ON TRANSFORMATIONS OF WIENER SPACE

ANATOLI V. SKOROKHOD
Ukranian Academy of Science
Institute of Mathematics
Kiev, UKRAINE
and
Michigan State University
Department of Mathematics
East Lansing, MI 48824 USA

(Received February, 1994; revised April, 1994)

Abstract

We consider transformations of the form $$
\left(T_{a} x\right)_{t}=x_{t}+\int_{0}^{t} a(s, x) d s
$$ on the space C of all continuous functions $x=x_{t}:[0,1] \rightarrow \mathbb{R}, x_{0}=0$, where $a(s, x)$ is a measurable function $[0,1] \times C \rightarrow \mathbb{R}$ which is $\tilde{\mathrm{C}}_{s}$-measurable for a fixed s and $\tilde{\mathrm{C}}_{s}$ is the σ-algebra generated by $\left\{x_{u}, u \leq t\right\}$. It is supposed that T_{a} maps the Wiener measure μ_{0} on ($C, \widetilde{\mathrm{C}}_{1}$) into a measure μ_{a} which is equivalent with respect to μ_{0}. We study some conditions of invertibility of such transformations. We also consider stochastic differential equations of the form $$
d y(t)=d w(t)+a(t, y(t)) d t, \quad y(0)=0
$$ where $w(t)$ is a Wiener process. We prove that this equation has a unique strong solution if and only if it has a unique weak solution.

Key words: Wiener Space, Invertible Transformation, Girsanov's Theorem, Sets of the Second Category, Stochastic Differential Equation, Weak and Strong Solutions of Stochastic Differential Equations.

AMS (MOS) subject classifications: $60 \mathrm{G} 99,60 \mathrm{H} 99,60 \mathrm{H} 10$.

1. Introduction

Denote by C the space of continuous functions $x=x_{t}:[0,1] \rightarrow \mathbb{R}$ for which $x_{0}=0$ and by \tilde{C}_{t}, $t \in[0,1]$ the σ-algebra of subsets C which is generated by subsets $\left\{x \in C: x_{s}<\lambda\right\}, \lambda \in R, s \leq t$. Let μ_{0} be a Wiener measure and C_{t} be the completion of $\widetilde{\mathrm{C}}_{t}$ with respect to the measure μ_{0}. Note that the measurable space with the measure $\left\{C, \widetilde{\mathrm{C}}_{1}, \mu_{0}\right\}$ is called the Wiener space. We consider transformations $T_{a}: C \rightarrow C$ of the form

$$
\begin{equation*}
T_{a}(x)_{t}=x_{t}+\int_{0}^{t} a(s, x) d s, \tag{1}
\end{equation*}
$$

where the function $a:[0,1] \times C \rightarrow R$ satisfies condition
A1) $\quad a$ is $\mathscr{\mathscr { C }}_{[0,1]} \otimes \widetilde{\mathcal{C}}_{1}$-measurable, where $\mathscr{B}_{[0,1]}$ is the Borel σ-algebra on [0,1$]$, and $a(s, x)$ is $\widetilde{\mathrm{C}}_{s}$-measurable for a fixed $s \in[0,1]$
Such transformations were considered by R. Sh. Liptser and A.N. Shiryaev [3] and M.P. Ershov [2]. They established conditions under which the image μ_{a} of the measure μ_{0} under transformation T_{a} is an equivalent measure with respect to measure μ_{0}. If this is true then there exists a function $c(s, x)$ which satisfies condition $A 1)$ and

$$
\begin{equation*}
\frac{d \mu_{a}}{d \mu_{0}}(x)=e(c, x)=\exp \left\{\int_{0}^{1} c(s, x) d x(s)-\frac{1}{2} \int_{0}^{1} c^{2}(s, x) d s\right\} \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
\int e(c, x) \mu_{0}(d x)=1 \tag{3}
\end{equation*}
$$

(the integral with respect to $d x(s)$ is Ito's integral). A.A. Novikov proved in [4] that the condition

$$
\begin{equation*}
\int e^{\frac{1}{2} \int_{0}^{1} c^{2}(s, x) d s} \mu_{0}(d x)<\infty \tag{4}
\end{equation*}
$$

implies (3).
We consider the set \mathcal{A} of functions $a(s, x):[0,1] \times C \rightarrow R$ which satisfy condition $A 1)$ and condition

A2) $\quad \lim _{r \rightarrow \infty} r^{-1} \sup \left\{\int_{0}^{1} a^{2}(s, x) d s ; x \in U_{r}\right\}=0$, where $U_{r}=\left\{x \in C: \int_{0}^{1} x_{s}^{2} d s \leq r\right\}$.
Note that if $a \in \mathcal{A}$ then $\int(e(a, x))^{k} \mu_{0}(d x)<\infty$ for all integer numbers k, which is a consequence of Novikov's results.

