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ABSTRACT

We consider transformations of the form

(TaX)t x + /a(s,x)ds
0

on the space C of all continuous functions x- xt’[0, 1]--*R x0 -0, where a(s,x)
is a measurable function [0, 1] x CR which is Cs-measurable for a fixed s and (2s
is the or-algebra generated,, by {xu, u < t}. It is supposed that Ta maps the
Wiener measure /to on (C, (21) into a measure/ta which is equivalent with respect
to /to" We study some conditions of invertibility of such transformations. We
also consider stochastic differential equations of the form

dy(t) dw(t) + a(t, y(t))dt, y(O) 0

where w(t) is a Wiener process. We prove that this equation has a unique strong
solution if and only if it has a unique weak solution.

Key words: Wiener Space, Invertible Transformation, Girsanov’s Theorem,
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1. Introduction

Denote by C the space of continuous functions x- xt:[0, 1] for which x0 -0 and by (2t,
E [0, 1] the a-algebra of subsets C which is generated by subsets {x E C’xs < $}, $ G R, s < t.

Let g0 be a Wiener measure and C be the completion of (2 with respect to the measure #0" Note
that the measurable space with the measure {C,(21,/t0} is called the Wiener space. We consider
transformations Ta" C C of the form

Ta(X)t- x + /a(s,x)ds, (1)
0
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where the function a: [0, 1] x C--R satisfies condition

A1) a is,.., %[0t 1]@j {2 1-measurable, where ? is the Borel r-algebra on [0 1] and a(s,x)
is t2s-measurable for a fixed s E [0, 1

[0,1]

Such transformations were considered by R. Sh. Liptser and A.N. Shiryaev [3] and M.P.
Ershov [2]. They established conditions under which the image #a of the measure tt0 under trans-
formation Ta is an equivalent measure with respect to measure #0" If this is true then there
exists a function c(s,z) which satisfies condition A1) and

}(x) e(c, x) exp c(s,x)dx(s)-1/2 c2(s,x)ds (2)
0 0

with

e(c,z)tto(dz 1 (3)

(the integral with respect to dx(s)is Ito’s integral). A.A. Novikov proved in [4] that the
condition

1
1

c2f (s,)ds
o ,o(dx) < oc (4)

implies (3).
We consider the set / of functions a(s,x):[O, 1]CR Which satisfy condition al) and

condition

{ } { 1

A2) lira r-lsup a2(s,x)ds;x G U 0, where Ur x C" f x2sds < r
r--,o

0
r

0

Note that if a e/ then f(e(a,x))k#o(dx) < oc for all integer
consequence of Novikov’s results.

numbers k, which is a

Denote 31-- {Ta, a g }. Note that 31- is a semigroup with respect to the product
8 8

(Ta Tb)xs xs + / b(u, x)du + ./a(u, Tbx)du. (5)
0 0

Obviously, Ta is an invertible transformation if there exists a function c 3]- for which TaTcX x

(#o-a.s.). Then, TcTax x (#o-a.s.), and we call Tc the inverse transformation and denote it

Td-1.
Remark: Below we consider all relations with x as valid (#0-a.s.).
We denote by -l[R the set of all invcrtible transformations Ta and by // the subset of those

a E for which Ta -1.
The main goal of this article is to formalize the set YR" Besides, we consider the stochastic

differential equation

dy(t) w(t) + a(t, y( ))dr; t G [0, 1], y(0) 0, (6)

where w(t) is a Wiener process, a , and describe its weak and strong solutions.
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2. Representations of Densities

Denote pa(x)- dd-(x). We consider {C,1,#0} as a probability space and denote by Euo0
and EUo ), respectively, the expectation and the conditional expectation on this space. For
a E/ we define the function .5 (t,x) by the relation

.5 (t, Tax) Ego(a(t,x)/r(Taxs, s <_ t). (7)

Here g(TaXs, S <_ t) is the r-algebra induced by {Taxs, s <_ t}. It is easy to verify that we can
choose .5 in such a way that .5 E .

