ON TRANSFORMATIONS OF WIENER SPACE

ANATOLI V. SKOROKHOD

Ukranian Academy of Science Institute of Mathematics Kiev, UKRAINE and Michigan State University Department of Mathematics

East Lansing, MI 48824 USA

(Received February, 1994; revised April, 1994)

ABSTRACT

We consider transformations of the form

$$(T_a x)_t = x_t + \int_0^t a(s, x) ds$$

on the space C of all continuous functions $x = x_t: [0,1] \to \mathbb{R}$, $x_0 = 0$, where a(s,x) is a measurable function $[0,1] \times C \to \mathbb{R}$ which is $\widetilde{\mathbb{C}}_s$ -measurable for a fixed s and $\widetilde{\mathbb{C}}_s$ is the σ -algebra generated by $\{x_u, u \leq t\}$. It is supposed that T_a maps the Wiener measure μ_0 on $(C, \widetilde{\mathbb{C}}_1)$ into a measure μ_a which is equivalent with respect to μ_0 . We study some conditions of invertibility of such transformations. We also consider stochastic differential equations of the form

$$dy(t) = dw(t) + a(t, y(t))dt, y(0) = 0$$

where w(t) is a Wiener process. We prove that this equation has a unique strong solution if and only if it has a unique weak solution.

Key words: Wiener Space, Invertible Transformation, Girsanov's Theorem, Sets of the Second Category, Stochastic Differential Equation, Weak and Strong Solutions of Stochastic Differential Equations.

AMS (MOS) subject classifications: 60G99, 60H99, 60H10.

1. Introduction

Denote by C the space of continuous functions $x = x_t:[0,1] \to \mathbb{R}$ for which $x_0 = 0$ and by $\widetilde{\mathbb{C}}_t$, $t \in [0,1]$ the σ -algebra of subsets C which is generated by subsets $\{x \in C: x_s < \lambda\}, \lambda \in \mathbb{R}, s \leq t$. Let μ_0 be a Wiener measure and C_t be the completion of $\widetilde{\mathbb{C}}_t$ with respect to the measure μ_0 . Note that the measurable space with the measure $\{C, \widetilde{\mathbb{C}}_1, \mu_0\}$ is called the Wiener space. We consider transformations $T_a: C \to C$ of the form

$$T_{a}(x)_{t} = x_{t} + \int_{0}^{t} a(s, x)ds, \qquad (1)$$

Printed in the U.S.A. ©1994 by North Atlantic Science Publishing Company

where the function $a: [0,1] \times C \rightarrow R$ satisfies condition

A1)
$$a \text{ is } \mathfrak{B}_{[0,1]} \otimes \widetilde{\mathbb{C}}_1$$
-measurable, where $\mathfrak{B}_{[0,1]}$ is the Borel σ -algebra on $[0,1]$, and $a(s,x)$ is $\widetilde{\mathbb{C}}_s$ -measurable for a fixed $s \in [0,1]$.

Such transformations were considered by R. Sh. Liptser and A.N. Shiryaev [3] and M.P. Ershov [2]. They established conditions under which the image μ_a of the measure μ_0 under transformation T_a is an equivalent measure with respect to measure μ_0 . If this is true then there exists a function c(s, x) which satisfies condition A1) and

$$\frac{d\mu_a}{d\mu_0}(x) = e(c,x) = exp\left\{\int_0^1 c(s,x)dx(s) - \frac{1}{2}\int_0^1 c^2(s,x)ds\right\}$$
(2)

with

$$\int e(c,x)\mu_0(dx) = 1 \tag{3}$$

(the integral with respect to dx(s) is Ito's integral). A.A. Novikov proved in [4] that the condition

$$\int e^{\frac{1}{2}\int_{0}^{1}c^{2}(s,x)ds}\mu_{0}(dx) < \infty$$
(4)

implies (3).

We consider the set A of functions $a(s,x):[0,1] \times C \rightarrow R$ which satisfy condition A1) and condition

A2)
$$\lim_{r \to \infty} r^{-1} sup \left\{ \int_0^1 a^2(s, x) ds; x \in U_r \right\} = 0, \text{ where } U_r = \left\{ x \in C \colon \int_0^1 x_s^2 ds \le r \right\}.$$

Note that if $a \in \mathbb{A}$ then $\int (e(a,x))^k \mu_0(dx) < \infty$ for all integer numbers k, which is a consequence of Novikov's results.

