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ABSTRACT

The main purpose of this paper is to discuss some qualitative
aspects of differential equations with delays and impulses. Such systems
are encountered in modeling the dynamics of prices and cultured
populations. However, any such discussion has to be based on some
existence and uniqueness results for delay equations with discontinuous
initial data. This is the content of the first part of the paper. For an
impulsive system, we observe a phenomenon of existence of infinite
number of solutions subject to impulses arbitrarily close to a fixed time.
Conditions, when such solutions exist and when they do not, are
discussed.
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1. INTRODUCTION

Recently, the theory of impulsive differential equations has gained much

attention and popularity, mainly due to the large potential such equations have

in providing more realistic models and also due to the mathematical challenges
such equations pose. Impulses can change the qualitative (not to mention the

quantitative) properties of the solution rather drastically at times (cf. [5]). This

can be taken as an advantage, for this suggests the use of impulses as possible
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controls in the dynamics of the state of the system under study.

It is well known that the response of a system of the inputs in real life

problems is not instantaneous (delay) and depends on the history of the system.
This introduces a delay. Many models in economics, biology, and chemical

kinetics fll into this category. An example is a model for the prices of several

commodities in a speculative and unscrupulous environment where the customer

stocks for speculative reasons and the trader hoards the goods as his utility has

reached a threshold value. This model contains both impulses and delays (cf.
[4]). Thus the interest in impulsive equations with delays is not just theoretical

but practical too.

In the practical situation, the impulses are given at times determined by

the solution, and not predetermined. This adds to the difficulties. In this

situation, solutions urging for impulses too frequently, even in a small interval of

time, is rather ominous. One is also likely to lose the important tool of equating
the initial value problem with an integral equation, as will be explained

elsewhere [4].

The study of delay differential equations has been largely confined to

situations with continuous initial function and when the delay is quite amenable

(for example, Volterra delay). But, a more general type of history ought to be

considered while dealing with the models and in the presence of impulses, for

impulses create discontinuities in the initial function right from the first impulse

time.

In this paper we study the existence, uniqueness and pulse control of

impulsive differential equations with delay. The existence and uniqueness

theorems are in a very general set-up whereas the pulse control is obtained in a

much simpler case of Volterra delay. These results can be extended to more

general delays with some effort, but we do not attempt this. While proving the

existence of a solution of the non-impulsive delay equation, we use an idea of

Azbelev [1] which we have used in earlier works [2, 3].

2. EXISTENCE WITH DISCONTINUOUS INITIAL DATA

Let f and h satisfy

(C1) f: + x"" is a Caratheodory function,
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(C2) h: +---,i is Lebesgue measurable, h(t) <_ t for all t I+.
Let o R+. We consider the following initial value problem:

’() = f(, (h(O)), > o
() = (), < o, (2.2)

where a is a function, not necessarily a continuous function from(- oo, to] to .
Our aim is to obtain the existence of a local and global solution of (2.1, 2.2),
with the initial data o being a discontinuous function and to any time in +.
We introduce the following operators, which have been first used by Azbelev et

al. [1], and later by Anokhin and Krishna [2, 3].

define:

For any function z: [to, c)---", to R + fixed and T: ( oc, t0l---,R" we

(S(h;to)z)(t) = { x(h(t))O ifif h(t)h(t) >< tot (2.3)

(h; to)(t)= { (h(t)) if h(t) < to
0 otherwise.

(2.4)

We prove the following local existence theorem for the initial value

problem (2.1, 2.2).

Theorem 2.1" Let (C1) and (C2) hold. Assume further
(C3) there exists a Caratheodory function w: gt + x + --.gt + such that

(a) w(t, y) is nondecreasina in y for almost all t +,
(b) for any to, T +, to < T, and #r any y +, w(.,y)

L[to, T], for some p > 1,

(c) II f(t,x) II (t, II II) fo t +, z ",

Then, for any (to, xo) N+ x N", and for any bounded Borel meurable function
-(-,to]N, there ezis e>0, such thet (2.1,2.2) h bsolutely
contios soltio o [to, to + e] [0,T] stisfie the condition

(to) = 0. (2.)

