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ABSTRACT

An existence theorem for stochastic inclusions x xs E f Fr(xr)dr
s

+ f Gr(xr)dwr + f f Nn Hr, z(Xr) (dr, dz) with nonanticipative nonconvex-
8 8

valued right-hand sides is proved.
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1. Introduction

Existence theorem and weak compactness of the solution set to stochastic inclusion

i i".,.(..
8 8 8

denoted by SI(F, G,H), with predictable convex-valued right-hand sides have been considered in
the author’s paper [4]. These results were obtained by fixed points methods. Applying the
successive approximation method we shall prove here an existence theorem for SI(F, G,H) with
nonanticipative nonconvex-valued multivalued processes F,G and H. To begin with, we recall
the basic definitions dealing with set-valued stochastic integrals and stochastic inclusions
presented in [5].

Let a complete filtered probability space (fl, , (at) > o,P) be given, where a family (t)t > o,
of a-algebras t C , is assumed to be increasing: z5s C_ t if s

_
t. Let R + [0, c) and +-be

the Borel r-algebra on R+. We consider set-valued stochastic processes (63t) > o, (t)t > 0 and

(aPt,z)t > O,z Rn taking on values in the space Comp(Rn) of all nonempty compact subse[s of n-

dimensional Euclidean space n. They are assumed to be nonanticipative and such that

f IItllPdt<c, p>_l, f IItll 2dt<c and ff II%t, zll2dtq(dz) <c, a.s., where q is a
0 0 on
measure on a Borel r-algebra n of n and II A I1" sup{ a I" a or_ a}, A Comp(n). The
space Comp(Rn) is considered with the Hausdorff metric h defined in the usual way, i.e.,

h(A, B) max{- (A, B), (B, a)), for A, B Comp(N), where - (a, B) {dist(a, B)’a A} and

h (B, A) {dist(b, A)" b e B}.
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2. Basic Definitions and Notations

Throughout the paper, we shall assume that a filtered complete probability space
(f2, , (t)t > 0, P) satisfies the following usual hypotheses:

(i)- 0 contains all the P-null sets of Y and
(ii) t-[.J u, all t, 0<t<x; that is, the filtration (t)t)O is right

u>t
continuous.

As usual, we shall consider a set + f2 as a measurable space with the product -algebra

+ (R).

An n-dimensional stochastic process z is understood as a function x: + x ---+1n with -measurable sections xt, for t > 0, and it is denoted by (xt) > 0" It is measurable if x is + (R) -measurable. The process (xt) >0 is t-dapted or daptd if x is t-measurble for t > 0.
Every measurable and adapted rocess is called nonanticipative. In what follows, the Bnach
spaces LP(f, t,P,Rn) and LP(f2, ;,p, Rn) with the usual norm I1" II are denoted by LPn(t) and
LnP(), respectively.

Let .Al2(t) denote the family of all (equivalence classes of) n-dimensional

nonanticipative processes (ft)t > 0 such that f ftldt < oc, a.s. We shall also consider a
0

subspace of (rt) defined by {(Yt)t > o J(rt)" E f It dt < } with the norm
0

I1" II Ln defined in the usual way. The Banach spaces LP(+,+,dt, R+), p _> 1 and

L(+ ,+ (R) ",dt q,+), with the usual norms I.Ip and I1" II will be denoted by
LP(+) and L2(+ n), respectively. Finally, by Mn(t) we denote a space of all
(equivalence classes of) n-dimensional t-measurable mappings.

Throughout the paper, by (wt) > 0 we mean a one-dimensional t-Brownian motion starting
at 0, i.e., such that P(wo -0)- 1- By (t,A) we denote a t-Poisson measure (see [1]) on

R+ xn and then define an t-centered Poisson measure (t,A), t > 0, A n, by taking

" (t,A) (t,A)- tq(a), t > 0, A n, where q is a measure on n such that E,(t,B) tq(B)
and q(B) < cx) for B .

