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ABSTRACT

We consider transformations of the form
t

(Tazx), =z, + /a(s, z)ds

0
on the space C of all continuous functions z = z,:[0,1]-R, z, = 0, where a(s,z)

is a measurable function [0,1]x C—R which is 8s—measura.ble for a fixed s and Es
is the o-algebra generated by {z,,u<t}. It is supposed that T, maps the
Wiener measure p, on (C,C,) into a measure p, which is equivalent with respect
to py. We study some conditions of invertibility of such transformations. We
also consider stochastic differential equations of the form

dy(t) = dw(t) +a(t,y(t))dt, y(0) =10
where w(t) is a Wiener process. We prove that this equation has a unique strong

solution if and only if it has a unique weak solution.
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1. Introduction

Denote by C the space of continuous functions z = z,:[0,1]—=R for which z, =0 and by C,,
t €[0,1] the o-algebra of subsets C' which is generated by subsets {z € C:z, <A}, AE R, s <.
Let pq be a Wiener measure and C; be the completion of C with respect to the measure ;. Note
that the measura.ble space with the measure {C, Cl,uo} is called the Wiener space. We consider
transformations 7' ;: C' — C' of the form

t
T (x), =z, + /a(s,m)ds, (1)
0
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where the function a:[0,1] x C'—R satisfies condition

Al) ais (EB[O 1 ®¢ j-measurable, where ‘fB[O 1] is the Borel o-algebra on [0, 1], and a(s,z)
is C,-measurable for a fixed s € [0,1].

Such transformations were considered by R. Sh. Liptser and A.N. Shiryaev [3] and M.P.
Ershov [2]. They established conditions under which the image p, of the measure p under trans-
formation T, is an equivalent measure with respect to measure pg. If this is true then there
exists a function ¢(s,z) which satisfies condition A1) and

1 1
ditg —e(c,z) =ex (s, 2)dz(s) =1 [ ¢X(s,2)ds
Tos(a) = e(c,) = p{(wd()z{(,)d )

with

/e(c,x)uo(d:c) =1 (3)

(the integral with respect to dz(s) is Ito’s integral). A.A. Novikov proved in [4] that the

condition
/ e

We consider the set A of functions a(s,z):[0,1]x C—R which satisfy condition Al) and
condition

c2(s, z)ds
poldz) < o0 (4)

1
2

O

implies (3).

1 1
A2) rll"rgor - 1.sup{ £a2(s,x)ds;a: € Ur} =0, where U, = {a: eC: {x?ds < r}.

Note that if a€ A then f(e(a,x))kyo(dx)<oo for all integer numbers k, which is a
consequence of Novikov’s results.

Denote T = {Ta,a € r’-\}. Note that T is a semigroup with respect to the product
s S

(T, Ty, =z, + /b(u,x)du+ /a(u, Tpz)du. (5)
0 0

Obviously, T', is an invertible transformation if there exists a function ¢ € T for which T ,T' .z = =
(pg-a.s.). Then, T T ,x =2z (py-a.s.), and we call T the inverse transformation and denote it
T, L

Remark: Below we consider all relations with z as valid (py-a.s.).

We denote by Tp the set of all invertible transformations 7', and by Ap the subset of those
a € A for which T, € Tg.

The main goal of this article is to formalize the set T . Besides, we consider the stochastic
differential equation

dy(t) = w(t) +a(t,y(-))dt; t€[0,1], y(0) =0, (6)

where w(t) is a Wiener process, a € A, and describe its weak and strong solutions.
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2. Representations of Densities

d
Denote p,(z) :E%(.z') We consider {C,C,,p} as a probability space and denote by E“o
0

and F u (-] -), respectively, the expectation and the conditional expectation on this space. For
a € A w2 define the function @ (t,z) by the relation

a(t,T,x)= E“O(a(t,:c)/o(Ta:ts,s <. (7

Here o(T ,z,,s <t) is the o-algebra induced by {T
choose @ in such a way that @ € A.