Proof: Using (2.3) and (2.4), we can rewrite the initial value problem

(2.1, 2.2 and 2.5) as"



52 S.V. KRISHNA and A.V. ANOKHIN

x’(t) = f(t, o(h; to)(t) + S(h; to)x(t)), t >_ to,
Z(to) = Zo

(2.6)

which is in turn equivalent to:

(t) = + f + s(h, (2.7)

We introduce the operator T by

(Tx)(t) = xo + f f(s, (h, to)(S) + S(h, to)x(s))ds (2.8)
o

on the space of all absolutely continuous funcgions z on [to, T], o < T < c. The

the initial value problem is equivalent to he operator equation

x = Tx, (2.9)

on the space of absolutely continuous functions on [to, T].

Let 5> 0 be fixed, and define B = {x C[to, T]: Vt [to, T],
][ z(t)- xo ][ < 5}. Treating T as an operator from C[to, T to C[to, T], we shall

prove that TB is precompact in C[to, T]. To his end, we observe that for each

x C[to, T], S(h;to)x is a measurable and bounded function on [to, T]. Hence

S(h;to)x L[to, T]. Also, from the definition of (h;to) and the hypothesis that

is Borel measurable, axed h is Lebesgue measurable, it follows that (h, to) is a

measurable and bounded function on [to, T]. Hence (h;to) L[to, T] and

v(h; to) + S(h; to)x e L[to, T]. Also,

[to, T]

< ess sup [[ p(h; to)(t [[ + ess sup [I S(h, to)x(t)I[- e [t0, T] e [t0, T]
(2.10)

From (C1) and then (C3)(c), it follows that t-f(t, (h;to)(t)+ S(h;to)x(t))
is measurable and that

[[ f(t, y(h; to) + S(h; to)x(t))[[

<_ w(t, II (h; to)(t) + S(h; to)x(t) I1 ) <- w(t, x(, Zo, 5)),
(2.11)
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where we have used (2.10) nd hypothesis (C3)(a). Further, (C3)(b) assures that

w(., ) e L[to, T] and hence tf(t, (h; to)(t) + S(h; to)X(t)) is in L"[to, TI. Also
from (2.8) we have

Consequently, if x 6 B o

e [tO, T]

which proves that TB is uniformly bounded.

o

Next, let t, t’ e [to, T]. Then,

II (Tx)(t) (Tx)(t’) [I <- / II f(s, (h; to)(S) + S(h; to)x(s)) II ds

p--1 1

<- f w(s, )ds < It’- t l-w-. / w(s, )I Pds .
Since by w e L[to, T] by (C3)(b), the above inequality establishes the

equicontinuity of TB. Thus TB is precompact in C[to, T]. Hence corresponding

to the > 0 we have already fixed, there exists e > 0 such that for any x B

(hence for any Tx e TB), (Tz(to) Zo for all z e C[to, T])

II Tx(t)- xo II < (2.12)

for all t 6 [to, to + el.
We now consider the set B, = {x e C[to, to + el: II o II t

[to, to + e]}. If z B,, we can easily find . B, which coincides with z on the

segment [to, to + e], along with its image. That is,

(s) = x(s) for all s e [to, to + el,

and

T. (s)= Tz(s) for all s e [to, to + ].

Since TB is precompact in C[to, T], from the identification suggested above, it

follows that TB, is precompact in C[to, to + e] and TB, c_C_ B,.
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We now apply Schauder’s fixed point heorem o he map T on Be and
conclude he existence of a fixed poin for T which is a solution on [to, to
Obviously he solution is absolutely continuous on [to, to + el. This proves he

heorem.

In he nex heorem, we obtain estimates for he solution of (2.1), (2.2),
(2.5) and is growth on he interval of existence which will be used o prove

global existence heorem.

Theorem 2.2: Let to R+ and let (C1 -C3) hold. Suppose that

(C4) there is a T > to such that for any Yo +, the maximal solution of
the IVP"

= ,(t,), (to)= Uo (e.a)

exists on [to, T]. Then for any absolutely continuous solution x of
(2.1), (2.2), (2.5) existing on any interval [to, to+e]C_[to, T], the

following estimates hold:

II (t)Ii y(t, to, II II + II o II)- II II
II (t)II (t, y(t, to, II II + II o II ), t [to, to + ],

-oo<t<t0
eoo: ro y oio o (.), (.9.), (.),

II s(h; to)x(t)1[ < max I[ x()II < II (to II + f II ()II d.
to <_S<

o

We have from (2.1)and he nondecreasing nature of w, using (2.16)