Denote $\mathbb{T} = \{T_a, a \in \mathbb{A}\}$. Note that \mathbb{T} is a semigroup with respect to the product

$$(T_{a} \cdot T_{b})x_{s} = x_{s} + \int_{0}^{s} b(u, x)du + \int_{0}^{s} a(u, T_{b}x)du.$$
(5)

Obviously, T_a is an invertible transformation if there exists a function $c \in \mathbb{T}$ for which $T_a T_c x = x$ (μ_0 -a.s.). Then, $T_c T_a x = x$ (μ_0 -a.s.), and we call T_c the *inverse transformation* and denote it T_a^{-1} .

Remark: Below we consider all relations with x as valid $(\mu_0 a.s.)$.

We denote by \mathbb{T}_R the set of all invertible transformations T_a and by \mathbb{A}_R the subset of those $a \in \mathbb{A}$ for which $T_a \in \mathbb{T}_R$.

The main goal of this article is to formalize the set \mathbb{T}_R . Besides, we consider the stochastic differential equation

$$dy(t) = w(t) + a(t, y(\cdot))dt; \quad t \in [0, 1], \ y(0) = 0, \tag{6}$$

where w(t) is a Wiener process, $a \in \mathbb{A}$, and describe its weak and strong solutions.

2. Representations of Densities

Denote $\rho_a(x) = \frac{d\mu_a}{d\mu_0}(x)$. We consider $\{C, \mathbb{C}_1, \mu_0\}$ as a probability space and denote by E_{μ_0} and $E_{\mu_0}(\cdot | \cdot)$, respectively, the expectation and the conditional expectation on this space. For $a \in \mathbb{A}$ we define the function $\overline{a}(t, x)$ by the relation

$$\overline{a}(t, T_a x) = E_{\mu_0}(a(t, x) / \sigma(T_a x_s, s \le t).$$
(7)

Here $\sigma(T_a x_s, s \leq t)$ is the σ -algebra induced by $\{T_a x_s, s \leq t\}$. It is easy to verify that we can choose \overline{a} in such a way that $\overline{a} \in A$.

Theorem 1: The following equation holds true:

$$\rho_a(x) = e(\overline{a}, x). \tag{8}$$

Proof: The stochastic process

$$z(t) = x_t + \int_0^t (a(s,x) - \overline{a}(s,T_ax)) ds$$

on the probability space $\{C, \mathbb{C}_1, \mu_0\}$ is a martingale with respect to the filtration $\{\sigma(T_a x_s, s \leq t), t \in [0, 1]\}$ because

$$z(t) = (T_a x)_t - \int_0^t \overline{a} (s, T_a x) ds.$$
(9)

It is easy to verify that $\langle z, z \rangle_t = t$, so, z(t) is a Wiener process. Girsanov's theorem (see [1]) and relation (9) imply that the process $(T_a x)_t$ is a Wiener process on the probability space $\{C, C_1, \overline{\mu}\}$, where

$$\frac{d\overline{\mu}}{d\mu_0} = exp\left\{-\int_0^1 \overline{a}\,(s,T_ax)dx_s - \frac{1}{2}\int_0^1 \overline{a}^2(s,T_ax)ds\right\}.$$

Therefore, for bounded \mathbb{C}_1 -measurable functions $f(x): C \to R$, we have that

$$\begin{split} &\int f(x)\mu_0(dx) = \int f(T_a x)\overline{\mu}\,(dx) \\ &= \int f(T_a x)exp \Bigg\{ -\int_0^1 \overline{a}\,(s,T_a x)dT_a x_s + \frac{1}{2}\int_0^1 \overline{a}^2(s,T_a x)ds \Bigg\} \mu_0(dx) \\ &= \int f(x)e^{-1}(\overline{a}\,,x)\rho_a(x)\mu_0(dx). \end{split}$$

Due to the relation

$$\int f(T_a x) \mu_0(dx) = \int f(x) \mu_a(dx) = \int f(x) \rho_a(x) \mu_0(dx),$$

we have that

$$e^{-1}(\bar{a}, x)\rho_a(x) = 1$$
 (μ_0 -a.s.).

Remark: Denote by μ_a^t the restriction of measure μ_a on the σ -algebra C_t and by

$$\rho_{a}^{t}(x) = \frac{d\mu_{a}^{t}}{d\mu_{0}^{t}}(x).$$
(10)

Let

$$e_t(c,x) = exp\left\{\int_0^t c(s,x)dx(s) - \frac{1}{2}\int_0^t c^2(s,x)ds\right\}.$$
 (11)

Then

$$\rho_a^t(x) = e_t(\bar{a}, x). \tag{12}$$

This relation can be proved in the same way as relation (8).