By tl2(t,q), we shall denote the family of all (equivalence classes of) + (R)q(R)n_
measurable and t-adapted functions h: + X n__,n such that

f f ht, z l2dtq(dz)<oo a.s. Recall that a function h’R+ x fxRn--,n is said to
on
be t-adapted or adapted if for every x En and t>_O, h(t,.,x) is t-measurable.
Elements of li,2(t,q) will be denoted by h-(ht, z)t>_O, z eRn. Finally, let 2n-

{h e 2(rt, q): II h II 2 < (X)} where II h II 2

W E f f ht, 12dtq(dz).
n olin

Given g E tlZ(t) and h :(t, q), by f adw)t > 0 and
0

(f f Rh,’(d,a))> o, we denot their stochastic integrals with respect to an t-
0

Brownian motion (wt)t> 0 and an rt-centered Poisson measure (t,A), t>0, A n,
respectively. These integrKls, understood as n-dimensional stochastic processes, have quite similar
properties (see [1]).

Let us denote by D the family of all n-dimensional t-adapted c&dl&g (see [6]) processes
(xt)t > 0 such that EsuPt > o[ xt

2 < c. The space D is considered as a normed space with the
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norm II II II II L= D, where II II L2 is a norm of

L2(f2,,P,). It can be verified that (D, I1" II )is nanah space.

Given 0 < c < < o and (zt) > o E D, let z’- (z’)t > 0 be such that z’’- z and

z’=z for 0<t<c and t>, respectively, and z’-z for c_<t<. It is clear that
Dc": {z’/3:z- D-} is a linear subspace of D, closed in the I1" ]1 Cnrm topology. Then,
D’, II" I] t)is also a Banach space.

Given a measure space (X,,m), a set-valued function %:XCI(’) is said to be
measurable if {z E X" %(z)fl C # }} for every closed set C C n. For such a multifunction,
we define subtrajectory integrals as a set (%)-{9 Lv(X,%,m,"):9(z)%(z) a.e.}. It is
clear that for nonemptiness of (%) we must assume more then -measurability of %. In what
follows, we shall assume that %-measurable set-valued function %:XCI() is p-integrable
bounded, p > 1, i.e., that a real-valued mapping: X z II ()II / belongs to
Lv(x, ,rn,+ ). It can be verified (see [2], Th. 3.2) that a -measurable set-valued mapping
%" XCI(’) is p-integrable bounded, p > 1, if and only if (%) is nonempty and bounded in
Lv(X,%,m,’). Finally, it is easy to see that (%) is decomposable, i.e., such that

Afl + ]X/Af2 y(6-) for A 6 % and fa, f2 Y(6Jb)
We have the following general result dealing with the properties of subtrajectory integrals (see

[2], [3]).
Proposition 1. Let %:X---,CI(Rn) be -measurable and p-integrable bounded, p >_ 1. Then,

Y(%) is a nonempty bounded and closed subset of Lv(X,,m, Rn). Moreover, if )o takes on
convex values then Y(P,,) is convex and weakly compact in Lv(X, 3, m,).

Let - (t)t > 0 be a set-valued stochastic process with values in Cl(Rn), i.e., a family of
measurable set-valued mappings t:f---,Cl(Rn), t > O. We call measurable if it is
measurable. Similarly, is said to be Yt-adapted or adapted if t is t-measurable for each t > 0.
A measurable and adapted set-valued stochastic process is called nonanticipative.

-measurable set-valued mappingsIn what follows, we shall also consider + (R)ay(R) n

J’R + l Rn---CI(Rn). They will be denoted as families (%t,z)t > O,z e Rn and called

measurable set-valued stochastic processes depending on a parameter z E Rn. The process

% (6-Jt,z)t > 0,z n is said to be t-adapted or adapted if %t,z is Yt-measurable for each t > 0

and z Rn. We call it nonanticipative if it is measurable and adapted.

Denote by 2S2s_v(t) and .Ab2s_v(t,q) families of all nonanticipative set-valued processes

(t)t > 0 and (6Jt,z)t > O,z E n, respectively, such that f II t II 2dr < cx and
o 0

f f II a36t, z [I 2dtq(dz) < x, a.s. Immediately, from Kuratowski and Ryll-Nardzewski measurable

selection theorem (see [al)it follows that for every F, e l,. v(t)and e .AI,. v(’J:t, q) their
subtrajeetory integrals

Y(F): {f .Al2(t) ft(w) Ft(w),dt x P- a.e.},

(1): {g dtb2(t): gt(w) t(w),dt P-a.e.} and

q(aj): {h dlh2(t, q): ht, z(W) %t, z(W), dt x P x q-a.e.}

are nonempty. Indeed, let E {Z E + (R) : Z t, each t > 0}, where Z denotes a section of
Z determined by _> O. It is a r-algebra on N+ x f and a function f’N+ x f--,N (a
multifunction F’N+ x fC/(Nn)) is nonantieipative if and only if it is -measurable. Therefore,
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by Kuratowski and Ryll-Nardzewski measurable selection theorem every nonanticipative set-
valued function admits a nonanticipative selector. It is clear that for F

_
J2s_v(t) such

selector belongs to .A2(t). Similarly, define on R+ f2 n a -algebra

{Z + @ n. Z t, each t 0 and u G n),
where Z (ZU)t and Zu is a section of Z determined by u G n.

