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ABSTRACT

In this paper we study a class of evolution equations where the semigroup
generators are singularly perturbed by a nonnegative real valued function of time.
Sufficient conditions for existence of evolution operators and their compactness
are given including continuous dependence on the perturbation. Further, for a
coupled system of singularly perturbed semilinear systems in two Banach spaces,
existence of periodic solutions and their stability are studied
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1. Introduction

First, we introduce some notations. For any pair of Banach spaces X and Y, (X,Y) will
denote the class of bounded linear operators from X to Y. For (X,X) we use the notation
(X) for short. For 1 <_ p <_ oc, tp ([0, oc),(X,Y)) will denote the class of uniformly
measurable (X,Y)-valued functions whose norms are locally p-th power integrable in the
Lebesgue sense. For any Banach space X and M

_
1 and w E R, we let G(X,M,w) denote the

class of infinitesimal generators of C0-semigroups {T- {T(t),t >_ 0}}, with stability parameters
{U, co}, that is ][ T(t)[[ (x) -< iet’ t >_ O.

Before proceeding with the general problem we present some examples that inspired us to
consider systems of the form

(d/dt)x (t)Ax + f(x), t > O,

x(O) x0. (1.1)

Though the linear part appears to be a special class of general nonautonomous operators A(t)
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which have been studied extensively in the literature (see Ladas, Lakshmikantham [6]), it has
many interesting special properties and applications. Further, the assumptions required for the
general case are far more stronger than those imposed here on ]3(t), t >_ 0, or equivalently
A(t) =_ (I)A. In the general case, typical assumptions are: for each t, A(t) is the generator of
an analytic semigroup, 0 E p(A(t)), IA(t)A-1(0)is H61der continuous, etc. For our special
class, none of these are necessary.

Some Examples:

(El): Consider the stochastic differential equation in In:

d = b( )dt + a(f, )dW, t >_ O, (1.2)

where W is an Rd-valued standard Brownian motion on a filtered probability space
{f, ::)tTP}. Under suitable assumptions on the coefficients b, a it is well known that
= {(t), t E 0} is a Markov diffusion process in n with infinitesimal generator A given by

Now, for e > ), consider the singularly perturbed equation

e de b(e)dt + vf()dW, t >_ O. (1.3)

By Ito’s formula, (see Friedman [3]), it is easy to verify that the generator of the process , is
given by Ae

=_ (1/e)A. Both A and Ae are the infinitesimal generators of Markov (contraction)
semigroups on X =_ Cb(n). Letting T denote the semigroup corresponding to the generator A, it
is clear that the semigroup Te corresponding to Ae is given by Te(t) -T(t/e). Thus, for any

0 X,

E{o(C,(t))l,(O = x} = T,(t)0 T(t/e)o.

Clearly, Te(t)b0, t >_ 0, is the solution of the singularly perturbed differential equation

(d/dt) = (1/e)A, b(0) = 0,

in the Banach space X--_ Cb(n). It is clear from this example that the effect of e is only a
change of time scale speeding up or slowing down the process. Similarly, for the equation

de b(e)dt + V/’a(e)dW, t > O, (1.4)

the Kolmogorov equation is given by

(d/dt) eA + Be, >_ O,

where A- (1/2)tr(aa*xx) and Be--(b,x). Here A is the semigroup generator under
suitable boundary conditions, such as homogeneous Dirichlet boundary condition in case of a

stopped Markov process, and B can be considered as a relatively bounded perturbation. For
deeper study of such perturbed stochastic differential equations, see the excellent monograph of
Friedman [3, chapter 14].

(E2): For the heat equation with time varying conductivity, f(t) >_ 0, we have
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(t,) 0, t > 0, e o,r, (.5)

(0,)- 0(), e r,

where 3 is a bounded open set in R3 with sufficiently smooth boundary 0E. This situation may
arise when different materials of varying conductivity are batched through the same furnace or
boiler. This may also arise from change of the material properties and hence conductivity due to
exposure to reacting gases. It may also arise from the approximation of a nonlinear heat equation
replacing temperature dependent conductivity by it’s spatial average.

