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ABSTRACT

This paper investigates the extremal solutions of initial value
problems for first order integro-differential equations of Volterra type in
Banach spaces by means of establishing a comparison result.

Key words: Integro-differential
Kuratowski measure of noncompactness,
monotone iterative technique.

AMS (MOS) subject classifications:

equation in Banach space,
upper and lower solutions,

45J05, 34G20.

1. INTRODUCTION

Let E be a real Banach space and P be a cone in E which defines a

partial ordering in E by x < y iff y- x P. P is said to be normal if there exists

a positive constant c such that 6 _< x _< y implies II z II < c II Y II, where/9 denotes
the zero element of E, and P is said to be regular if every nondecreasing and

bounded in order sequence in E has a limit, i.e. x < x:_<.... < x,_<..._< y

implies II x,,- x I! 0 as n---+cx for some x Z. The regularity of P implies the

normality of P. For details on cone theory, see [1]. This paper investigates the

initial value problem (IVP) for integro-differential equation of Volterra type in

E:

u’= f(t,u, Tu), t e J; u(O)- u0,

where J [0, a] (a > 0), uo e E, f e C(J E E, E),

1Received:

(Tu)(t) f k(t, s)u(s)ds, t e J, u e C(J, E),
o
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k 6 C(D, R + ), D = {(t, s) 6 J x J: t >_ s} and R + denotes the set of non-negative
real numbers. After establishing a comparison result which is based on some

idea in [2] for PBVP’s in the scalar case, we obtain the existence of minimal and

maximal solutions for IVP (1) by means of lower and upper solutions and the

monotone iterative technique. In the special case where f does not contain Tu,
our result becomes the main result in [3] with weaker conditions. Finally, an

example of infinite system for scalar integro-differential equations of Volterra

type is given.

2. COMPARISON RESULT

We first prove a fundamental comparison lemma:

Assume that p C(J, E) satisfies

p’ <_ Mp- NTp, t J; p(O) <_ O,

where M and N are non-negative constants.

that Nkoa(eM-I)<_M in case of M>O
where ko max{k(t, s)" (t, s) D}.

Then p(t) < 0 for t J provided

and Nkoa2 <_l in case of M-O,

Proof: Let P* {g E*" g(x) > 0 for all x e P}. For any g P*, let

re(t) = g(p(t)). Then m e CI(j,R) (R denotes the set of real numbers) and

m’(t) = g(p’(t)), g((Tp)(t))= (Tm)(t). By (2), we have

m’ <_ -Mm- NTm, t J; m(O) <_ O. (3)

Let v(t)= m(t)eMr, then (3)reduces to

v’(t) < Nf k*(t,
0

t e J; < 0, (4)

where k*(t, s)- k(t,s)eM(t-’). We now show that

v(t) <_ o, t j.

Assume that (5) is not true, i.e. there exists an 0 < to _< a such that v(to)> O.

Let min{v(t):O<_t<to}= -b. Then b>0. If b=0, then v(t)>O for

0_<t<t0, so (4) implies that v’(t)<O for 0<t_<to Consequently,
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v(to) <_ v(O) <_ 0, which contradicts V(to) > 0. If b > 0, hen there exists an

0 < t < to such that v(tx) = -b < 0, and so, there is t with tI < t < to such
By he menn value theorem, there exists ta satisfying

= t- t >n-
On he other hand, (4) implies that

3 3 3

0 0 0

eM(t3-s)ds

{ M-Nbko(eMta 1) <_ M-XNbko(eMa- 1), if M > 0;
(7)

Nbkot <_ Nbkoa if M 0.

It follows from (6) and (7) that M < gkoa(eM- 1) if M > 0 and 1 < Nkoa if

M = 0. This contradicts the hypotheses. Hence (5) holds, and therefore,
re(t) < 0 for t J. Since g P* is arbitrary, we get p(t) <_ 0 for t J, ad the

lemma is proved. Yl

We need also the following known lemma (see [4], Corollary 3.1 (b))"

Lemma 2: Let H be a countable set of strongly measurable functions
x:JE such that there exists a z e n(J, R+) such that II x(t)11 _< z(t) for almost

all t e J and all z e H. Then a(g(t)) e L(J, R+) and

J J

measure ofwhere H(t)= {x(t): x e H} (t e
noncompactness in E.

J) and a denotes the Kuratowski

Corollary: If H C C(J,E)
a(H(t)) e L(J,R+) and (8) holds.

is countable and bounded, then

3. MAIN THEOREMS

Let us list some conditions for convenience.

(Hx) There exist Vo, Woe C(J,E) satisfying Vo(t) <_ wo(t) for t e J and

V’o < f(t, Vo, Tvo), t J; vo(O) _< u0,
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W’o >_ f(t, wo, Two), J; Wo(0) >_ Uo.