II (t)II = II f(t, (h; to)(t) + S(h; to)x(t)) II

(2.15)

(2.16)

(t, II !1 + II S(h; to)(t)II ),

(t, II I! + II o II + f II ()I! d).
o

Let z(t)= II II + II 0 II + f II ()II d. Then 2(t)= II (t)II and
o

2.(t) <_ w(t,z(t)), z(to)= II !1 + II Xo II. (2.17)



Delay Differential Systems with Discontinuous Data 55

ttence, from (C41 and well known comparison theorem [6],

Therefore,

II (t)II = (t) _< (t, (t))

Consequently,

II (t)II -< II o II / f II ()II d = II o II / f
o o

= z(t)- Z(to)+ II o II = z(t)- II II
to, !! I! + II o II)- II II

which proves the theorem.

Theorem 2.3, (Global existence theorem)" Assume (C11-(C41. Then for
any to +, xo R" and q any bounded Borel measurable function on (- c,3, to)
there exists a solutions x of(2.1), (2.2/, (2.5) on [to, T].

Proof: Local existence is already established. Suppose that the

mximal interval of existence is [to, t*)_C [to, T]. Then, the estimates of Theorem

2.2 show that Iimt_t. x(t) exists and hence the solution can be continued further

by Theorem 2.1. This proves global existence.

3. A UNIQUENESS THEOIM

The last section establishes existence of an absolutely continuous solution

of a system of delay differential equation under very general conditions,
particularly with a discontinuous initial data. This is extremely relevant to us as

we are bound to encounter such situation when we deal with impulsive

differential equations with delay. However, to make any progress in these

difficult situations, we must make some assumptions regarding uniqueness of the

non-impulsive solution. In this section we prove such a result, again under a

very general hypothesis.
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Theorem 3.1" Suppose f satisfies the condition

(C5) there exists a function g:[to, T] x R +--, + such that g is

Cthodo, g(t, o) O, u’(t) = (t, (h(t)),() = O, <_ to h o
zero solution on [to, to + e] and

[[ f(t, x)- f(t, y)[[ _< g(t, [[ x- y [I ), t [o, T], x, y R". (3.1)

Then, for any bounded Borel measurable o and any Xo R"; (2.1), (2.2), (2.5) has

almost one absolutely continuous solution existing on [to, to + e]

__
[to, T].

Proof: Follows from Theorem 2.2.

4. EXISTENCE TttEOtMS FOR IMPULSWE EQUATIONS WITH DELAY

In this section, we study the existence of solutions for equations with both

impulses and delays. Let :+--R" and T:R"-+R+, A __. R+ x", f:+ x
N"--,N" be chosen so as to assure existence and uniqueness of an absolutely
continuous solution of the initial value problem (2.1), (2.2), (2.5), for any

bounded Borel measurable initial function 9o. We consider the following
problem:

x’ = f(t,x(h(t))), t >_ to (4.1)

((t) x(t_ ), (or r(x(t)) 7/= t)or (t,x(t_)) e A.

cr < to,
(4.:)

(t + ) (t- ) = zx(t) = (t, (t,- )) (4.3)

where I: N+ x N"N". This is an impulsive system with delay.

Deletion 4.1" A solution of (4.1) to (4.3) on [t0,T is a function

x: [to, T]R" such that

(1) x is right continuous, and piecewise absolutely continuous on [t0,T],

(2)
(3)
(4)

(i.e., x e PAC[to, T]).
Satisfies (4.1)for almost all te [t0,T].
The only points of discontinuity of x are solutions of x(t
x satisfies (4.3) at these points of discontinuity.

_) (t).

Definition 4.2: We use the following notation:
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PAC[to, T]= {x:[to, T]--." such that there exists an absolutely continuous

function y: [to, T] x R", fl e N", r [to, T] such tha.t

where

(t) = u(t) + . Z,.,(t)}, (.)

0 ift < rHi(t) = 1 if t > ri

is the unit step function.

Pmark 1: By demanding the solution to be PAC[to, T], and from the

definition of the space PAC[to, T], it is clear that a solution is necessarily right
continuous. This is a deviation, although no a serious one, from the usual

definition of solution of an impulsive equation which is taken to be left

continuous (cf. [5]).