Denote $\mathbb{T}=\left\{T_{a}, a \in \mathbb{A}\right\}$. Note that \mathbb{T} is a semigroup with respect to the product

$$
\begin{equation*}
\left(T_{a} \cdot T_{b}\right) x_{s}=x_{s}+\int_{0}^{s} b(u, x) d u+\int_{0}^{s} a\left(u, T_{b} x\right) d u \tag{5}
\end{equation*}
$$

Obviously, T_{a} is an invertible transformation if there exists a function $c \in \mathbb{T}$ for which $T_{a} T_{c} x=x$ (μ_{0}-a.s.). Then, $T_{c} T_{a} x=x$ (μ_{0}-a.s.), and we call T_{c} the inverse transformation and denote it T_{a}^{-1}.

Remark: Below we consider all relations with x as valid ($\mu_{0}-a . s$.).
We denote by \mathbb{T}_{R} the set of all invertible transformations T_{a} and by \mathbb{A}_{R} the subset of those $a \in \mathbb{A}$ for which $T_{a} \in \mathbb{T}_{R}$.

The main goal of this article is to formalize the set \mathbb{T}_{R}. Besides, we consider the stochastic differential equation

$$
\begin{equation*}
d y(t)=w(t)+a(t, y(\cdot)) d t ; \quad t \in[0,1], \quad y(0)=0 \tag{6}
\end{equation*}
$$

where $w(t)$ is a Wiener process, $a \in \mathbb{A}$, and describe its weak and strong solutions.

2. Representations of Densities

Denote $\rho_{a}(x)=\frac{d \mu_{a}}{d \mu_{0}}(x)$. We consider $\left\{C, \mathrm{C}_{1}, \mu_{0}\right\}$ as a probability space and denote by $E_{\mu_{0}}$ and $E_{\mu_{0}}(\cdot \mid \cdot)$, respectively, the expectation and the conditional expectation on this space. For $a \in A$ we define the function $\bar{a}(t, x)$ by the relation

$$
\begin{equation*}
\bar{a}\left(t, T_{a} x\right)=E_{\mu_{0}}\left(a(t, x) / \sigma\left(T_{a} x_{s}, s \leq t\right)\right. \tag{7}
\end{equation*}
$$

Here $\sigma\left(T_{a} x_{s}, s \leq t\right)$ is the σ-algebra induced by $\left\{T_{a} x_{s}, s \leq t\right\}$. It is easy to verify that we can choose \bar{a} in such a way that $\bar{a} \in \mathbb{A}$.

Theorem 1: The following equation holds true:

$$
\begin{equation*}
\rho_{a}(x)=e(\bar{a}, x) \tag{8}
\end{equation*}
$$

Proof: The stochastic process

$$
z(t)=x_{t}+\int_{0}^{t}\left(a(s, x)-\bar{a}\left(s, T_{a} x\right)\right) d s
$$

on the probability space $\left\{C, \mathrm{C}_{1}, \mu_{0}\right\}$ is a martingale with respect to the filtration $\left\{\sigma\left(T_{a} x_{s}, s \leq t\right)\right.$, $t \in[0,1]\}$ because

$$
\begin{equation*}
z(t)=\left(T_{a} x\right)_{t}-\int_{0}^{t} \bar{a}\left(s, T_{a} x\right) d s \tag{9}
\end{equation*}
$$

It is easy to verify that $\langle z, z\rangle_{t}=t$, so, $z(t)$ is a Wiener process. Girsanov's theorem (see [1]) and relation (9) imply that the process $\left(T_{a} x\right)_{t}$ is a Wiener process on the probability space $\left\{C, \mathrm{C}_{1}, \bar{\mu}\right\}$, where

$$
\frac{d \bar{\mu}}{d \mu_{0}}=\exp \left\{-\int_{0}^{1} \bar{a}\left(s, T_{a} x\right) d x_{s}-\frac{1}{2} \int_{0}^{1} \bar{a}^{2}\left(s, T_{a} x\right) d s\right\}
$$