Define the operator A by

D(A) { E L2(S)" AE L2(S), el or 0}

A A, for e D(A).

In fact D(A)- Hlo N H2. It is known that A generates a C0-semigroup in X _= L2(E).
equation (1.5) can be written as an abstract differential equation

Clearly

(d/dt)u (t)Au + g(t), t > O,

(0)- 0,

in the Hilbert space X L2( where g(t) f(t,. is some X-valued function.

(E$): By standard techniques (see Goldstein [5], Ahmed [1]), the Navier Stokes equation for
incompressible fluid can be formulated as an evolution equation:

(d/dt)v + 7(t)Av f(v), t > 0

in the Hilbert space H obtained by the strong closure (in the topology of L2(E, ffn)) of divergence
free C(3,n)-vector fields. Here v is the fluid velocity, A is the Stokes operator which is
positive and self adjoint, 7, known as the kinematic viscosity, is directly proportional to material
viscosity and inversely proportional to Reynolds number. The material viscosity changes with
time either due to temperature variation or due to material degradation with time. The
nonlinear part arises from the convective term.

The paper is organized as follows. In Section 1, notations and some motivating examples are
given. In Section 2, for linear and semilinear problems, sufficient conditions for existence of
evolution operators and their compactness are presented including a result on continuous
dependence of solutions on the perturbation. In Section 3, similar results are given for a pair of
evolution equations. Further, some results on existence of periodic solutions and their stability
are also given.

2. Existence and Regularity of Solutions

First we consider a single linear evolution equation of the form

(d/dt)x (t)Ax + C(t)x, t >_ O,

(o)- o.
(2.1)
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We shall prove the following result.

Theorem 2.1: Let (t) > O for all t >_ O, E LC(O, oo), A E G(X,M,w) and T the
corresponding semigroup of bounded linear operators in X. Then

(i) for C e Lc([0, oo),L(X)), the operator Jr(t)- (t)A-+-C(t), t >_ O, is the gener
ator of a strongly continuous evolution operator U(t,O), 0 <_ <_ t < oo in X;

loc(ii) .for C Loo ([0, oo),L(X)), if T is a compact semigroup and (t) > O, .for all t >_ O,
then U(t,O), 0 <_ 0 < t < oo, is a family of compact evolution operators in x.

Proof: (i) Define h(t) f (s)ds, t > O. Then for D(A), the Cauchy problem:
0

(d/dt)y- (t)Ay, t > 0, y(0)- , has a unique strong solution y(t)- T(h(t)), t > O. Hence,
by density of D(A), the problem has a mild solution for each X given by the same expression.
Then the evolution equation (2.1) can be written as a Volterra integral equation

x(t) T(h(t))xo / J T(h(t) h(s))C(s)x(s)ds, t IT =_ [0, T], T < oo.

0

Introduce the operator G with values

(Gz)(t) T(h(t))xo / / T(h(t) h(s))C(s)z(s)ds, t e IT.
0

By virtue of strong continuity of the semigroup T and continuity of h and the fact that C
LI(IT, L(X)), it follows that G is a continuous linear operator in C(IT, X). For x,y C(IT, X),
define

PT( , Y) =-- II II x, IT}.

This defines a consistent metric on the Banach space C(IT, X). Define

c(,) f II c(,)II ds,
0

t>O.

Using repeated substitution it is easy to verify that

PT(Gnx, Gny) < ((Mc(T))n/(n 1)!)PT(X,Y)

for every pair x,y C(IT, X and every positive integer n. Hence for sufficiently large n, Gn is a
contraction in C(IT, X and by Banach fixed point theorem, G has a unique fixed point in
C(IT, X which is the unique solution of the integral equation (2.2). Thus the Cauchy problem
(2.1) has a unique mild solution for every finite T. The existence and uniqueness immediately
implies that there exists an evolution operator U(t,s), 0 < s < t < o3 in X so that for each E X
it satisfies the equation

U(t,s) T(h(t)- h(s)) + / T(h(t)- h(r))C(r)U(r,s)dr (2.3)

for all 0 < s < < xz, satisfying
(1) U(t,t)-I,
(2) U(t,s)U(s, r)- U(t,
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and
(3) for D(A), (O/Ot)U(t,s)- A(t)U(t,s) for 0

_
s < t < c.

