I+B)d( t, s) for za_<s<<t<:/
48( t, t) (I+B)-d/ , s) for _<s<:<

The following Lemma gives sufficient conditions for the absence of beating.

Lemma 2.1: Let the following conditions be satisfied for Ix[<9

(i) lg(t,s) [<az(’s) for 0s<t<= for all k.

(ii) (c) for >0.

(iii) [(I / B)I_< 7 where I is the identity matrix.

(iv) [K(t,s) [[<Ma(-s) where M>0,a>0 for O$s<t<

(v) There exists a number /i> 0 such that

Sup

0 ;s_<l

Ixl

<- (x+sI, (x) > o, k=_, 2...

and

(vii)

Sup
Ixl</ 

<N, k=l,2...

N<I
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Then there exists a number / such that if x(t) is a solution of (2.1), which

lies in the ball {x eRa. Ix I_< p } for 0 _<t<T,T>0, then the integral curve

{(t,x(t)))" te[0,T]} meets the hyper surface t = r(x) exactly once.

Proof: Let F( t, s) =A (t) x/fK( t, s) x( s) ds

If Ix l<_ p then from (2.1) and (i), (ii), (iii), and (iv) we get

o

1 lxl / zeofg-’ as

Now assume that some solution x(t) of (2.1) under the above assumptions

meets some surface t = r k(x) more than once.

Let t = t be the point at which the solution first meets the surface t =

rk(x) for some j and again another closest hit at t = t* such that t* tj>0.

we have

t1 = rk(x(t)) and t* = rk(x(t*)) where t0<t1<t*
Then the solution satisfies the integral equation

x( t) Xj + Ik(xj) + f F(s,x(s) )ds

Then



88 M. RAMAMOHANA RAO AND S. SIVASUNDARAM

Let h = f F(s,x(s)) ds.

Define the function x(s) = rk(Xj+Ik(xj)+sh) + rk(Xj+SIk(xj))

for se [0,1]. Then by mean value theorem

x(1)-x(0) f2 xZ(s) ds

aT,
kt*- t Ox (Xg+Ik (x) *h) -ze (xg)

a<--(xj+Ik(xj) * sh) ds (I(xj)+h)
o

a< (x+I (x) +sh) h> ds
o

i aTk+f< (x+sI (x) Ix (x) > ds
o

(2.4)

Since we have
0x

and lF(s,x(s)

By Cauchy-Schwartz inequality the first integral on the right hand side of (2.4)
satisfies

<- (xg) +I(xg) +sh) ;h>ds< + p (t -iS)

hence we have

t*- tj) < - (xj + sIx (xj) Ix (xj) > ds

Since (13 +--)9/V’< :1., in view of hypothesis (v) this leads to contradiction

which completes the proof of the lemma.

Define the matrix G(t)as

G(t)= " (s, ) (s, ) ds where @ is the transpose of @.
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Clearly G(t) is symmetric. And define W(t,x) = < G(t)x,x > uz and

V:Vo fo: (t,x)(tg.,tg) x Ra as

V( , x) W( t, x) + f f [[K(u, s)]du[[x(s)]ds.

Theorem 2.1" Assume the following conditions hold.

(i) LlIxll -< < G() x, x> < a._.._ Ilxll
2M

1

(ii) fiG(t) xll <G(t) x,x>

(iii) - + Pf ilK(u, t)] du O,pz

(iv) [[x[[ > [[x+I(X> and

<G(t) x,x> Z><G(t) (x + Ig(x) (x+Ig(x) >

L, , /’, and a: e positive : eal numbe: s

Then the zero solution of (2.1) is uniformly stable.

Vr00..f: Let W(t,x) = <G(t)x,x>

W/(t x) <G/(t) x,x> + <2G(t) )x, x>
1

2<G(t) x,x> 2

where

we have

Hence

Which implies

O@(s,.t) = -(s t)A(t)

O@" (S, t) -Ar( t) Or(s, t)

"[ ]Gz(t) = -I f a.; (s’t) (s, t) 0r(s t) .0. (s’ t)
ac at

G t) -I-A T( t) G( t) -G( C) A t)
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Hence

re’(e,x)
(2 .)

<X, X>

2<G(t) x,x> 2

<(t) x, f K( t, s) x(s) ds

<G(t) x,x> 2

for t * I, t,x) UG
Now

VC( t,x) -<x,x>
(2.)

2<G(t) x,x> 2

<G(t) x, f K( t, S) x(s) ds>

1

<G(t) x,x> 2

by (i) and (ii) we get

v :, x) NIx +f K , s x s IIds

(2.1)

Hence in view of assumption (iii) it follows that

V(t,x(s))0 fox: trk (t,x) zUGk
(2 .I)

This implies for t 4: r k that by hypothesis (iv)

2M

this gives the uniform stability of (2.1)

Remark 2.1" in the above theorem it is not assumed the descresent property on
V.
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Theorem 2.2 Assume the following conditions hold for Ilxll <

1

(i) LIIxll<G() x,x> < +---ilxll
1

(ii) IIG(t) xII<R<G(t) x, x> -
(iii)

(iv)

, f llK(u, r)lldu for some 9>0,

II x II > II x + I(x) II and

1

<G(t) x,x> 9><G(t) (x+Ig(x) (x+I(x) >

where L, , /, , and are positve :eal numbers.

Then the zero solution of (2.1) is uniformly asymptotically stable.

Pr0,o,.f: By Theorem 2.1 the zero solution of (2.1) is uniformly stable. Following
the proof of Theorem 2.1 one obtains

v’ c, x) < -? ilxll foz t :e, Ilxll < p and t, x) e UGe.
1

(2.)

Let s be the number corresponding to e in the definition of uniforms stability.

Take T(e) = [96_2] IIx01 where x(to) xo

We now claim that IIx( c*, Co, xo> 6 for some t’e [to, Co +]

Whenever Ilx(s) < p fo]:: 0 < s to

For if Ilx( , co,Xo)II > 6 fo: all t*e [to, to+x] then

By hypotheses (i) and (iv)

o<6 LIIx( C, Co,Xo)lilY( C,x(c) V( Co,Xo) +f v’=.x (s,x(s)) ds
o

p-? f IIx(s> lids
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put t = to + T, then we get

=0

and thus we have a contradiction.

Hence there exits t e[to,t0+ r] such that II x(t*,to,Xo)II <

By uniform stability it follows that [[x(t,to,Xo[ < e for all t > t or t _> to + T which

completes the proof.
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