Theorem 1: The following equation holds true"

p,() (,,). (8)

Proof: The stochastic process

z(t) x + / (a(s,x)-.5(s, Tax))ds
o

on the probability space {C,1,#o} is a martingale with respect to the filtration {r(Taxs, S <_ t),
G [0, 1]} because

z(t) (Tax)t /-5 (s, Tax)ds. (9)
o

It is easy to verify that (z,z)t- t, so, z(t)is a Wiener process. Girsanov’s theorem (see [1]) and
relation (9) imply that the process (Tax)t is a Wiener process on the probability space {C, C, },
where

d p (, To)d- 1/2 (,T)dd#o
o

Therefore, for bounded el-measurable functions f(x)’C--R, we have that

f f(x)#o(dz ,/ f(Tz)(dx)

/ f(Tax)exp .5 (s, Tax)dTazs + 1/2 .52(s, Tax)ds Po(dx)
o o

/ f(x)e 1(.5 x)pa(X)#o(dx)"

Due to the relation

f(x)Pa(X)#o(dx),
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we have that

e- 1( ,X)pa(a: 1 (#o-a.s.).

Let

Then

Remark: Denote by #a the restriction of measure #a on the r-algebra t and by

#o

}et(c x) exp c(s, x)dx(s) c2(s, x)ds
0 0

This relation can be proved in the same way as relation (8).

(10)

(11)

(12)

3. The Conditions of Invertibility of Ta

Theorem 2: The statements
(i) a(t,x) is r(Taxs, s <_ t)-measurable for t e [0, 1].

(ii) Ta E TR, and
(iii) pta(Tax e[- 1( a, x), t E [0, 1]

are equivalent.

Proof: (ii)=>(i), since a(t,x) a(t,T l(Tax)). (i) implies that -a(t,x)- d (t, Tax and

0 0

Thus, (ii) is true. (ii) implies that (t,x)- a(t,T-lx) and (iii) is a consequence of formula
(12). Suppose (iii)is true, then the martingale et(- a,x)is r(Taxs, s <_ t)-measurable.

Using the representation

e,( a, x) 1 / %( a, x)a(s, x)dxs

0

we can establish r(TaXs, S <_ t)-measurability of a(t,x). Therefore, (iii)=>(i).

and

Theorem 3: Let an n- 1, 2,...f, a [ and let the following conditions be satisfied:
1) an lR, n-l,2,...;
2) Ta x-+Tax in C(#o-a.s.);

n

3) lizn f e- 1( _an, X)_e- 1(_a,x)]#o(dx) O, t G [0, 1];

4) nlirn f (Pan(X)- Pa(X))2#o(dx).

Then a lR.
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Proof: Condition 2) implies the relation

nlirn / (T"nx) (Tax) tto(dx 0

for all bounded continuous functions :C--N. Using approximations of pa(x) by bounded
continuous functions in L1(#0) we can prove that

nlirn / Pa(Tanx Pa(Tax) #o(dx). (13)

Since

nlirn / Pa(T’,x) pan(Tanx) #o(dx)

f
=nli+m J Pa(X)- pan(X) Po(dx 0

because of condition 4), we have that

nlim / ]Pan(Tanx) Pa(TaX) #o(dx) O. (14)

Besides, conditions 2) and 3) and theorem 2 imply the relation

nli+m j Pan(Tanx) e 1( a,x) #o(dx O. (15)

It follows from (14) and (15) that e-l(-a,x)-Pa(Tax). In the same way, we prove that
statement (iii) of theorem 2 holds true for all t

4. Topological Properties of

[0,1]

We introduce the distance in/:

d(al,a2) / ]1 al(’,x)- a2(. ,x) IIc #0(dx)

1/2

+( J (e-l(-al,x)-e-l(-a2, x))2#o(dx) )
Ix, lo

Theorem 4: Denote by

Q(a) / p2a(X)#o(dx ).

lira Q(’ Q(a)fR {a: d("g,a)-+O }"
Proof: We have

,/(Pa(X)- p,g (x))2#o(dx) O(a) + Q("5 )- 2 / pa(Tg X)#o(dx).
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Let d(,a)--,0. Then,

: Pa(T,,ff x)kto(dx / Pa(Tax)l.to(dx Q(a).lira
d(’ a)-,O

Therefore,

lim sup ] (Pa(X) p, (x))2#o(dx) lira sup (Q( Q(a)).
a( ,)-o d( ,)

(16)

