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In this paper, a generalized dynamical theory of thermoelasticity
is employed to study disturbances in an infinite elastic solid containing a
spherical cavity which is subjected to step rise in temperature in its inner
boundary and an impulsive dynamic pressure on its surface. The
problem is solved by the use of the Laplace transform on time. The
short time approximations for the stress, displacement and temperature
are obtained to examine their discontinuities at the respective
wavefronts. It is shown that the instantaneous change in pressure and
temperature at the cavity wall gives rise to elastic and thermal
disturbances which travel with finite velocities v1 and v2 ( > Vl)
respectively. The stress, displacement and temperature are found to
experience discontinuities at the respective wavefronts. One of the
significant findings of the present analysis is that there is no diffusive
nature of the waves as found in classical theory.
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I. INTRODUC2ON

Lord and Shulman [1] have first initiated the study of the generalized dynamical

theory of thermoelasticity by introducing a relaxation constant to take into account the

time needed for acceleration of the heat flow. If the relaxation constant is set equal to

zero, Lord and Shulman’s equations reduce to the classical field equations for the linear

coupled dynamical theory of thermoelasticity (see, for example, Boley and Weiner [2],
Chapter 1). Lord and Shulman’s analysis results in a system of coupled hyperbolic partial
differential equations which is then used for the investigation of a particular problem in

order to find a closed form solution.

Subsequently, considerable attention has been given to the study ofwave propagation
in generalized thermoelasticity based upon the work ofLord and Shulman. Several authors

including Norwood and Warren [3], McCarthy [4], Puri [5], Agarwal [6], Chandrasek-

haraiah et al. [7-8], Roy-Choudhuri and Debnath [9-10] have investigated various problems
revealing interesting phenomena which characterize the generalized thermoelasticity.

On the other hand, Nariboli [11] has considered the problem of a spherically sym-
metric thermal shock in an infinite elastic medium with a spherical cavity. Matsumoto
and Nakahara [12] have solved the problem of a spherically symmetric thermal shock in

an infinite medium with a spherical cavity. In spite of these studies, these problems have

hardly received any attention within the scope of the generalized thermoelasticity.

The main objective of this paper is to make an investigation of a coupled problem
of a thermoelastic infinite solid containing a spherical cavity which is subjected to step

rise in temperature in its inner boundary and an impulsive or step rise in dynamic pressure
on its surface. The short-time approximations for the stress, displacement and temperature
are obtained using the Laplace transform technique. It is shown that the instantaneous

change in pressure and temperature at the cavity-wall gives rise to elastic and thermal

disturbances which travel in the medium with finite velocities v, and v2 (> vt) respectively.

The stress, displacement, and temperature are found to experience discontinuities at the

respective wavefronts. One of the significant findings of this analysis is that there is no

diffusive nature of the waves as found in classical theory.

2. BASIC EQUATIONS OF GENERALIZED THERMOELASTICITY

We consider an infinite isotropic homogeneous elastic medium with a spherical cavity
of radius r=a. We denote the radial and circumferential stresses and strains by
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o,,, ooo, o** and e,,, e00, e. respectively. Invoking the spherical symmetry, the radial

displacement u is the only displacement and the stress and strain tensors are indepen-
dent of 0 so that we have the following relations

du u
(2.1)ooo o e

dr’ %0 e
r

The stress-strain relations are

o,, XA + 21ae,, c(3. + 21x)T (2.2)

o0o o + 21xe0o ct(3, + 21x)T (2.3)

where A e,, + %0 +e is the dilatation, , Ix are Lame’s constants, ct is the coefficient of

linear expansion, and T is the excess of temperature over the reference temperature T
when the medium is unstressed.

The generalized heat conduction equation with thermal relaxation due to Lord and

Shulman [1] is given by

cV2xT 9C(’ +x) + fST( +) (2.4)

where c is the coefficient of thermal conductivity of the solid, p is the constant mass density

of the medium, C is the specific heat of the solid at constant strain, x is the thermal

relaxation time, 13 (3. + 2)a, and

The stress equation of motion is

0 2
(o

02u
o-7 o,, + 7 "- ooo) a- (2.)