(H) There exist nonnegative constants M and N such that

f(t, u, v) f(t, , ) >_ M(u ) N(v ),

for 6 J, Vo(t) <_ <_ u <_ Wo(t), (Tvo)(t) <_ <_ (Two)(t),

azad Nkoa(eMa-- 1)

_
M in the case of M > 0 and Nkoa < 1 in the case of

M=O.

(H) For any r > 0, there exist constants c, >_ 0 and c >_ 0 such that

where B {x e E: [[ x I[ -< r}.

In the following, we define the conical segment [Vo, Wo] = {u e C(J,E)"
Vo(t)

_
u(t) <_ Wo(t) for t J}.

Theorem 1" Let cone P be normal. Assume that conditions (H),
(H) and (Ha) are satisfied. Then there exist monotone sequences {v,,}, {w} C

C(J,E) which converge uniformly and monotonically on J to the minimal and

maximal solutions , u* e C(J,E) of IYP (1) in [Vo, Wo] respectively. That is, if
It e CI(j,E) i8 ay 80tiog of IVP (1) satisfying Vo(t u(t) wo(t) for t J,
then

< <... < <... < < <_ <...

(9)

Proof: For any

differential equation in E:
h [Vo, Wo], consider the IVP of a linear integro-

u’ + Mu = NTu + g(t), t j; u(O) = Uo, (10)

where g(t)-f(t,h(t),(Th)(t))+Mh(t)+N(Th)(t). It is esy to see that

u E C(J,E) is a solution of IVP (10) if and and only if u E C(J,E) is a solution

of the following integral equation

u(t) = e-Mt{uo + /[g(s)- N(Tu)(s)]eMds}, t e J. (11)
0

Consider operator F: C(J, E)C(J, E) defined by



Initial Value Problems for lntegro-Differential Equations 17

(Fu)(t) = eMt{uo + f [g(s)- N(Tu)(s)]eM’ds}.
0

It is easy to get II Fu Fv I1 Nkoa2 II v u, e c(J, E), where II
denotes the norm in C(J,E). It is easy to see that M>0 and

Nkoa(eM-l) <M imply Nkoa< 1, and so, by (H), we conclude that

NkoaZ< 1 in any case. Hence, the Banach fixed point theorem implies that F
has a unique fixed point u in C(J,E), and this u is the unique solution of IVP

(10) in C(J,E). Let u = Ah. Then operator A maps [v0,w0] into C(J,E), and

we shall show that (a) vo <_ avo, Awo < wo azad (b) A is nondecreasing in [Vo, Wo].
To prove (a), we set v = Avo and p = v0 -vx. By (10), we have

v’ + Mvx = NTv + f(t, Vo, Tvo) + Mvo + NTvo, v(0) = uo,

and so, from (H) and (Hz) we get p’<_ -Mp- NTp, p(O) <_ O, which implies by

virtue of Lemma 1 that p(t) <_ 0 for t J, i.e. vo <_ Avo. Similarly, we can show

that Awo <_ Wo. To prove (b), let h,h [Vo, Wo] such that h1 _< h2 and let

p = u- u, where u = Ah and u- Ah. It is esy to see from (10) and (H)
that p’<-Mp-NTp, p(0)= O, and so, Lemma 1 implies that p(t)< 0 for

t e J, i.e. Ah1 < Ah, and (b) is proved.

Let v. = Av_x and w.
proved, we have

(n = 1,2,3,...). By (a)and (b)just

130(t) 731(:) ... 73n(:) ... Wn(t) <... < Wl(: W0(t), t e J, (12)

and consequently, the normality of P implies that V- {v,:n = 0,1,2,...} is a

bounded set in C(J,E). Since (Ha)implies that f(t,B,B)is bounded for any

r > 0, we see that there is a positive constant co such that

II f(t, v,,_ l(t), (Tv,_ 1)(t)) + Mv,_ (t) NT(v, v,,_ ))(t)II Co,

From the definition of v,, and (11), we have

v.(t) =

e- Mt(ttO -[" /[f(s, V._ 1(.), (Tv. a)(s)) + Mv. (s) N(T(v. v. ))(s)]eM’ds)
0
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It follows from (13) and (14) thnt V is equicoatinuous on J, so the functioa

re(t) = a(V(t))is continuous on J, where V(t)= {v,(t):n = 0,1,2,...} C Z. By
applying he Corollary of Lemma 2 to (14), we get:

re(t) _< 2 i a({e- M(- I[f(s, v,_ (s), (Tv._ )(s)) + My._
0

N(T(v v,_ 1))()]: t ----- 1,2, 3,...})ds

where

< 2f [o(f(s, V(s), (TV)(s))) + Ma(V(s)) + 2Na((TV)(s))]ds,
0

(TV)(t) { f k(t, s)v,(s)ds: n = O, 1, 2,...}.
0

(15)