3. The Conditions of Invertibility of T_a

Theorem 2: The statements

 $\begin{array}{ll} (i) & a(t,x) \text{ is } \sigma(T_a x_s,s\leq t)\text{-measurable for } t\in[0,1].\\ (ii) & T_a\in\mathbb{T}_R, \text{ and}\\ (iii) & \rho_a^t(T_a x)=e_t^{-1}(-a,x), \ t\in[0,1]\\ are \ equivalent. \end{array}$

Proof: (ii) \Rightarrow (i), since $a(t,x) = a(t,T_a^{-1}(T_ax))$. (i) implies that $-a(t,x) = \tilde{a}(t,T_ax)$ and

$$(T_{\widetilde{a}} T_a x)_t = x_t + \int_0^t a(s, x) ds + \int_0^t \widetilde{a} (s, T_a x) ds = x_t.$$

Thus, (ii) is true. (ii) implies that $\overline{a}(t,x) = a(t,T_a^{-1}x)$ and (iii) is a consequence of formula (12). Suppose (iii) is true, then the martingale $e_t(-a,x)$ is $\sigma(T_ax_s,s \leq t)$ -measurable.

Using the representation

$$e_t(-a,x) = 1 - \int_0^t e_s(-a,x)a(s,x)dx_s$$

we can establish $\sigma(T_a x_s, s \leq t)$ -measurability of a(t, x). Therefore, $(iii) \Rightarrow (i)$.

Theorem 3: Let $a_n \in n = 1, 2, ... A$, $a \in A$ and let the following conditions be satisfied:

1)
$$a_n \in \mathbb{A}_R, n = 1, 2, \ldots;$$

2)
$$T_{a_n} x \rightarrow T_a x \text{ in } C(\mu_0 \text{-} a.s.);$$

3)
$$\lim_{n \to \infty} \int |e_t^{-1}(-a_n, x) - e_t^{-1}(-a, x)| \mu_0(dx) = 0, \ t \in [0, 1];$$

and

4)
$$\lim_{n \to \infty} \int (\rho_{a_n}(x) - \rho_a(x))^2 \mu_0(dx).$$

Then $a \in \mathbb{A}_{B}$.

Proof: Condition 2) implies the relation

$$\lim_{n \to \infty} \int |\phi(T_{a_n} x) - \phi(T_a x)| \mu_0(dx) = 0$$

for all bounded continuous functions $\phi: C \to \mathbb{R}$. Using approximations of $\rho_a(x)$ by bounded continuous functions in $L_1(\mu_0)$ we can prove that

$$\lim_{n \to \infty} \int |\rho_a(T_{a_n} x) - \rho_a(T_a x)| \, \mu_0(dx). \tag{13}$$

Since

$$\lim_{n \to \infty} \int |\rho_a(T_{a_n}x) - \rho_{a_n}(T_{a_n}x)| \mu_0(dx)$$
$$= \lim_{n \to \infty} \int |\rho_a(x) - \rho_{a_n}(x)| \mu_0(dx) = 0$$

because of condition 4), we have that

$$\lim_{n \to \infty} \int |\rho_{a_{n}}(T_{a_{n}}x) - \rho_{a}(T_{a}x)| \mu_{0}(dx) = 0.$$
(14)

Besides, conditions 2) and 3) and theorem 2 imply the relation

$$\lim_{n \to \infty} \int |\rho_{a_n}(T_{a_n}x) - e^{-1}(-a, x)| \, \mu_0(dx) = 0.$$
(15)

It follows from (14) and (15) that $e^{-1}(-a,x) = \rho_a(T_a x)$. In the same way, we prove that statement (*iii*) of theorem 2 holds true for all $t \in [0,1]$.