Further, for 0 _< s _< t < c,

[[ U(t,s)[[ (x) <- U exp( ] [M I[ C()[[ (x) + (2.4)

Note that, in case C is constant and/(t)- 1, this result coincides with the well known result for
bounded perturbations of C0-semigroups [1].

Now we prove the second part. (ii) Since T(t), t > 0, is compact and (t) > 0 for all t _> 0
and it is locally integrable, we conclude that T(h(t)- h(s)), 0 _< s < t < c, is a family of compact
operators in X. Define Ue(t,s and Re(t,s by

Ue(t s) =_ T(h(t)- h(s)) + / T(h(t)- h(r))C(r)U(r, s)dr,
$

Re(t s) =_ / T(h(t) h(r))C(r)U(r, s)dr,

for 0 < s < t-e <t< cx. By (2.4) U is bounded and since, by our assumption (ii), C(t) is a
family of (essentially) bounded operators, Ue(t,s), 0 < s < t < cx is a family of compact operators
in X. Further it is easy to verify that the family of operators Re(t,s converges to 0 in the
uniform operator topology. Thus Ue(t,s)-,U(t,s in the uniform operator topology proving that
U(t, s), 0 < s < t < cx is a family of compact evolution operators in X. This completes the proof.

In the following corollary we extend this result to semilinear problems with
nonlinearities.

Lipschitz

Corollary 2.2: Consider the system

(d/dt)x (t)Ax + C(t)x + f(x), t >_ s

where A and satisfy the assumptions of Theorem 2.1 and f, a mapping from X to X, is locally
Lipschitzian and satisfies a global linear growth condition. Then,

(i) under the assumptions of Theorem 2.1(i), there exists a nonlinear strongly
continuous (Lipschitzian on X) evolution operator N(t,r), 0 <_ r <_ t < oc in X
which solves the Cauchy problem (2.6) in the mild sense, that is x(t)- i(t,s),

(ii) under the assumptions of Theorem 2.1(ii), the nonlinear evolution operator N(t,v),
0 < 7" < t < c is compact.

Proof: By virtue of Theorem 2.1, the mild solution for the Cauchy problem (2.6) is given by
the solution of the integral equation

x(t) U(t, s) + / U(t, r)f(x(r))dr, (2.7)

where U is the evolution operator corresponding to the operator .A(t)- (t)A + C(t) as given by
Theorem 2.1. Under the global linear growth assumption, it is easy to verify that a solution, if

any exists, is norm bounded in C(IT, X). Using this bound and the local Lipschitz property one
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can conclude through Banach fixed point theorem, as in Theorem 2.1, that this equation has a
unique solution x(t,s,), DO >_ t >_ s > O, which is strongly continuous in t for t_> s and
Lipschitzian in . Define N(t,s) =_ x(t,s,) for t _> s _> 0. This is a nonlinear evolution operator
satisfying

(a) N(t, t) I,
(b) g(t,s) N(t, r)g(r,s), 0 < s < r < t,

This proves the first part. For the second part, note that U is a compact linear evolution and

hence the linear operator L given by (Ly)= f U(t,r)y(r)dr, 0 < s <_t< T, defines a compact
$

map from C([s,t],X) to X. Since f satisfies the linear growth condition and is locally
Lipschitzian, the Nemytski operator F, given by rx(. )=_ f(x(. )), is a continuous bounded map
in the Banach space C(I, X) for any finite interval I C [0, o0). Hence LF is a compact operator
from C([s,t],X) to X. Thus N(t,s), 0 _< s < t < o is a strongly continuous compact nonlinear
evolution in X. This completes the proof.