Remark 2: In the literature so far, impulses were given when the

solutions meets a surface of the form t= r(x(t))or (t)= x. We included here

the situation where the impulses may be received when the solution reches a

certain value at a particular .time. From an applied point of view this seems to

be more reasonable. Also, the earlier results can be recovered by setting
= ((t, ). (t) = }, o {(, ): t = ()}.

Remark 3: An impulse is felt by the solution x(t) only when

(t, x(t )) e A. If (t, x(t )) e A and after impulse, (t, x(t )) + I(t, x(t ))) e A,
the solution will not receive any impulse, but moves on until it meets A gain.
When we discuss the existence of a solution of an I.D.E., we can force the

solution of an N.I.D.E. not to meet any impulsive surface (T, or A), so that an

N.I.D.E. solution is the solution of an I.D.E. also. A number of conditions

assuring this can be envisaged from trivial to more sophisticated, but this would

be avoiding impulse and so does not become a part of the study of impulsive

differential equations. However, we list such conditions to satisfy curiosity.

1) There exists c > 0 and e > 0 such that

II o-- (t)II > eo to < t < to + .
2) For C and g(t)= f f(s, (s- r))ds, t _> 0, there exists e > 0 such

othat
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3)

4)

’() =o a(o, o + ,). (4.6)

For r C, there exists > 0 such that for any x with

,’(=) a-’(=- =o). (4.v)
For Cx, there exists e > 0 such that

f(t, (h(t))) > (’(t) for almost edl E [0, o + e]
o (4.8)

f(t, v(h(t))) < ’(t) for almost all t E [to, to + el.

What is very interesting in this context is, even after assuming the

uniqueness of the solution of the N.I.D.E., conditions (4.6) or (4.8) cannot assure

the uniqueness of impulsive solutions of I.D.E. as can be seen from the following.

Example:

(o) = o,

has two solutions, namely x(t)= t, t e [0,1] and

t + e- " t E (3- "- 3- ")
v(t) =

O, t=O.

The second solution y is extremely interesting. Such solutions will be called

singular solutions. Nothing qualitative or quantitative can be said about such

solutions, nor do they have good physical interpretations. Thus, isolating the

circumstances in which such solutions can occur and do not occur is an

important and useful task.

Theorem 4.1" Consider the impulsive system (4.1) to (4.3), with impulses

being given to the solution x when x(t_)= ((t). Suppose I and are continuous

with I(0, (0)) = O, xo = (0). If there exists a 6 > 0 such that

xo + f(s, (h(s)))ds- (t) I(t, ((t)) > 0
0

(4.9)

for all te (0,5), then I.D.D.E. (4.1)-(4.3) has a unique solution on [0,5), which

does not suffer from impulses.
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Theorem 4.2: Consider the LD.D.E. as in Theorem 4.1, except that

(4.9) /s replaced by: There exists a > 0 such that

o + /(a, qa(h(s)))ds- (t) I(t, (t)) < 0 (4.10)
0

and the function

m(t)= z0+ f(s, qo(h(s)))ds--(t)
0

(4.11)

is either strictly increasing or decreasing in [0, 6).

Then the LD.D.E. has exactly one solution on [0, 6) which has no impulses
and has infinitely many singular (impulsive) solutions. Further, if is assumed

to be differentiable, then

[f(t, q(h(t))) ’(t)] I(t, (t)) < 0

implies (4.10) and (4.11) and hence the conclusion of the theorem.

Proof of Theorem 4.1" Let y be the unique solution of the (non-
impulsive) D.D.E. Let us denote by B the set {t, (t) + I(t, (t)): t _> 0}. From
the continuity of I and , the hypothesis (4.9)implies that the curves {(t,y(t))}
and B are on the "same side" of {(t,(t))}. Hence y(t)does not meet (t)for
t (0, ]. This proves the existence of a solution for I.D.D.E. which receives no

impulses in [0, ).