It is convenient to introduce the following dimensionless quantities

(v,) 1-(u,r). 0 r/rg, n -,./a, (2.6)

(%, % o,)= +Co,,, o00,

where V2,, (k. + 2t-t)/p is the dilatational wave speed in the medium.

dimensionless quantities, equations (2.2)-(2.5) can be written as

(2.7)

In terms of the

(2.8)
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o0--o,---+- -+--- --(R) (2.9)

+-- a2 a
+-- 2.10)

OR 2 R OR +--2 +a3 a )
0 2 pv0U
oR +g(o. -oo)-

where a av anda v/ are dimensionle constant. Makinge of equations

(2.8)-(2.9) and (2.11), we finally obtain the following equations

02U
DDxU aDO Orl2

(2.12)

D1DO a2 Or
+ -’} =a3 ’+ (D1U),

where a (f3T)/(. + 2Ix) is another dimensionless constant, -c’ xv/a, and

(2.13)

0 0 2D - and n - +- (2.14)

We assume the region So: r > a is initially at rest and to have zero temperature and

zero velocity. It is noted that this condition is not required in the classical theory, but it

is an essential requirement for the solution of the present problem.

3. THE SOLUTION OF THE PROBLEM AND BOUNDARY CONDITIONS

It is convenient to solve the problem by introducing the Laplace transforms (Myint-U
and Debnath [13]) U(R,s) and O(R,s) by

[U, (R)] e’ [U, (R)]dn, Re s, 0 (3.1)

Application of the transform method with the prescribed initial conditions

U(R, 0) O(R, 0) 0, equations (2.13)-(2.14) become

(DDx s2)’= axD’ (3.2)

(DD a2s 12)" a3(s +’ s")DIU (3.3)
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where a2x’-x/ is the dimensionless relaxation time (or relaxation constant) and

k (K/pC,,)is the thermal diffusivity.

Invoking operations by DD and DD respectively to (3.2)-(3.3) and using the

remaining one, it gives the following equations

(L -m?)(L -m)-O (3.4)

(M-mt)(M-m-O
whereL DDt andM DtD are two operators, andm2, m2

2 are the roots of the quadratic

in m 2 given by

m’ {s(1 + + e) + sa2(1 + e)}m + (a2s + fs’) 0 (3.6)

where

ata3 2e (f5 To)lCpC,)(. + 2Ix) (3.7)
a2

is the thermoelastic coupling constant.

The solutions of equation (3.4) are modified spherical Bessel functions of order 3/2,

and can be expressed in terms of exponentials. Thus we have

U- ,A’e. - +m (3.8)

Similarly, the solution of equation (3.5) can be obtained as

2 e
(9- E B,. (3.9)

i-1 R

whereA andB are functions of s. Since the solutions must vanish at infinity, the square

roots are always so chosen that they have positive real parts.

The boundary conditions of the problem are:

(i) The boundary of the spherical cavity of radius a is subjected to a dynamical pressure
so that o -P(rl) on R=1, for rl a: 0, and

(ii) A step rise in temperature of magnitude X is applied at the inner boundary of the

cavity so that @ H(rl) on R 1, for r > 0,

where H(rl) is the Heaviside unit function, X being constant.

These will give for R=1,
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(3.10ab)

Introducing (3.8)-(3.9) into equation (3.2) (for R=1), we have

s2-mB "A
alm

(3.11)

From (3.8)-(3.10), we have

(s2a4 + 2m + 2) +A2 (s2a + 2m2 + 2) -’(s), (3.12)

and

S2 m ..,,,t S2 m .A-- e +A2 e -7,/s
alml aim2

(3.13)

Solving (3.12) and (3.13), we obtain

oo o, A,R3 P(s)(s2 m2)----’s (s2a’ + 2m2 + 2) [a,s2R2- m2R2 -mR I]

A’R3 [(s) (s -m)--(s2a, + 2m+ 2)] [a,sR2-mR2-mzd 1],

(3.14)
and

-,,,1

-o ex.iR ’3’ [’(s)(s2-m) ----)al (s2a4 + 2m2 + 2)] [a4s2R2 + 2mlR + 2]

m2g

+--N’ s)(s-m) a--2 (s2a’ + 2m + 2) [a,s2R 2 + 2m2R + 21 (3.15)

whereR =R 1, aa 1 + (k/21a) and A’--(m-m2)[(aas2 + 2)(m + m2)+ 2(S2 + mxm2)].