Introduce the sequence

an(s,x Ea(s,w( + fn(x, )), x

_
C, (17)

where w(t) is a Wiener process,

It is easy to verify that

$

fn(,) --f xudu"
Ovs _1

lira d(an, a) 0 if a E f. (18)

an can be rewritten in the form

an(s,x Ea(s,w(. ))exp gn(x,u)dw(u) 1/2 xgn( ,u)du
0

where

(19)

gn(X, t) rt2(X(tt) x(O V t --)).
(18) implies that there exists a constant en for which

an(S, x) -an(S,’ )l < n II - II =,
, e c. (20)

Therefore, Ta lR. Let lim Q("ff)-Q(a), then (16), (18) and theorem 3 imply that a
n --ca

Now we consider the space L2(tto) of functions f for which f f2(x)#o(dx < oc.

separable Hilbert space. Let {k,k- 1,2,...} be an orthonormal base in L2(Po). Then,
It is a

where for all k,

Q(a)- 2qk(a),
k

qk(a) J Pa(X)k(X)#o(dx) / k(Tax)#o(dx)

are continuous functions. Therefore,

lira inf QCd >_ Q(a).
(, .)--o

If

Q(a) <diznQ(a,) --dm / p,(T,Z)Po(dx
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/--n--,cxlim e- l(a an, x)Uo(dx e- 1( a,x)Uo(dx)

then, f (Pa(Tax) e- 1( a, x))Uo(dx < O, and a E f\fR because of theorem 2.

Corollary:
Denote

Let $(t):R+---R+ be a decreasing continuous function for which lira ,(t)- O.

}f) acid: a2(s,x)ds <_ r(r) for x e Ur

o

is of second Baire’s category.

This follows from the properties of the set of points of continuity of a half-continuous
function (see for example [5], p. 57).

5. Consequences for Stochastic Differential Equations

We recall that y(t) is a weak solution of equation (6) if the stochastic process

z(t) y(t)-- /a(s,y(. ))ds
0

is a Wiener process. Note that the measure Uz corresponding to the process z is determined by
the measure rny which corresponds to y. It is natural to call a weak solution of equation (6) a
measure # for which #T- 1

a UO"
-1Theorem5: Letsa-{U: #T a-#O}" Then,

1) Sa is a convex weakly closed set in M(C), where M(C) is the set of all probability
measures on e1.

2) a G lR if and only if Sa {ua}, where U
a iS the measure for which

d,(.)_
duo

Proofi Girsanov’s theorem implies that U
a Sa for all a G f. Let -a E/\/R"

bounded Ca-measurable function f: C--R we have that

/ f(x)Uo(dx j e(a,x)f(T_ax)Uo(dx)

Then for a

/ E,o(C(a,x)/cr(T_axs, s < 1)). f(T_ax)U(dx).

Therefore, the measure fi, which is determined by the relation

dfi (x) E,,o(e(a,x)/cr(T aXs, S < 1)),duo
belongs to Sa since

] f(x)uo(dx)- f f(T-ax)fi(dx)"

It may be shown that the equality fi- U
a implies the measurability of et(a,x with respect to the

(r-algebra cr((T_x)s,s < t) and invertibility of T_. Thus, fi and U
a are two distinct points of
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y(t) is a strong solution of equation (6) if y(t) is a(w(s),s < t)-measurable for all t E [0, 1].
Theorem ti: 1) Let y(t) be a strong solution of equation (6). Then, T_ a ]R, y(t)-

(T-law)t and y(t) is the unique solution of equation (6).

2) Eq.a io. (6) .o  ot. ion iI a

Proof: 1) y(t) may be represented in the form" y(t)-Y(t,w(.)), where Y(t,x)is
[0,1] (R) 1-measurable function and, for a fixed t [0, 1], it is Et-measurable. Therefore,

y(t) w(t)+ /a(s,Y(.,w(. ))ds. (21)
0

Set

b(s, x) a(s, Y( x)).

It follows from (21) and (6) that

y(t) (TbW)t and (T_ aTbW)t w(t).

Hence,
T -R, Tb T- 1 and y(t) (T- aw)tla a,

This is true for any solution of (6). Therefore, y(t)is unique.

2) follows from 1).
Corollary: Equation (6) has a strong solution and then it is unique if and only if this

equation has a unique weak solution.
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