Therefore, for bounded C_{1}-measurable functions $f(x): C \rightarrow R$, we have that

$$
\begin{gathered}
\int f(x) \mu_{0}(d x)=\int f\left(T_{a} x\right) \bar{\mu}(d x) \\
=\int f\left(T_{a} x\right) \exp \left\{-\int_{0}^{1} \bar{a}\left(s, T_{a} x\right) d T_{a} x_{s}+\frac{1}{2} \int_{0}^{1} \bar{a}^{2}\left(s, T_{a} x\right) d s\right\} \mu_{0}(d x) \\
=\int f(x) e^{-1}(\bar{a}, x) \rho_{a}(x) \mu_{0}(d x) .
\end{gathered}
$$

Due to the relation

$$
\int f\left(T_{a} x\right) \mu_{0}(d x)=\int f(x) \mu_{a}(d x)=\int f(x) \rho_{a}(x) \mu_{0}(d x)
$$

we have that

$$
e^{-1}(\bar{a}, x) \rho_{a}(x)=1 \quad\left(\mu_{0^{-}} \text {a.s. }\right)
$$

Remark: Denote by μ_{a}^{t} the restriction of measure μ_{a} on the σ-algebra C_{t} and by

$$
\begin{equation*}
\rho_{a}^{t}(x)=\frac{d \mu_{a}^{t}}{d \mu_{0}^{t}}(x) . \tag{10}
\end{equation*}
$$

Let

$$
\begin{equation*}
e_{t}(c, x)=\exp \left\{\int_{0}^{t} c(s, x) d x(s)-\frac{1}{2} \int_{0}^{t} c^{2}(s, x) d s\right\} . \tag{11}
\end{equation*}
$$

Then

$$
\begin{equation*}
\rho_{a}^{t}(x)=e_{t}(\bar{a}, x) . \tag{12}
\end{equation*}
$$

This relation can be proved in the same way as relation (8).

3. The Conditions of Invertibility of \boldsymbol{T}_{a}

Theorem 2: The statements
(i) $a(t, x)$ is $\sigma\left(T_{a} x_{s}, s \leq t\right)$-measurable for $t \in[0,1]$.
(ii) $T_{a} \in \mathbb{T}_{R}$, and
(iii) $\quad \rho_{a}^{t}\left(T_{a} x\right)=e_{t}^{-1}(-a, x), \quad t \in[0,1]$
are equivalent.
Proof: $(i i) \Rightarrow(i)$, since $a(t, x)=a\left(t, T_{a}^{-1}\left(T_{a} x\right)\right) .(i)$ implies that $-a(t, x)=\tilde{a}\left(t, T_{a} x\right)$ and

$$
\left(T_{\widetilde{a}} T_{a} x\right)_{t}=x_{t}+\int_{0}^{t} a(s, x) d s+\int_{0}^{t} \tilde{a}\left(s, T_{a} x\right) d s=x_{t}
$$

Thus, (ii) is true. (ii) implies that $\bar{a}(t, x)=a\left(t, T_{a}^{-1} x\right)$ and (iii) is a consequence of formula (12). Suppose (iii) is true, then the martingale $e_{t}(-a, x)$ is $\sigma\left(T_{a} x_{s}, s \leq t\right)$-measurable.

Using the representation

$$
e_{t}(-a, x)=1-\int_{0}^{t} e_{s}(-a, x) a(s, x) d x_{s}
$$

we can establish $\sigma\left(T_{a} x_{s}, s \leq t\right)$-measurability of $a(t, x)$. Therefore, $(i i i) \Rightarrow(i)$.
Theorem 3: Let $a_{n} \in n=1,2, \ldots$ A,$a \in \mathbb{A}$ and let the following conditions be satisfied:

1) $a_{n} \in \mathbb{A}_{R}, n=1,2, \ldots$;
2) $\quad T_{a_{n}} x \rightarrow T_{a} x$ in $C\left(\mu_{0}-\right.$ a.s. $)$;
3) $\quad \lim _{n \rightarrow \infty} \int\left|e_{t}^{-1}\left(-a_{n}, x\right)-e_{t}^{-1}(-a, x)\right| \mu_{0}(d x)=0, t \in[0,1]$;
and
4) $\quad \lim _{n \rightarrow \infty} \int\left(\rho_{a_{n}}(x)-\rho_{a}(x)\right)^{2} \mu_{0}(d x)$.