We shall next prove the uniqueness. Suppose that x is another solution of

I.D.D.E. (4.1) to (4.3). Then, it must be an impulsive solution; that is, a

solution which receives impulses as it meets (t). It is also clear that 0 must be a

limit point of the impulse times of this solution x. Let t > 0 be a discontinuity

of x which means tI is an impulse time of x. For definiteness, suppose that

I(t,(t)) > 0. Then by (4.9)it follows that Xo+ ff(s,(h(s)))ds-(t)> 0
o

tv-,I(t,(t)) is continuous at t1. Hence there is e such that 0 < e < tx, and there

exists a constant k, such that I(t,(t))> k, for all t (e,t). If in any finite

interval, x has an infinite number of discontinuities, then there exists sequence,

{s,} C_ {e,t) of discontinuities of z. The jump t each si is I(s,,x(,-))=
I(s,(s))> k,. Since the solution zPAC, there exists an absolutely

continuous function z such that
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where fli axe the jumps of x at the discontinuity times sl. Hence,

: = =(, + -(,-)= z(, ,) < .
This shows that fli diverges. This is a contradiction. Hence on any finite

interval, x can have at most a finite number of discontinuities.

Now, let > 0 be as in the hypothesis, and let the discontinuities of x be

> to > t >... > t > t, + >...---,0 as n---oo. Then we have:

o

(to-) = (t -) + z(t, (t)) + f f(, (()))d
1

o

((tl) + I(tl, (tl)) + f f(8, 9(h(s)))ds
I

for any k_l.

ok
= (t) + . I(t,, (t,)) + i f(s,

=1 tk

Since x(to- )-((to) and I and are continuous and taking the

limit of (4.13) as
o

(to) = o + (t,, (t,)) +
i=1 0

f(s, 9(h(s)))ds

o

> xo + / f(s, (h(s)))ds x(to ) = (to).
0

This is a contradiction. Hence the uniqueness follows.

Remark 4: If the solution receives impulses whenever it meets the curves

i(t), i = 1,2,..., instead of just one curve, the conclusion of Theorem 4.1 can be

obtained if (4.9) holds for all and in addition we have:

If j is the integer such that

(0, (0))= 0, /0)= o, (4.14)

then there exists c > 0 and 5 > 0 such that
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I0- (0) > c eor .a i # j.

Proof of Theorem 4.2: From (4.10) and (4.11), we may assume, without

loss of any generality, that re(t)>0 for all t(0,). Obviously, then

I(t,(t)) < 0 for all t fi (0,8). Existence and uniqueness of a non-impulsive
solution follow trivially. We shall show that the I.D.D.E. has an infinite number

of impulsive solutions existing locally.

Le [0, T) be he interval of existence of the non-impulsive solution y.

5’ = rain(5, T) > 0. Fix tI (0, 5’) and define

Let

x(t) = (t)- f f(s, qa(h(s)))ds, t e [0, tl).

Then xx is differentiable on [0,t) and 2(t)= f(t,(h(t))). Thus x is a solution

of the delay differential equation on [0,t). Consider the difference x(t)- (t),
for

x(t)- (t) = (t)- f f(s, (h(a)))da- {(t)

tl
= [(t) f f(, (h())) o]- [(t) f

0 0

y(, (h()))d 0]

= F/g(t)"--m(l) < 0

since m is strictly increasing and t < t. Thus x(t)# (t) on (0, tl).

Let g(t) = x(t)- (t)- I(t, (t)), t E [0, t].
and g(t) re(t)- m(tx) I(t, (t)).

Assume then g is continuous

We observe that"

a(o) = r(o)- .(t)- z(o. (o)) = r(o)- .(t) < o.
g(t) = I(t,(t)) > O,

since we assume I(t,(tl)) < 0. Hence, there exists t2, t < t2 < t such that

g(t2) 0; ha is, z(t2) (t2) + I(t2, (t2)). Obviously, z canno mee A
between t2 and t. We now define
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2

x(t) = ((t) / f(s, v(h(s)))ds t e [0, t).

We proceed as earlier. Repeating this process, we obtain a sequence {x,} of

functions and a sequence {t,} C [0, t) such that"

Defie

x,(t) = (t,) J f(s, t e [o, .)

Xn(7n + 1) = (n + 1) -" I(tn + 1, (:n + 1))"

If tg = 0 for some positive integer N, then x is a solution of I.D.D.E. with

impulse times ty_,...,t, and x(O)=X(ty)=(ty)+I(ty,(ty))=XO (by
hypothesis). If {t,,} is infinite, obviously t decreases to 0 (if t, converges to

some non-zero value, x will coincide with the non-impulsive solution which is

impossible by the construction of

By the continuity of and I, it then follows that

(0)- ..( = ..((t.) + z(t, (t.))) = 0.