The exact evaluation of the Laplace inverse transform is almost a formidable task.

Therefore, special attention will be given to the possible discontinuities and short time

approximations. We express the roots of (3.6) in the form

rn 2 (VV)
2

1,2 (3.16ab)

where
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(z,y s(1 + I + el) + saz(l + ) +/- 2(as + I’)x

Putting s -., we can write

ml,2

where

ap,(p) (1 + + el) +pa(1 + e) +/- 2( +

Expanding by means of Maclaurin’s series and taking p -;, we have

where

a2 (1 + e)+ l/r" (1 + e)_ I/V/’"
+/-

{l+(l+e)l+2V-} {l+(l+e)l 2}

(3.17ab)

(3.18ab)

(3.19ab)

(3.20ab)

(3.21ab)

v,’ 1 +(l+e)l+ "" 1
(3.22ab)

"" 16g
l+(l+e)l+ I

a (1 + I::) + I-
--" , (3.23ab)

16 : :"{1+(1+e)1+2/"} {l+(l+e)l-2V}
Since the relaxation time is small, an attention will be given to small time approxi-

mations. We next use Abel’s theorem (see Doetsch [14]) stating that lim f(rl) lira sf(s)
’1 "0
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in order to calculate approximate values of stresses.

In order to illustrate the general theory, we now consider two special eases:

I. P(ri) PdS(rl), II. P(rl) P’oH(rl) where P0 and P’0 are constants and (x) is the Dirac

function of distribution.

CASE i. We expand the expressions for oo and o in ascending powers of ;- and
retain all terms up to j. So, for large s, we obtain

+(L’L, +L’)-+(L’ +L’Ls +L (3.24)

and

where

(3.26ab)

L2,L’2 PoR (2RI.tx,2 + 1) 1 --’-v +R a +aa
’V1,2 /1,2 V2,1

(3.27ab)
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L3,L’3 Po 1
1 R2

-..’:S-v2, vx,2(l,2 v,2 + 2rl ,2v,2) +R,2 + 1

+R2 G,- Po + + 2Xa- ---’" C2Rl.= + 1)
V2,1 V2,1J VI,2

+,ala4 (3.28ab)

(3.29)

L a,, lx +
v v2: + 2 --v2 + 2(IX-) 1 +Vv

+2 +
v1 v2 /2

(3.30)

L6,L’= a,PoR :(16 (3.31ab)

LT,L ’7 (1 V,) a4R: 2Po
Ix’z,

+ xaa
’V1,2 ’V2,1

(3.32ab)

Ls,L’s Po 1 v (2RIx’2 + 2)- 2R 2P vz
txz + xaa /v,2

1+......--.-- +
V2,1 2,1 ]

(3.33ab)



234 BASUDEB MUKHOPADttYAY, RASAJIT BERA AND LOKENATH DEBNATH

Similarly, the expressions for U and @ can be obtained in the form

-R
L3 1 ]-- + (L,, +LLs)

and

[ 1 1]L5 + (L4L15 + L16)* ; + (Z.sZ15 +Ld., +Ln)

1 1
+ (Ld-,’s +L’x6 +L n),+L x6)

s S-

where

La,L ,xs Po( l ,) R----..
’V1,2

(3.34)

(3.35)

(3.30ab)

L4,L ’x, Po(1 1/@.) (R Ix,: + 1) R (2Polazx/vz + xaa,)/v (3.37ab)

Lts,L ’ts Po(1 1/v,t) (1 1/v,:), (3.38ab)

L,L’-,-2/)o(1- 1A,g,)l.tL:/vL:- (1- 1/v,:) (2Polazx/vzx + xaa4), (3.39ab)

L17,L n -Po(1 1/v::.) (lx.: + :n’x.a/,’a.:) + + xaxaa)/vL:

-(i I/v:,:){Po(,: + 2rl’zt/v:,t) + (3.40ab)
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Application of the inverse Laplace transform [13] to (3.24)-(3.25) and (3.34)-(3.35)
yields

+(L,1L4+L Rt

+ (L’3 + L’tLs + L’2L4) 1 H r (3.41)

and

e"’’ Rt

-’OR ’’==R"’’a4(1/’v21 "l/’v) L6( T]-=1 +(L6L4 +LT)H

R1

R3a4(1/v2 l/v22)
+ (L’t,L, +L ’7)H r v-L’66 vl

v2

+(L’6L5+L’TL+L’s) rI-v} \r1-22 (3.42)

and

( )" Lx-I rl- +(L +LLa) rl v vt

(3.43)
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Raa,(-) v

+ (L7 + L,Lx6 + LLxs) (rl v /

Rata4(’t-) L ’ts6 r ---v2 + (L ’t6 + L,L ’ts)H r --+ (L’,7 + LL’,6 +LyL’) r R H rl (3.44)

CASE II. Proceeding as in Case I, for small values of time, we obtain

e-’’ R
-’x rl vCIo==CI,"’-R3 "(].a41-’1") L9H ’1"1-1 +(Llo+L4Lg) YI .H

and

+ 3 / x:x \ L’gH ’rl- +(L xo+Ldr.,’9) lq- H rl-v2

0--RSa4(t l) LxlH rl-v-
R Rt__ .H rl-+ (L +L,L xx) 1 vL’xH rl

(3.45)

(3.46)

where
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Lg,L’9 RTP’oC1 1/v)-)(.aa,}. Ca,- 1/v.2), (3.47ab)

Lto,L’to -{P’o(1 1/v t) )(.ata,}. {2R :2.1,1,2]V1,2 + R/,V1,2}

-R2(a, 1/vx,u) (2P’olX2,,/vz, + 2xa,/vz), (3.48ab)

(3.49ab)

L,L’ 2R {P’o(1 1/v.)- )(.aa,}/v.- aeRZ{(2P’olXz + 2%a)/vz }. (3.5Oab)

We can also find

(3.51)

where

e L19 1 ]"" + (L +L9) -e’’h/’9 [ L’19 ’20 1]Raa4( )’" -’ + (L +LL ’xg) ]5

R
Ls,L s=----. [P’o(1- 1/v.)-)caa,],

V1,2

(3.52)

(3.53ab)

L9,L’9 (1 1h’.)[P’o(1 1/v,)- %a,a4], (3.54ab)

(3.55ab)
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Finally, we obtain the approximate solutions in the form

U
: / t\ Ltsrl vx

eA Rt - rl
vt1 Lt9H rl + (L +Z,lg) H

(3.56)

(3.57)

4. DISCUSSION AND CONCLUSIONS

It follows from the above short time approximation of solutions that the disturbances

consist of two types of waves propagating with finite velocities v and x,: (> v). In the

limit 15 ---- 0, v 1 and v ---, oo. This limit corresponds to the classical coupled theory
which predicts an infinite speed of thermal wave. Obviously, v2 is the speed of thermal

wave and hence v is the speed of elastic wave. Since v2 > vx, the elastic wave follows the

thermal wave. It may be pointed out that the forms of ap(p) and xP2(p) suggest that there

is no diffusive nature of the waves as found in Nariboli [11]. This is one of the significant

features of the present study.
The present analysis also reveals that stress, displacement and temperature are found

to experience discontinuities at the wavefronts, and they are given below. For Case I, the
discontinuities are

e
T- , [L,(L,,L’,) + (L:,L’:)], (4.1)[0; O]RI rlVl, 2 R3a4( v7 222)
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[L,(L6,L’) + (LT,L’7)], (4.2)

(4.3)

and

"I,

+/- [(L,L’x) +L," (Ls,L (4.4)

For Case Ii, the displacement is continuous at the wavefront. However, the stress and

temperature are discontinuous at the wavefronts, and are given by

"l.tl,2le
"+3 / \" [L,L’], (4.6)

and

-Rlbtt,e
[0/- O-],.n,, +- i [L,L (4.7)
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