Then $a \in \mathbb{A}_{R}$.

Proof: Condition 2) implies the relation

$$
\lim _{n \rightarrow \infty} \int\left|\phi\left(T_{a_{n}} x\right)-\phi\left(T_{a} x\right)\right| \mu_{0}(d x)=0
$$

for all bounded continuous functions $\phi: C \rightarrow \mathbb{R}$. Using approximations of $\rho_{a}(x)$ by bounded continuous functions in $L_{1}\left(\mu_{0}\right)$ we can prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int\left|\rho_{a}\left(T_{a_{n}} x\right)-\rho_{a}\left(T_{a} x\right)\right| \mu_{0}(d x) \tag{13}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int\left|\rho_{a}\left(T_{a_{n}} x\right)-\rho_{a_{n}}\left(T_{a_{n}} x\right)\right| \mu_{0}(d x) \\
& =\lim _{n \rightarrow \infty} \int\left|\rho_{a}(x)-\rho_{a_{n}}(x)\right| \mu_{0}(d x)=0
\end{aligned}
$$

because of condition 4), we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int\left|\rho_{a_{n}}\left(T_{a_{n}} x\right)-\rho_{a}\left(T_{a} x\right)\right| \mu_{0}(d x)=0 \tag{14}
\end{equation*}
$$

Besides, conditions 2) and 3) and theorem 2 imply the relation

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int\left|\rho_{a_{n}}\left(T_{a_{n}} x\right)-e^{-1}(-a, x)\right| \mu_{0}(d x)=0 \tag{15}
\end{equation*}
$$

It follows from (14) and (15) that $e^{-1}(-a, x)=\rho_{a}\left(T_{a} x\right)$. In the same way, we prove that statement (iii) of theorem 2 holds true for all $t \in[0,1]$.

4. Topological Properties of \mathbb{A}_{R}

We introduce the distance in A :

$$
\begin{gathered}
d\left(a_{1}, a_{2}\right)=\int\left\|a_{1}(\cdot, x)-a_{2}(\cdot, x)\right\|_{c} \mu_{0}(d x) \\
+\left(\int\left(e^{-1}\left(-a_{1}, x\right)-e^{-1}\left(-a_{2}, x\right)\right)^{2} \mu_{0}(d x)\right)^{1 / 2}
\end{gathered}
$$

where $\|x\|_{c}=\sup _{t \in[0,1]}\left|x_{t}\right|$.
Theorem 4: Denote by

$$
Q(a)=\int \rho_{a}^{2}(x) \mu_{0}(d x) .
$$

Then

$$
\mathbb{A}_{R}=\left\{a: \lim _{d(\widetilde{a}, a) \rightarrow 0} Q(\widetilde{a})=Q(a)\right\}
$$

Proof: We have

$$
\int\left(\rho_{a}(x)-\rho_{\widetilde{a}}(x)\right)^{2} \mu_{0}(d x)=Q(a)+Q(\widetilde{a})-2 \int \rho_{a}\left(T_{\widetilde{a}} x\right) \mu_{0}(d x)
$$

Let $d(\widetilde{a}, a) \rightarrow 0$. Then,

$$
\lim _{d(\widetilde{a}, a) \rightarrow 0} \int \rho_{a}\left(T_{\widetilde{a}} x\right) \mu_{0}(d x)=\int \rho_{a}\left(T_{a} x\right) \mu_{0}(d x)=Q(a)
$$

Therefore,

$$
\begin{equation*}
\lim _{d(\widetilde{a}, a) \rightarrow 0} \int\left(\rho_{a}(x)-\rho_{\widetilde{a}}(x)\right)^{2} \mu_{0}(d x)=\lim _{d(\widetilde{a}, a)} \sup (Q(\widetilde{a})-Q(a)) . \tag{16}
\end{equation*}
$$