Given the set-valued processes

F (Ft) > o -v(t), (t)t > o -v(t) and

(,,), > o, u -o(v,, q)

by their stochastic integrals we mean families

f Frdv)t > o, f Ordwr)t > o, and f f %r,z (dr, dz)) > o
o o on

of subsets defined by

f Frdv { f fry: f
_
Y(F)},

0 0

f rdwr { f Ordwr: g E if()} and
0 0

( f ,z (,z)- (f f h., (, z): h e ()}.
oNn 0Nn

Given 0 < a < fl < c we also define

f Fsds: { f fsds: f
_

If(F)},

f Osdws: { f gsdws: g (0)} and

3. Stochastic Inclusions

Let F {(Ft(x)) >_ o: x [n}, G {(Gt(x)) >_ 0: x n} and H {(Ht, z (x)) > o,z
_
n:

x e Rn}. Assume F, G and H are such that (Ft(x)) > 0

and (gt, z(x)) > O,z e n e

_
u(t, q) each x

By a stochtic inclusion, denoted by SI(F,G,H), corresponding to given above F,G and H
we mean a relation

8 8 8

that is to be satisfied for every 0 _< s < t < x3 by a stochastic process x (xt) > o D such that
F o z tl,sP_ (5t) G o z e rts2 (rt) and H o z .Al,2 ,(rt, q), where F o--z (Ft(zt))t > o,
G o x (Gt(xt))t >_ o and H o z (Ht,(zt))t >_ o, Rn. Every stochastic process (zt) >_ o -D,

satisfying conditions mentioned above is said to be a global solution to SI(F, G, H).
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A stochastic process (xt) > 0 C D is a local solution to SI(F_,G,H) on [cr,/] if and only if
xa’f is a global solution tff SI(Fa,G,Ha), where F =[a,b]F, Ga-[a,Z]G and
Ha [,]g.

A stochastic process (xt) > 0 D is called a global (local on [, ], rasp.) solution to an initial
value problem for stochastic-inclusion SI(F,G,H) with an initial condition y L2(,0,n)
(y a, Rn), rasp.) if (x) >0 is a global (local on [,], rasp.) solution to SI(F,G < h) and
x0 y (x y, rasp.). An iitial-value problem for SI(F, G,H) mentioned above will be denoted
by SIy(F,G,H) (S’(F,G,H), rasp.). In what follows, we denote a set of all global (local on

[,] solutions to SIy(F,G,H) by Au(F,G,H) (A’(F,G,H), rasp.).

Suppose F, G and H satisfy the following conditions:
(A1) (i) F {(Ft(x)) > o:X Rn}, G {(Gt(x)) > 0:x C Rn} and H

{(Ht, z(X))t > o, z e Rn:x n} are such tat mappings + x x 3 (t, , x)

Ft(x)(w Comp(R"), R + x x R" (t,w,x)Gt(x)(w) Comp() and
a + x x R" x n (t, , z, x)Ht, z(X)(w) Comp(n) are E @ $" and
measurable, respectively, where E and E are a-algebras on R+ x and
R + x x R defined above,

(ii) (Ft(x))t > o, (Gt(x))t > o and (Hx, z(z))t > o, e Rn are square integrable bounded
for fixed R".

Corolly 1: For every xt)t>o D and F,G,H satisfying (l) one has Fox,
G o x e

_
(t) and H o x e

_
t,q)"

Now, define a linear mapping on 2(t)x2(tx2(t,q) by taking (f,g,h)

= f frdr + f grdwr + f f hr, z (dv, dz))t > o to each (f,g,h) e 2(t) x 2(t) x 2(t,q).
0 o 0n

It is clear that maps x x into D.