4. Topological Properties of A_R

We introduce the distance in A:

$$\begin{aligned} d(a_1, a_2) &= \int \|a_1(\cdot, x) - a_2(\cdot, x)\|_c \ \mu_0(dx) \\ &+ \left(\int (e^{-1}(-a_1, x) - e^{-1}(-a_2, x))^2 \mu_0(dx)\right)^{1/2}, \end{aligned}$$

where $||x||_{c} = \sup_{t \in [0,1]} |x_{t}|.$

Theorem 4: Denote by

$$Q(a) = \int \rho_a^2(x) \mu_0(dx).$$

Then

$$\mathbb{A}_R = \Big\{ a: \lim_{d (\widetilde{a}, a) \to 0} Q(\widetilde{a}) = Q(a) \Big\}.$$

Proof: We have

$$\int \left(\rho_a(x) - \rho_{\widetilde{a}}(x)\right)^2 \mu_0(dx) = Q(a) + Q(\widetilde{a}) - 2 \int \rho_a(T_{\widetilde{a}} x) \mu_0(dx).$$

Let $d(\tilde{a}, a) \rightarrow 0$. Then,

$$\lim_{d(\widetilde{a},a)\to 0} \int \rho_a(T_{\widetilde{a}}x)\mu_0(dx) = \int \rho_a(T_ax)\mu_0(dx) = Q(a).$$

Therefore,

$$\limsup_{d(\widetilde{a}, a) \to 0} \int (\rho_a(x) - \rho_{\widetilde{a}}(x))^2 \mu_0(dx) = \limsup_{d(\widetilde{a}, a)} (Q(\widetilde{a}) - Q(a)).$$
(16)

Introduce the sequence

$$a_n(s,x) = Ea(s, \frac{1}{n}w(\cdot) + f_n(x, \cdot)), \quad x \in C,$$
(17)

where w(t) is a Wiener process,

$$f_n(x,s) = n \int_{0 \lor s - \frac{1}{n}}^{s} x_u du$$

It is easy to verify that

$$\lim_{n \to \infty} d(a_n, a) = 0 \text{ if } a \in \mathbb{A}.$$
(18)

 a_n can be rewritten in the form

$$a_{n}(s,x) = Ea(s,\frac{1}{n}w(\cdot))exp\left\{\int_{0}^{1}g_{n}(x,u)dw(u) - \frac{1}{2}\int_{0}^{1}g_{n}^{2}(x,u)du\right\},$$
(19)

where

$$g_n(x,u) = n^2(x(u) - x(0 \lor u - \frac{1}{n})).$$

(18) implies that there exists a constant ℓ_n for which

$$|a_{n}(s,x) - a_{n}(s,\widetilde{x})| \leq \ell_{n} ||x - \widetilde{x}||_{c}, x, \widetilde{x} \in C.$$

$$(20)$$

Therefore, $T_{a_n} \in \mathbb{T}_R$. Let $\lim_{\widetilde{a} \to a} Q(\widetilde{a}) - Q(a)$, then (16), (18) and theorem 3 imply that $a \in \mathbb{A}_R$.

Now we consider the space $L_2(\mu_0)$ of functions f for which $\int f^2(x)\mu_0(dx) < \infty$. It is a separable Hilbert space. Let $\{\varphi_k, k = 1, 2, \ldots\}$ be an orthonormal base in $L_2(\mu_0)$. Then,

$$Q(a) = \sum_{k} q_k^2(a),$$

where for all k,

$$q_k(a) = \int \rho_a(x) \varphi_k(x) \mu_0(dx) = \int \varphi_k(T_a x) \mu_0(dx)$$

are continuous functions. Therefore,

$$\liminf_{d(\widetilde{a},a)\to 0} Q(\widetilde{a}) \ge Q(a).$$

If

$$Q(a) < \lim_{n \to \infty} Q(a_n) = \lim_{n \to \infty} \int \rho_{a_n}(T_{a_n} x) \mu_0(dx)$$

$$=\lim_{n \to \infty} \int e^{-1}(a - a_n, x) \mu_0(dx) = \int e^{-1}(-a, x) \mu_0(dx)$$

then, $\int (\rho_a(T_a x) - e^{-1}(-a, x))\mu_0(dx) < 0$, and $a \in \mathbb{A}\setminus\mathbb{A}_R$ because of theorem 2.

Corollary: Let $\lambda(t): R_+ \to R_+$ be a decreasing continuous function for which $\lim_{t \to +\infty} \lambda(t) = 0$. Denote

$$\mathbb{A}^{\lambda} = \left\{ a \in \mathbb{A} : \int_{0}^{1} a^{2}(s, x) ds \leq r\lambda(r) \text{ for } x \in U_{r} \right\}.$$

is of second Baire's category.

This follows from the properties of the set of points of continuity of a half-continuous function (see for example [5], p. 57).