Hence x is a solution of the I.D.D.E. (4.1) to (.43). We next claim that there are

an infinite number of such singular solutions. For, if t and t are in (0, 6’) with

t{ <tl, say and if z and z{ are ghe two solutions obtained as in the last

paragraph, then no impulse point of one can be an impulse point of the oher, or

else t = t. Hence if t E (0, t), there exist m and n such that

If x(t)--x*(t), then we should have (after some computations) m(tm)--m(t,)
which is not possible since t, 7 t, and m is sgricgly increasing. Hence z and z*

are differen solutions. Lasgly, if " is differentiable, rn is increasing if and only if

m’(t) > 0, if and only if f(t,(h(t))). I(t,(t))< 0. This completes he proof of

the theorem.

We conclude this section with the following observation.
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A negative result: Le ( be continuous. Suppose ghere

sequence {ti}, ti 0 as ic and

i(t) = zo + ff(s, (h(s)))ds, i = 1, 2,
0

exists

U I(t,(,)) c > 0 for 11 t (0,e), for some e > 0 and c > 0, then (4.1)
to (4.3) cannot hve solution on any interval (0,

Let O(t) = {i(t):i = 1, 2,..., } for each t +. For each e > 0, let

= {(t, =) e [0,,] +-= e

= {(t, ) e [0, ] x /. e o()}.

Then, A, C_ M, C_C_ A,, where denotes closure.

Proposition: Let there exist > 0 such that

t, xo + f(s, (h(s)))ds
o

Then the LD.D.E. has a local solution.

M,, for all t e [0, e).

5. CONTINUATION OF THE SOLUTION

In the last section we discussed the local existence of solution of the

I.D.D.E. If the solution of the non-impulsive equation does not meet any

impulsive surface, the situation is simple and needs no special ttention. If the

solution does meet an impulse surface (curve), then Theorem 4.2 gives a

condition under which a chos may develop at the time of impulse. Theorem 4.1

is too strong negation of Theorem 4.2, since in this theorem, the non-impulsive

solution does not meet the impulsive surface for ny t > 0. We would be

interested in result in which the non-impulsive solution does meet an impulsive

surface ( but can continue further. We shall prove such theorems in this section.

Theorem 5.1: Let there exist p L( + ) and S: +-- + bounded on

bounded subsets of + such that

II f(t, x)II p(t). ( !1 !1)
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for all t >_ 0 and x ". Let h(t) g t- r, r > 0 for all >_ O. Let be continuous

with (0) Zo. Let I be such that for any T > O, there exists c(T) > 0 with

I(t,(t)) > c(T) for all t e [0,T]. Then, the solution of LD.D.E. (4.1) to (4.3)
can be extended to

Proof: From the hypothesis, local existence is assured.

the interval of existence. Let x be the solution. Then for 0 _< t _< r,

Let [0,T] be

Xl(t) X0 "- J f(s, q(h(a)))da + I(t,
0

where t. are such that x(ti-)= (ti). Using (5.1)

() xo + s( II II)"/P()d + . (,())
0

We first observe that the summation of the R.H.S. of (5.2) has at most

finite number of terms. To see this, suppose x meets at ti, in [O,r]. We can,

without loss of generality, assume that ti--+t* <_ r as i--,cxz. Since is continuous,

we can find a 5 > 0 such that for t, s e (t* 5, t*), [(t)- (s)[ < () Hence by

hypothesis regarding I,

(,)(t) z(, ()) ()1 > 2

for all t,s (t"-5, t*). From he convergence of Ti go t’, here exists a positive

integer N s.t. ti (t*-5, t*) for all i >_ N and hence,

I(t + ) I(t, (t,)) (t) > c..r), i>N.