The Corollary of Lemma 2 also implies that

((TV)(t)) < f ({(t, ),(): = 0, , :,...))d
0

_< 2ko f m(s)ds,
0

On the other hand, (H3) implies that there exist constants c >_ 0 and c* >_ 0 such

that

a(f(t, V(t), (TV)(t))) <_ ca(V(t)) + c’((TV)(t))

<_ () + ao*f()d,
0

t e J. (i7)

It follows from (15) and (17) that

s

0 0 0

= 2(c + M)fm(s)ds + 4ko(C* + 2N)i (t- s)m(s)ds

_
i m(s)ds, t J,

0 0 0

where = 2(c + M)+ 4koa(c* + 2N) = const. Let

(18)



Initial Value Problems for Integro-Differential Equations 19

t

v(t) = f
0

m(s)ds and z(t)= y(t)e -z , t e S.

Then y’(t)= re(t) and (18) implies that z’(t)= (y’(t)-y(t))e-z’< 0 for t e J.
Hence z(t) _< z(0) = y(0) = 0 for t J, and consequently, m(t) = 0 for t e J.
Thus, by the Ascoli-Arzela theorem (see [5] Theorem 1.1.5), V is relatively

compact in C(J,E), so there exists a subsequence of {v.} which converges
uniformly on J to some e C(J,E). Since, by (12), {v.} is nondecreasing and P
is normal, we see that {v,} itself converges uniformly oa J to . Now we have

f(t, v. (t), (Tv._ )(t)) + My._ (t) N(T(v. v. ))(t)

-+f(t, (t), (T)(t)) +M(t) as n--,c, t e J, (19)

and, by (13),

II f(t, v._ (t), (Tv,._ )(t)) + My._ x(t) N(T(v. v._ x))(t)

f(t, z (t), (Tz)(t)) Mfi (t) [[ _< 2c0, t J (n 1, 2, 3,...).

Observing (19) and (20) and taking the limit as ncxz ia (14), we get

Mt(ZtO Af. /
0

If(s, z (s), (Tz)(s)) +M(s)]eM’ds), t e S,

(20)

which implies that fi fi C(J, E) and fi is a solution of IVP (1). In the same way,

we can show that {wn} converges uniformly on J to some u* and u* is a solution

of IVP (1) in C(J, E).

Finally, let u E CI(j,E) be any solution of IVP (1) satisfying Vo(t) <_
u(t) <_ wo(t) for t E J. Assume that vk_ x(t) <_ u(t) <_ wk_ 1(:) for t E J, and set

p = v- u. Then we have, by (10) and (H),

p’ = v’ u’ Mp NTp M(u v_ 1) NT(u v_ 1)

(f(t, u, Tu) f(t, v_ , Tv_ )) <_ Mp NTp, p(O) = O,

which implies by virtue of Lemma 1 that p(t)<_ 0 for t E J, i.e. vk(t)<_ u(t) for

t J. Similarly, one can show that u(t) <_ Wk(t) for t J. Consequently, by

induction, we have v,(t) <_ u(t) <_ w,(t) for t J (n = 0,1, 2,...), and by taking

limits, we get fi(t)_< u(t) <_ u*(t) for t J. Hence, (9) holds and he theorem is

proved.
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Remark 1: In the special case where f does not contain Tu, by
seting N = c = 0 in conditions (H2) and (H), Theorem 1 becomes Theorem 3.1

in [3] and, in this case, condition (Ha) becomes "for any r > 0, there exists a non-

negative constant c such that a(f(t,B)) <_ Ga(B) for t E J and B C B", which
is weaker than condition (A1)of Theorem 3.1 in [3] (condition (A1)is "there
exists a constant L > 0 such that a(f(J x B)) G La(B) for any bounded B E").

Theorem 2:

(H) are satisfied.
Let cone P be regular. Assume that conditions (H) and

Then the conclusions of Theorem 1 hold.

difference is

= 0

The proof is almost the same as that of Theorem 1. The only

that, instead of using condition(H), the conclusion re(t)=
(t J) is implied directly by (12) and the regularity of P.

Remark 2: The condition that P is regular will be satisfied if E is

weakly complete (reflexive, in particular) and P is normal (see [1] Theorem 1.2.1

and Theorem 1.2.2, and [6] Theorem 2.2).

4. AN EXAMPLE

Consider the IVP
equations of Volterra type"

of an infinite system for scalar integro-differential

I tuau. = u.) + +

0 0

u,(0) = 0, (n = 1, 2, 3,...). (21)

Evidently, u,(t) : 0 (n = 1,2,3,...)is not a solution of IVP (21).