In the following theorem we present a result on the dependence of solutions with respect to
the perturbation

Theorem 2.3: Consider the system

(d/dt)x (t)Ax + f(x), t > 0

(0)-

Suppose f satisfies the assumption of Corollary 2.2 and A G G(X,M,w) with T being the corres-
ponding semigroup and X. Let (t)>0, LC(0,x) and {fn} be a sequence of
nonnegative measurable functions belonging to LC(0, c). Then,

(i) If ,---, weakly, the solution xn of the Cauchy problem (2.8) corresponding to
= n converges pointwise (not uniformly) in t on bounded intervals to the mild

solution x of (2.8).
(ii) If ,fl strongly in La(I on any finite interval I and the sequence {n} is

dominated by an integrable function, then xn converges to x uniformly on I.

Proof: (i) Since n- in Lc, it is clear that for any finite interval
sup f n dt < b for some b by < c and for each t G Ir,

I

0 0

Let {Xn} and x be the mild solutions of (2.8) corresponding to {fin} and / respectively. Since f
satisfies the global linear growth condition, there exists an R < cx and a ball BR C X of radius
R, centered at the origin, such that Zn(t), z(t) BR for all t I and n N {1,2,3,...}. Write

(t)-  n(t) =- zT(t)+
where

zr(t) =_ T(h(t))(, T(hn(t))C,

(T(h(t- s))- T(hn(t- s)))f(x(s))ds
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z(t) / T(hn(
0 - s))(f(x(s))-

Since T is a C0-semigroup, z(t)-O as nc for each t (5 I. The integrand in the expression for
z(t) converges to zero pointwise, and it is dominated by an integrable function, since, due to the
weak convergence of 3n, SuPn Ihn(t) l< cx) for each t(5 I, and z(t)(5 BR for t(5 I, and T is
bounded on bounded intervals. Hence by Lebesgue dominated convergence theorem, z(t)--,O, for
each t (5 I. By using the local Lipschitz property of f, and the fact that Zn(t and z(t) belong to
(5 BR for all t (5 I, as mentioned earlier, we have

ds,
0

where .(t)- II z(t)II + II z(t)II, and C is a constant dependent only on b, R, w, M and r.
Since an(t)-O for each t (5 I and is uniformly bounded on I, it follows from the generalized
Gronwall inequality that Zn(t)--*z(t pointwise for each t (5 I. Since I = It, 7. < cxz, we conclude
that the convergence holds pointwise for each t (5 [0, c).

(ii) For the second part, note that, for any (5 D(A),

T(hn(t))- n(s)T(hn(s))Ads

T(h(t)) / fl(s)T(h(s))Ads,
0

for t (5 Iv, 7" < c. Thus for (5 D(A), and 7" < c, we have

SUpo <_ <_ II T(hn(t))- T(h(t)), II _< / I(s)- ,(,) II T(h(s))A II d,
0

+ / .(,) II (T(h(s))- T(hn(s)))a II ds.
0

Since flnS-fl and /3n is dominated by an integrable function, using the dominated convergence
theorem once again it follows from the above inequality that

T(hn(t))T(h(t)) uniformly in t (5 Iv, 7" < c,

for each (5 D(A) and, hence, by virtue of density of D(A) in X, this holds for each (5 X. As a

result, in this case Cn(t)--*O uniformly on Ir. Then, using Gronwall inequality once again, we

obtain

SuPt . Ir II (t)- n(t) II < p(C)St
It follows from this estimate that Xn(t)---*z(t uniformly in t (5 Ir for each finite 7". This completes
the proof.

Remark: In case the operator A of equation (1.1) is the infinitesimal generator of a group
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of linear operators, T(t), t E R, in X, the multiplicative perturbation f, can be any locally
integrable function. In other words, positivity assumption is no longer necessary.

3. A System of Evolutions and Periodic Solutions

Now we consider the system of evolution equations of the form

(d/dt)x (t)Ax + Cll(t)x -1-C12(t)y, x(0) x0

(d/dt)y 7(t)By -- C21(t)x -+- C22(t)y, y(0) Y0’
(3.1)

in a pair of Banach spaces X and Y.