Introduce the sequence

$$
\begin{equation*}
a_{n}(s, x)=E a\left(s, \frac{1}{n} w(\cdot)+f_{n}(x, \cdot)\right), \quad x \in C, \tag{17}
\end{equation*}
$$

where $w(t)$ is a Wiener process,

$$
f_{n}(x, s)=n \int_{0 \vee s-\frac{1}{n}}^{s} x_{u} d u .
$$

It is easy to verify that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(a_{n}, a\right)=0 \text { if } a \in \mathbb{A} . \tag{18}
\end{equation*}
$$

a_{n} can be rewritten in the form

$$
\begin{equation*}
a_{n}(s, x)=E a\left(s, \frac{1}{n} w(\cdot)\right) \exp \left\{\int_{0}^{1} g_{n}(x, u) d w(u)-\frac{1}{2} \int_{0}^{1} g_{n}^{2}(x, u) d u\right\} \tag{19}
\end{equation*}
$$

where

$$
g_{n}(x, u)=n^{2}\left(x(u)-x\left(0 \vee u-\frac{1}{n}\right)\right) .
$$

(18) implies that there exists a constant ℓ_{n} for which

$$
\begin{equation*}
\left|a_{n}(s, x)-a_{n}(s, \tilde{x})\right| \leq \ell_{n}\|x-\tilde{x}\|_{c}, x, \tilde{x} \in C . \tag{20}
\end{equation*}
$$

Therefore, $T_{a_{n}} \in \mathbb{T}_{R}$. Let $\lim _{\widetilde{a} \rightarrow a} Q(\widetilde{a})-Q(a)$, then (16), (18) and theorem 3 imply that $a \in \mathbb{A}_{R}$.
Now we consider the space $L_{2}\left(\mu_{0}\right)$ of functions f for which $\int f^{2}(x) \mu_{0}(d x)<\infty$. It is a separable Hilbert space. Let $\left\{\varphi_{k}, k=1,2, \ldots\right\}$ be an orthonormal base in $L_{2}\left(\mu_{0}\right)$. Then,

$$
Q(a)=\sum_{k} q_{k}^{2}(a)
$$

where for all k,

$$
q_{k}(a)=\int \rho_{a}(x) \varphi_{k}(x) \mu_{0}(d x)=\int \varphi_{k}\left(T_{a} x\right) \mu_{0}(d x)
$$

are continuous functions. Therefore,

$$
\liminf _{d(\widetilde{a}, a) \rightarrow 0} Q(\widetilde{a}) \geq Q(a)
$$

If

$$
Q(a)<\lim _{n \rightarrow \infty} Q\left(a_{n}\right)=\lim _{n \rightarrow \infty} \int \rho_{a_{n}}\left(T_{a_{n}} x\right) \mu_{0}(d x)
$$

$$
=\lim _{n \rightarrow \infty} \int e^{-1}\left(a-a_{n}, x\right) \mu_{0}(d x)=\int e^{-1}(-a, x) \mu_{0}(d x)
$$

then, $\int\left(\rho_{a}\left(T_{a} x\right)-e^{-1}(-a, x)\right) \mu_{0}(d x)<0$, and $a \in A \backslash A_{R}$ because of theorem 2.
Corollary: Let $\lambda(t): R_{+} \rightarrow R_{+}$be a decreasing continuous function for which $\lim _{t \rightarrow+\infty} \lambda(t)=0$. Denote

$$
\mathbb{A}^{\lambda}=\left\{a \in \mathbb{A}: \int_{0}^{1} a^{2}(s, x) d s \leq r \lambda(r) \text { for } x \in U_{r}\right\}
$$

is of second Baire's category.
This follows from the properties of the set of points of continuity of a half-continuous function (see for example [5], p. 57).

5. Consequences for Stochastic Differential Equations

We recall that $y(t)$ is a weak solution of equation (6) if the stochastic process

$$
z(t)=y(t)-\int_{0}^{t} a(s, y(\cdot)) d s
$$

is a Wiener process. Note that the measure μ_{z} corresponding to the process z is determined by the measure m_{y} which corresponds to y. It is natural to call a weak solution of equation (6) a measure μ for which $\mu T_{-a}^{-1}=\mu_{0}$.