Conclusion: IVP (21) has minimal and maximal continuously

forO < t < l (n-1,2,3, ..)differentiable solutions satisfying 0 <_ un(t) <_

Proof: Let J [0,1] (a 1), E Co {u = (l1,..., n,’" ")" lln’+0} with

norm 1] u [1 = su,p[u, and P = {u (Ul,..., ttn,...) C0" ?.tn 0, rt = 1, 2, 3,...}.
Then P is a normal cone in E and IVP (21) can be regarded as an IVP of form

(1) in E. In this situation, u0 (0,...,0,...), k(t, s) = e- t, u (u,...,u,...),
v = (vx,..., v,,...) and f = (f,..., f,,...), in which



Initial Value Problems for Integro-Differential Equations 21

f.(,-,) =( ..) + ."./ +[(
It is dear that I C(J x E x E, E). Let o() = (0,..., 0,...) and

Wo() = (,.. -, m...)- Then Vo, Wo 6 Ca(J, E), Vo() < Wo() for J, and we have

,o(O) = o(O)= (o,..., o,...)= o,
1v’o(t) = (0,..., 0,...) and W’o(t)= (1,...,,...) for t J,

lt3 1---t4 > 0, J (n = 1, 2, 3,...),f,(t, Vo(t), (Tvo)(t)) = 4n + 6n

f.(t, Wo(t), (Two)(t)) = 1

0 0
1 1

1

0 0

i i i (i+): ():]< e = )++[ + t J (. 1.2..

Consequently, vo and wo satisfy condigion (H). On ghe oher hand, for

u = (,..., ,...), = (,..., ,...), v = (v,..., v,...) and = (1,..-, ,...)
sagisfying t J, vo(t) wo(t d (Tvo)(t) v (Two)(t), i.e. t J
and

O_<fi.<_u._<,O_<._<._< se t’ds<_- (n=1,2,3,...),
0

we have, by (22),
1 2 )2 t2f.(, ,) f.(t, ,) > [(t .) ( .)1 + [(t . ( .)]

3 u -,)-1 v>_ -( . --( . .) >_ 43-(u. ft.) (v. .), t e J (n = 1, 2, 3,...)

(since 0(t-s)3 -3(t-s)2>_ -3forO_<s<_t,O_<t_<land

s(t2-s)2= -2(t2-s) forO_<s_<t2,0_<t_<l.

Consequently, condition (H)is satisfied for M = 4
a- and N-1/2 because

Nkoa(eM- 1)= 1/2(e 1)< - = M.

From (22), we see that f- f()+ f(:), where f()= (fl),...,f),...) and f(:)=
(f:),..., f),...) with

(23)
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f)(;, , 1)) = 3n + 1" (24)
Let r > 0 be arbitrarily given and t J be fixed, and let {u(’)}, {v(’)} C B,
where u(’) = (ui’),..., u(n’),...) and v(’0- (vim),..., v(m),...). By virtue of (23), we
h&v

f)(t, u(), v()) n(1 + II ()il )3 + 6[(1 + II ()II )2 +(11 ()]1 )]_
(1 + r)3 +(1 + 2r + 2r2), (n,m = 1,2,3,...). (25)

Therefore, {f)(t, u(), v())} is bounded, and so, by the diagon method, we can

choose a subsequence {m,} C {m} such that

fl)(t, u(-,), v(,,))_..w (n = 1, 2, 3,...). (26)

From (25), we have - (1 + r)3 + 6-(1 + 2r + 2r:), (n = 1,2,3,...), (27)

and so w=(w,...,w,,,...)eco=E. For any e>0, (25) and (27) imply that

there exists a positive integer no such that

]f)(t,u("i)v(’i))l <e wnl <e,n>no (i=1,2,3 .)’" (2s)

By (26) we know that there is a positive integer io such that

f(n1)(t, u(mi), v(mi)) wn < e, i > io (r = l, 2,..., no). (29)

It ollows from (28) and (29) that

II f(1)(t, u(’i), v(’i))- w II up f(i)(t, u(’), v(’))- w 2, i > io.

Hence !1 f()(t, u(i), v(i)) -w II 0 s i, and we have proved that

a(f(1)(t,B,B*)) = O, t e J, B C B, B* C B. (30)

On the other hand, (24) implies that, for any t J and u, v, fi, B,
3 --3f(,,:)(t, u, v) f)(t,, )1 = It(u. +1 "--/Zn +1

= {t(Un+X--Un+l)(U2n+l-["n+ln+l-["’t/,n+l)
<_3r2[Un+l--n+11 <3rllu- 1[, (n-1,2,3,...),

and so
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which implies that

a(f(2)(t, B,B’)) <_ 3r2cz(B), t e J, B C B,, B" C B,. (31)

It follows from (30)and (31)

a(f(t,B,B*)) <_ 3r2a(B), t J, B C B,, B* C B,

i.e. condition (H) is satisfied for c
follows from Theorem 1.

=3r2 and c=0. Finally, our conclusion

[1]

[4]

[6]
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