Theorem 3.1: Let A G(X, MI W1) and B G(Y,M2,w2) with the corresponding
semigroups denoted by T and S respectively. Suppose C.1 LC([O, cxz)),..(X)), C12(
LC([0,oo), L(Y, X)), C21 f LC([0, c),.(X, Y)) and C22 E Lc([0, oo), L(Y)) and let ,
7 f5 LC([0, oo)) and nonnegative. Then for any x0 e X and Yo e Y, the following holds true:

(i) if fl and 3’ are nonnegative, the system (3.1) has a unique solution in C(I,X Y)
for any finite interval I- [0, T] and defines a strongly continuous linear evolution
operator V(t, r), 0 < 7" < t < c, in X x Y;

(ii) if both , 7 are strictly positive and the semigroups T and S are compact, the
corresponding evolution operator V(t, 7") 0 < 7" < t < 0% is also compact.

Proof: Introduce the Banach space Z X Y, with the norms given by

II z II z II II x + II y II .
Defining

and

Cll(t) C12(t) )((t)----
C21(t) C22(t)

one can rewrite system (3.1) as one equation in the Banach space Z as follows:

(d/dt)z Ao(t)z +

z(O) zo =_

Yo

(3.2)

Under the given assumptions, A0 generates a strongly continuous evolution operator in Z and
Lc([0, (:x:)),L(Z)). The conclusions of the theorem then follow Theorem 2.1. This completes

the proof.

Adding a nonlinear coupling term like

f2(x,Y)
(3.3)
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in the evolution system (3.2) we can prove the following result.

Corollary 3.2: Consider the system (3.4):

(d/dt)z Ao(t)z -F e(t)z / F(z), t > s > O;

z()-.
(3.4)

Suppose the assumptions of Theorem 3.1 hold and the nonlinear maps fl:ZX and f2:ZY are
locally Lipschitzian satisfying the global linear growth condition. Then,

(i) ,,d ,,vio, oI To a.l(i), iU ,o,ti,, Uo,tU
continuous (Lipschitzian on Z) evolution operator g(t,s), 0 < s < t < cx in Z which
ot n c..u otm (3.4) i. mitd, i z()- g(,), > ;

(ii) ..d a.mio. oI Tnom a.l(ii), .o.ti. .ot.ion oo g(,),
0 <_ s < t < cx, is compact.

Proof: The proof is identical to that of Corollary 2.2.

Next we present two results on the existence of periodic solutions of the nonlinear evolution
system. This is important in many Physical and Biological sciences. Co-existence of various
cooperating and competing species in the nature and their population fluctuation indicate
periodicity in the dynamics. Also in the climatology the periodicity is a common phenomenon.

Theorem 3.3: Consider the system;

(d/dt)z Ao(t)z + e(t)z + F(z), t > O;

and suppose the following assumptions hold:
(al)" A E G(X,M, -w) and B E G(Y,M, -w), for some w > O;
(A2) and 7 and the operators {Ci, j,i,j- 1,2} satisfy the assumptions of Theorem 3.1,

and further they are all r-periodic (v > 0);
(A3) there exist constants a,b > O, such that

II F(z)II z < a + b II z II z fo all z Z,

II F(z)- F(z*)II z < b II z- z* II z, fo at z,z* z;

(A4) there exists a 6 > 0 such that

gn(M) + / {M[b + II e(t)II (z)]- wl(t)}dt ,
0

(3.6)

where r/(t) fl(t) A 7(t) and ’n stands for the natural logarithm.
Then there exists an Ro > 0 such that system (3.5) has a unique v-periodic solution 7 (t), t > O,
that resides in the ball BRo of Z centered at the origin, and further, this solution is globally
exponentially stable.

Proof: By virtue of Theorem 3.1, .40(t + e(t) generates an evolution operator V(t,s), 0

_
s

_
t < cx, in the Banach space Z. Under assumptions (A1)-(A2), it is easy to verify tha

II v(t. )II (z) <- M exp / (M II e(,’) II .(z) ,O(,-))d,’. (3.7)
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for all 0 _< s _< < o. For convenience, define

II e(,)II ), , > o.