In what follows, we shall deal with F {(Ft(x)) > o: x e Rn}, G {(Gt(x)) > 0: x
and H- {(Ht, z(X)) > o,z e Rn: x Rn} satisfying condKions (A1) and any one of tZe following
conditions.
(A2) There are k,e and mW such that foh[(Fx)t (Foy)t]dt

E fo kt xt Yt dr, II h(G o x, G o y)]1 E fo et xt Yt dt and II h(H o

H o y)II E f mt, Yt dtq(dz) for , y D,

(As) There are k, L2( + and m L2( + x n) such that h(Ft(z2)(w),
Ft(x1)(w)) k(t) xx z2 h(Gt(z2)(), Gt(x1)(w)) e(t) xI x2l and

h(Ht, z(x2)(), Ht,(z)()) re(t, z)]x1 x2 a.e., each t 0 and x1, x2

Lemma 1" Let L2(fl,o,R"). Suppose F,G and H.satisfy (1) and (2) or (3)" Let

xn-+O(fn-l,gn-l,hn-1), each n- 1,2,..., with (f,g,h)e(FoO)x(aoO)xq(HOO)
and (fn, gn, hn) (F o xn) x (G o xn) x q(H o xn) satisfying f- l(w) f(w)

dist(f- l(w), (F o xn)t ()), g- l(w)_ aF( ) dist(g- l(w), (G o xn)t(w))

hut,z- i(w) hnt,z(w)] dist(h[ ; l(w), (H o xn)t,z(w)), on R + x and + x

respectively. If L: II fo ktdt II L + 2 fo etdt L + 2 IIfo f unmr’zdvq(dz) II L < 1 or

L’: kll + 2lel2 + 2 II m II 2 < 1, respectively then (xn)= x is a Cauchy sequence of
(O, I1" II
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Proof: Let (xn)= 1 be such as above. By (t2) it follows

/(fn_ fn- 1)d7.

0 0

n n-1<_E -((Foxn).,(Foxn-)r)dr < E krlxr-xr
0 0

n n-1 I 2xt xt krdr < E krdr II xn-- xn-- 1 II g"
0 0

Similarly, by Doob’s inequality, we obtain

n n- 1)dwr(gr- gr
0 12 n n--1<_ 4E gr gr 2dr

0

n n-1<_ 4E [h((Goxn)r,(Goxn-1)r)]2dT" _< 4 E el-
0 0

t>o

n n-1 f
0 0

Quite similarly we also get

EIsupt>_o o In

Therefore, II z" + a

< 4E mr, zdvq(dz) II -- - II e"
o in

xn II e < L-II xl II e, where L is such as above. This implies that

each m > n > 1. Using conditions (’3) instead of (A2) we also get

(L)n" [1 X1 [1
IIm--"ll -< I-L’

for m > n > 1. Therefore, II m_ . II e-o s -o.
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Lemma 2: Let EL2(gI, zS0, Rn). Suppose F,G and H satisfy (tl) and (t3).
L: kli + 2[/12 + 2 1[ m ][ 2 < 1, then A(F,G,H) # .

Proof: Let (xn) be such as in Lemma 1 and let x- lim xn. The existence of such an 1 n--,o

sequence follows immediately from the measurable selection theorem given in [3] (see Th. II,
o n oo and n oo 23.13). We shall now show that (fn)n 1, (g )n 1 1(h)n are Cauchy sequences of Zn and

r2, respectively. Indeed, one obtains
m

= E [11 fJ fJ- 11 .2n]l/2

j=n+l 0

h2((F o xJ)r (F o xj 1)r)dv]l/2

Ikl211x-xJ-llle -< LY-ll/I211xllle -< 1-L
j=n+l j=n+l

Therefore, (f)n-lno is a Cauchy sequence of 2n. Quite similarly, it also follows that (ga)n 1

and (hn)nc= 1 are Cauchy sequences of L2, and 2n, respectively. Let f,g L2 and h r2, be

and h"-hl 2--*0 as n.such that II fn_ f II -0, II a a II -0 ur.
Ilxn--(b(f,g, h) II 0 as n. Therefore, x- +(f,g,h). To prove that

Xt Xs / (F o x)rdv + f (G o x)rdwr + f f (H o x)r,z (dv, dz)

One gets

for every 0 <_ s < t < cx it suffices only to verify that (f, g, h) ff(F o x) ff(G o x) fq(//2 o x).
For this aim, denote by Dist(a, B) and r the distance of a L2, to a nonempty set B C Ln and
the Hausdorff subdistance, respectively induced by the norm of L. Now let v be a fixed element
of (F o xn). Select u ( f(F o x) such that vr(w)- ur(w) dist(vr(w),(F o x)r(w)) for
(v, w) E I + x f. Then