5. Consequences for Stochastic Differential Equations

We recall that y(t) is a weak solution of equation (6) if the stochastic process

$$z(t) = y(t) - \int_0^t a(s, y(\,\cdot\,)) ds$$

is a Wiener process. Note that the measure μ_z corresponding to the process z is determined by the measure m_y which corresponds to y. It is natural to call a weak solution of equation (6) a measure μ for which $\mu T \stackrel{-1}{_a} = \mu_0$.

- **Theorem 5:** Let $S^a = \{\mu: \mu T \stackrel{-}{_a} = \mu_0\}$. Then, 1) S^a is a convex weakly closed set in M(C), where M(C) is the set of all probability measures on C_1 .
 - $a \in \mathbb{A}_R$ if and only if $S^a = \{\mu^a\}$, where μ^a is the measure for which 2)

$$\frac{d\mu^a}{d\mu_0}(x) = e(a,x)$$

Proof: Girsanov's theorem implies that $\mu^a \in S^a$ for all $a \in A$. Let $-a \in A \setminus A_R$. Then for a bounded \mathbb{C}_1 -measurable function $f: C \to \mathbb{R}$ we have that

$$\int f(x)\mu_0(dx) = \int e(a,x)f(T_{-a}x)\mu_0(dx)$$
$$= \int E_{\mu_0}(e(a,x)/\sigma(T_{-a}x_s,s\leq 1)) \cdot f(T_{-a}x)\mu(dx).$$

Therefore, the measure $\hat{\mu}$, which is determined by the relation

$$\frac{d\widehat{\mu}}{d\mu_0}(x) = E_{\mu_0}(e(a,x)/\sigma(T_{-a}x_s,s\leq 1)),$$

belongs to S^a since

$$\int f(x)\mu_0(dx) = \int f(T_{-a}x)\widehat{\mu}(dx).$$

It may be shown that the equality $\hat{\mu} = \mu^a$ implies the measurability of $e_t(a, x)$ with respect to the σ -algebra $\sigma((T_{a}x)_{s}, s \leq t)$ and invertibility of T_{a} . Thus, $\hat{\mu}$ and μ^{a} are two distinct points of S^a .

y(t) is a strong solution of equation (6) if y(t) is $\sigma(w(s), s \leq t)$ -measurable for all $t \in [0, 1]$.

Theorem 6: 1) Let y(t) be a strong solution of equation (6). Then, $T_{-a} \in \mathbb{T}_R$, $y(t) = (T_{-a}^{-1}w)_t$ and y(t) is the unique solution of equation (6).

2) Equation (6) has no strong solution if $a \in \mathbb{A} \setminus \mathbb{A}_R$.

Proof: 1) y(t) may be represented in the form: $y(t) = Y(t, w(\cdot))$, where Y(t, x) is $\mathfrak{B}_{[0,1]} \otimes \mathfrak{C}_1$ -measurable function and, for a fixed $t \in [0,1]$, it is \mathfrak{C}_t -measurable. Therefore,

$$y(t) = w(t) + \int_{0}^{t} a(s, Y(\cdot, w(\cdot))) ds.$$
(21)

Set

$$b(s,x) = a(s,Y(\cdot,x))$$

It follows from (21) and (6) that

$$y(t) = (T_b w)_t$$
 and $(T_{-a} T_b w)_t = w(t)$.

Hence,

$$T_{-a} \in \mathbb{T}_R, \ T_b = T_{-a}^{-1}, \ \text{and} \ y(t) = (T_{-a}^{-1}w)_t.$$

This is true for any solution of (6). Therefore, y(t) is unique.

2) follows from 1).

Corollary: Equation (6) has a strong solution and then it is unique if and only if this equation has a unique weak solution.

References

- [1] Girsanov, I.V., On transformation of a certain class of stochastic processes by an absolutely continuous substitution of a measure, *Theory of Probability and its Applications* 5 (1960), 285-301.
- [2] Ershov, M.P., On absolute continuity of measures corresponding to diffusion processes, Theory of Probability and its Applications 17 (1972), 169-174.
- [3] Liptser, R. Sh., Shiryaev, A.N., On absolute continuity of measures associated with diffusion processes with respect to a Wiener measure, *Izv. Acad. Nauk SSR, Ser. Mat.* 36:4 (1972), 874-889.
- [4] Novikov, A.A., On an identity for stochastic integrals, Theory of Probability and its Applications 17 (1972), 718-720.
- [5] Bredon, G.E., Topology and Geometry, Springer-Verlag, Berlin 1993.