Using assumption (A3), it follows from Corollary 3.2 that, for each E Z, the integral equation

z(t) V(t, 0) + / V(t, r)F(z(r))dr
0

has a unique solution z(t) z(t, ), t > O, z

_
C([0, v],Z). Then, using Gronwall’s inequality, one

can verify that - r

II z(t, 6.)II <_ M exp{ /[Mb g(r)]dr}( II (, I] z + a( / (exp / g(s)ds)dr), (3.8)
0 0 0

for all t [0, ’]. Define
Ro Mde/(1- Md), where

d =_ exp( /[M(b.+ II e()II)-U()]d)
0

e= a / (ezp / 9(r)dr)ds.
0 0

(3.9)

By virtue of assumption (A3) and (3.6), 0 < Md < 1, and hence, R0 > 0. Consider the ball

B.R C Z of radius Ro centered at the origin. It follows from (3.8) that, the nonlinear map
gven by

maps BR0 into itself. Further, by using the Lipschitz property of F, and the Gronwall
inequality, one can verify that

Since Md < 1, Fr is a contraction and hence by Banach fixed point theorem, it has a nontrivial
fixed point (0 BR Therefore, the function given by (t) N(t, 0)0, t > 0, is a periodic
solution of the evoluon system (3.5). It remains to prove the stability of the solution. Suppose
the periodic solution is perturbed at time to > 0 and let z be the perturbed trajectory. Then
the trajectory y, given by y z- ’, satisfies the evolution equation

(d/dt)y Ao(t)y + e(t)y + F (t, y), t > to

Yo-7#O,
(3.10)

where F (t, ) F(7 (t) + )- F(7 (t)). Then by virtue of estimate (3.7) and inequality (3.6), it
follows that

I[ y(t)[[ < M [1 7 [[ ep- (t- to) for all t > to.

This proves the exponential stability of the periodic solution and thereby completes the proof of
the theorem.
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Remark: Theorem 3.3 also holds for F- F(t,z), t >_ 0, z E Z, provided it is r-periodic in t
and assumption (A3) holds uniformly with respect to t > 0.

The result of Theorem 3.3 can be extended to a locally Lipschitzian F that satisfies linear
growth condition. This is given in the following theorem.

Theorem 3.4: Consider system (3.5) and suppose the following assumptions hold:
(al) X and Y are uniformly convex and Z-XY is given the topology which is

induced by any of the following norms,
II z II z (11 II + tl u II )1/,, _< < , e x e Y,

(a2)

(a3)

(a4)

(a5)

A G(X,M, -w), B G(Y,M, -w) for some w > 0, 0 < , 7 LC([0,cx))) and
v-periodic,

Vii ( L/_c([0, cx3), .L(X)), 622 e LC([0, ), (Y)), C12 e LC([0, ), (Y, X)) and

C21 e LC([0, ),(X, Y)), and ey are v-periodic,
F has amos the linear growth: ]F(z)]] a+bz]], a>O, b>O, with
growth rate satisfying"

e.(M) + ] {M[b + ] C()l (z)]- wU()}dt 0; (3.1)
0

F is locally Lipschitzian and there exists an R Ro Mde/(1- Md) such ha

n(M) + J {M[KR + [[ C(t)[ (Z)]- w(t)}dt O; (3.12)
0

where KR Sup{ [I F(x)- F(y) II /( II - y [I ), # y, ,y BR}, with BR being
the ball of radius R in Z centered at the origin.

Then system (3.5) has at least one r-periodic solution such that (t) BI for all t > O.

Proof: We outline the proof indicating the main differences with that of Theorem 3.3.
Under the assumption (al)-(a4), one can verify as in Theorem 3.3, that the nonlinear map Fr
maps BR into itself for each R > R0. Under assumption (a5), Fr is a nonexpansive map in BR.
Since Z is uniformly convex with respect to any of the given norm topologies, it follows from the
fixed point theorem for nonexpansive maps due to Browder [2], that Fr has at least one fixed
point in the ball BR C Z. Hence system (3.5) has at least one r-periodic solution. In fact, the
result is also true for reflexive Banach spaces having normal structure. This is due to a fixed
point theorem of Kirk [4, Theorem 4.1]. This completes the proof.
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