Theorem 5: Let $S^{a}=\left\{\mu: \mu T_{-a}^{-1}=\mu_{0}\right\}$. Then,

1) $\quad S^{a}$ is a convex weakly closed set in $M(C)$, where $M(C)$ is the set of all probability measures on C_{1}.
2) $\quad a \in \mathbb{A}_{R}$ if and only if $S^{a}=\left\{\mu^{a}\right\}$, where μ^{a} is the measure for which

$$
\frac{d \mu^{a}}{d \mu_{0}}(x)=e(a, x)
$$

Proof: Girsanov's theorem implies that $\mu^{a} \in S^{a}$ for all $a \in A$. Let $-a \in \mathbb{A} \backslash \mathbb{A}_{R}$. Then for a bounded C_{1}-measurable function $f: C \rightarrow \mathbb{R}$ we have that

$$
\begin{gathered}
\int f(x) \mu_{0}\left(d x=\int e(a, x) f\left(T_{-a} x\right) \mu_{0}(d x)\right. \\
=\int E_{\mu_{0}}\left(c(a, x) / \sigma\left(T_{-a} x_{s}, s \leq 1\right)\right) \cdot f\left(T_{-a} x\right) \mu(d x)
\end{gathered}
$$

Therefore, the measure $\widehat{\mu}$, which is determined by the relation

$$
\frac{d \widehat{\mu}}{d \mu_{0}}(x)=E_{\mu_{0}}\left(e(a, x) / \sigma\left(T_{-a} x_{s}, s \leq 1\right)\right)
$$

belongs to S^{a} since

$$
\int f(x) \mu_{0}(d x)=\int f\left(T_{-a} x\right) \widehat{\mu}(d x)
$$

It may be shown that the equality $\hat{\mu}=\mu^{a}$ implies the measurability of $e_{t}(a, x)$ with respect to the σ-algebra $\sigma\left(\left(T_{-a} x\right)_{s}, s \leq t\right)$ and invertibility of T_{-a}. Thus, $\widehat{\mu}$ and μ^{a} are two distinct points of S^{a}.
$y(t)$ is a strong solution of equation (6) if $y(t)$ is $\sigma(w(s), s \leq t)$-measurable for all $t \in[0,1]$.
Theorem 6: 1) Let $y(t)$ be a strong solution of equation (6). Then, $T_{-a} \in \mathbb{T}_{R}, y(t)=$ $\left(T_{-a}^{-1} w\right)_{t}$ and $y(t)$ is the unique solution of equation (6).
2) Equation (6) has no strong solution if $a \in \mathbb{A} \backslash \mathbb{A}_{R}$.

Proof: 1) $y(t)$ may be represented in the form: $y(t)=Y(t, w(\cdot))$, where $Y(t, x)$ is $\mathscr{B}_{[0,1]} \otimes \mathrm{C}_{1}$-measurable function and, for a fixed $t \in[0,1]$, it is C_{t}-measurable. Therefore,

$$
\begin{equation*}
y(t)=w(t)+\int_{0}^{t} a(s, Y(\cdot, w(\cdot)) d s \tag{21}
\end{equation*}
$$

Set

$$
b(s, x)=a(s, Y(\cdot, x)) .
$$

It follows from (21) and (6) that

$$
y(t)=\left(T_{b} w\right)_{t} \text { and }\left(T_{-a} T_{b} w\right)_{t}=w(t)
$$

Hence,

$$
T_{-a} \in \mathbb{T}_{R}, T_{b}=T_{-a}^{-1}, \text { and } y(t)=\left(T_{-a}^{-1} w\right)_{t}
$$

This is true for any solution of (6). Therefore, $y(t)$ is unique.
2) follows from 1).

Corollary: Equation (6) has a strong solution and then it is unique if and only if this equation has a unique weak solution.

References

[1] Girsanov, I.V., On transformation of a certain class of stochastic processes by an absolutely continuous substitution of a measure, Theory of Probability and its Applications 5 (1960), 285-301.
[2] Ershov, M.P., On absolute continuity of measures corresponding to diffusion processes, Theory of Probability and its Applications 17 (1972), 169-174.
[3] Liptser, R. Sh., Shiryaev, A.N., On absolute continuity of measures associated with diffusion processes with respect to a Wiener measure, Izv. Acad. Nauk SSR, Ser. Mat. 36:4 (1972), 874-889.
[4] Novikov, A.A., On an identity for stochastic integrals, Theory of Probability and its Applications 17 (1972), 718-720.
[5] Bredon, G.E., Topology and Geometry, Springer-Verlag, Berlin 1993.