Dist(v, (F o x)) <_ II v- II
1

< E h2((F o xn)r(w)), (F o x)r(w))d" < k12 II "- II ,
0

which implies r(tf(F o xn), :f(F o x)) < kl2 II " II e, each n_- 1,2, Thus ((F o xn),
f(Fopx))---,O as n---,. In a similar way we also get H((Gozn), (Gox)--*O and

tt(:fq(H o xn),q(H o x))---,O as n--,oc. Now we get

Dist(f,(F o x)) < II f fn II 2n + Dist(fn,(F o xn- 1))

+ ((F o xn- x), (F o x))

for n- 1,2,..., which implies that Dist(f,(F o x))- O. But, :f(F o x)is a nonempty closed
subset of 2n. Therefore, f :f(F o x). In a similar way we can also verify that g f(e o x) and
h fq(H o x). I’-I
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Lemma 3: Let 0 < c < < oc and o E L2(f,a, Rn). Suppose F, G, and U satisfy (1)
and (A3). If i,,: ] + 21 o[a,] 12 + 2 o[a,]m ] 2 < 1 Lhen i Z(F,G,H) 0.

Prf: The proof follows immediately from Lemma 2 applied to F-[.]F,
G 0[,G and H 0[, ]H.

Lemma 4: Let C L2(Q, ffo, Rn) and let (vn)= be a sequence of positive number
0,"

increasing to +. Suppose F,G and H satisfy (1) and (A3). If xl A ](F,G,H) and

arn’rn + 1 then x O[ xn belongs toxn+l e ,Xx (F,G,H) for n 1,2,., n=l vn_l,rn)
h(F, G, H)where r0 O.

Prf: It is dear that 0- because 0--" Let 0s<< be fixed and
suppose s e [r_ 1, r), and e [rm , rm), for 1 k < m. One obtains

+rm-1 rm-1 Vm-- (rk=l "k

Let (fJ, gJ, hj) e S(F o xj) x S(G o xj) Sq(H o xJ), each j k, k + 1,..., m be such that

xr x-rm 1
/tardy / gdw, + hr . (dr, dz),

rm- 1 rm-- 1 rm-- 1n

"j--l-- i :JdT"-J-i ’J’rdw’-i- S J hj-r.
rj_ 1 rj_ 1 ’j- 1Rn

each j k + 1,..., m- 1, and

"r"k "rk rk
k k
.,-’.- i + i (".").

8 8 8

Let f n[o, rk 1)fk + = j )fro, g k mk[rj_l.rj)f +[rm, =[O. rk_l)g + j=k

][rj_i.rj)gj +[rm )gm and h--[O, rk_l)hk += krj 1’ rj)
h + [rm, )hm" It is clear

that (f, g, h) e S(F o z) x S(Goc) x Sq(H o z) and z z f f,dr + f g,dw,

+ f fh.(dr, dz). Therefore
sn

8 8 8

We can prove now the main result of this paper.

Theorem 5:
#

Let L2(f, 40, n). Suppose F, G and H satisfy (’1) and (o/[3). Then

Proof: Let (rn)n= be a sequence of positive numbers increasing to oo. Select a positive
number r such that Lka,(kl)a < 1 for k-0,1,..., where Lka. (k +_l )a is such as in Lemma 3.
Suppose a positive integer nI is such that nla < rI < (n1 + 1)r. By virtue of Lemma 3, there
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Ois zl( A,a(F,G,H). By the same argument, there is z2E Aai2a(F, G, H). Continuing the
Zo.

above procedure we can finally find a znl + 1 n.(r, v.
A " H).e

Znllo.
(F,G, Put

nI 1

xl E zk + 1 ]znl + (rl
nI + 1

k 0
[k’’ (k + 1)(7 + [nla r1

+ oo)Z’r1.

0, v1Similarly as in the proof of Lemma 4, we can easily verity that x A (F,G,H).
Repeating the above procedure to the interval [,2], we can find x2 Ar’V2(F,G,H).

xr1

Continuing this process, we can define a sequence (xn) of D satisfying conditions of Lemma 4.
Therefore Ao(F G, H) q). l"i
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