Let i > N.
follows that"

Then xa(t +1 -) -- (ti + 1), Xl(ti) -= (ti) + [(ti, (ti)) and it

xx(t, + -)- xx(t,) > (") (5.)2

On the other hand,

Xl(ti + 1

ti+l
)- x(ti) = f f(s, qo(h(s)))ds

for all i > N. Hence,

s( !i II)" up p(t). (t, + t,)
t[ti, ti+ 1]

x(ti+x)-xx(ti)lO as i--.c, which contradicts (5.3).
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This proves our claim. Thus,

x() Io + s( II II) J() +
o o>_t<r

We note that B is a constant depending only on x0, , h, I and .
t [r, 2r], we have

xz(t) = Xo + ff(s, 9(h(s)))ds + I(tj, (tj))
to O<_tj<r

For

+ f f(s, x(h(s)))ds + I(t, (tl)).
r r>_tj<_2r

We have, using (5.4)
2r

x:(t) <_ B / S(Bx)fp(s)d /
r r>_tj<_2r

I(t, (t.)) =

The constant B2 depends on B1, r, I, h and . Since, B1 itself depends on

%v and Xo, B2 depends on , x0, r, h, and I. By induction, we conclude, that for

any t e [kr,(k + 1)r] and for any positive integer k, there exists a constant

B(, Xo, h, , I) such that

xz<(t) _<

Hence for any T > O,

xx(t) < B(T,,xo, h,,I) for all t [O,T].

Further, if 0 < t < t’ < T, then

z(t)- z(t’) = S(B(T)). fp(s)ds +
t<ti<t

II(t,,5(t,))l.

Hence as t t’O, zx(t) z(t’) 0. As we can find a left

neighborhood of T in which z has no disconthauity, from (5.6) we conclude that

z(T_) exists. If z(T_)# (T), ghe solution continuous beyond T. If

z(T_) (T), we cosider he problem:

x’(t) = f(t,x(h(t))), t > T

X(O’) = Xl(O") (7 < T
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x(T) = (T) + I(T, (T)) ( # (T))

Under the hypothesis, this problem has a solution existing to the right of T.
This procedure can be continued.

Theorem 5.2: Assume the hypotheses of Theorem 5.1 for f and h.

Suppose there are a finite number of ’s at which impulses are given to the

solutions. Let be continuous, i = 1, 2,..., m. For any i, j, 1

_
i, j <_ m, suppose

that i 7 j implies that

(t) # ,(t) + (t, ,(t)) fo , t +.

If Xo ,(0) for any i, then the LD.D.E. (4.1) to (4.3) has a unique solution

z PAC(R + ).

Proof: Let t [0,r], y(t,O, xo) be an absolutely continuous solution of

the corresponding delay equation. Since x0 # (0), and as is continuous, here

exists an interval [0,5] such that y(t,O, xo)i(t) for all t[0,5] for all

i = 1, 2,..., m. If Y(t) (t) for any j for all t e [0, r], take x(t) = y(t, 0, z0) for

t E [0,r]. If there exists j such that for some ti E (0,r], y(t)= .l(tl) and

y(t) i(t) for any t e [0,t), i= 1,2,...,m, we consider y(t)= y(t,t,(t)+
If yl(t)i(t)for any t e[tl, r) for any /--1,2,...,m,

then we take
u(t), t e [0,t)

(t) =
u(t), t e [t,,-].

(5.s)

If not, proceed as earlier to obtain t2, ta, This process must terminate

after a finite number of steps. Otherwise, we obtain a sequence {t,} (0, r] such

that

,(t- ) = (t,)
and

,(t,) = (t,) + (t,, ((t,))
for each i and Yi is absolutely continuous on [ti, ti + x). We can assume, losing no

generality, that ti--t* <_ r as i--+c. From the absolute continuity, we have
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ti+l
Yi(ti + ) = Yi(ti) + [ f(s, qo(h(s)))ds.

From (5.7) and the continuity of I and , for any c > 0, there exists

such that

,(,)- es(t) z(,, ts(t)) > > 0

for all s, t (t* , t*]. Hence choosing i large enough for ti, t + (t" , t*)

As ti+ 1

ti+l-- Yi(t,) Y,i(ti ++ ) / f(s, q(h(s)))ds

ti+l
<_ ( f p()d). S( II II ).

--t can be made arbitrarily small, this leads to a contradiction.

Since the process terminates after a finite number of steps, the function x

defined as in (5.8) is a piecewise absolutely continuous solution of the I.D.D.E.
on [0, r]. Ig is now easy from he estimates for z go observe gha he solution z(t)
can be extended to any interval [0, kr], k being any positive integer.
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