o5 <t}. It is easy to verify that we can

Theorem 1: The following equation holds true:
pal®) = e(a, o). (8)
Proof: The stochastic process

2(t) =z, + /(a(s, z)—al(s,T,x))ds
0

on the probability space {C,C,, g} is a martingale with respect to the filtration {o(7 ,x,,s < 1),

t € [0,1]} because
t

2(t) = (T zx), — /Tz (s, T z)ds. 9)

0

It is easy to verify that (z,z), = t, so, z(t) is a Wiener process. Girsanov’s theorem (see [1]) and
relation (9) imply that the process (T ,z), is a Wiener process on the probability space {C,C,, },

where
1 1
dp = 1 /=2 p
dug = exps — ‘Za(s,Tax)dxs-——z—[a (s,]a:c)ds}.

Therefore, for bounded C,-measurable functions f(z): C—R, we have that

[r@mtan) = [ 1,0 (d)
- / AT 2)eapd — 75(s,Tam)dTaxs+%7a2(s,:rax)ds io(dz)
0 0

= [ 1@ @ 2 @molde).

Due to the relation

[ min = [ 1@nian) = [ @),
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we have that
e 1@, z)p(z) =1  (pgas.). 0

Remark: Denote by pf‘ the restriction of measure p, on the o-algebra C, and by

pa(z) = Z—::;‘:(‘U)- (10)
Let , ,
e,(c,z) = e:L‘p{ / (s, 2)da(s) — 1 / c2(s,:c)ds}. (1)
o 4
Then
Pi(e) = e(@,2). (12)

This relation can be proved in the same way as relation (8).

3. The Conditions of Invertibility of T,

Theorem 2: The statements
(?) a(t,x) is o(T x5 < t)-measurable for t € [0,1].
(%) T,€Tg, and
(45) pL(T ) = e, Y(—a,z), t€[0,1]
are equivalent.
Proof: (ii)=>(i), since a(t,z) = a(t,T; (T z)). (i) implies that —a(t,z) =% (t,T,z) and

t

t

T~oT z),=z,+ [ a(s,z)ds+ [T (s, T x)ds=z,.

a - av/t t a t
0 0

Thus, (i7) is true. (i) implies that @(¢,2) = a(t,T, 'z) and (i) is a consequence of formula
(12). Suppose (ii7) is true, then the martingale e,( —a,z) is o(T ,z,,s < t)-measurable.

Using the representation
t

e(—a,z)=1- /es( —a,z)a(s,z)dz,

0

we can establish o(T ,z,,s < t)-measurability of a(t,z). Therefore, (i17)=>(1). |

Theorem 3: Let a, € n=1,2,...A, a € A and let the following conditions be satisfied:
1) a, €Ap, n=12,..;
2) T, =T & in C(py-a.s.);
n

B fim [ e '(—anz) - e~ 2) | uo(de) = 0, 1€ [0,1];
4) ,ll_l;,"(}of(/’an(x) - pa(w))2,u0(d.7:).

Then a € Ap.

and
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Proof: Condition 2) implies the relation

Lim, [ 16T, )= 6(2,2) | no(dz) =0

243

for all bounded continuous functions ¢:C—R. Using approximations of p,(z) by bounded

continuous functions in L,(y,) we can prove that

Jing, [ 19T 2= pu(Ts2)  o(do).

Since

Jing, [ 19T, 2)= pa, (T, )] nolde)

=iy, [ 194(2) = o, (@) | lde) =0

because of condition 4), we have that

Jing, [ 160, (T, 2)= (T 32) | ofdz) =0.

Besides, conditions 2) and 3) and theorem 2 imply the relation

Jim, [ 190 (T0,2)= ¢ (= 0,2) | glde) = 0

(13)

(14)

(15)

It follows from (14) and (15) that e ~!(—a,z) = p (T,z). In the same way, we prove that

statement (7i7) of theorem 2 holds true for all ¢ € [0,1].

4. Topological Properties of Ap

We introduce the distance in A:

daya) = [ Nay(- 1) = ay(-,2) | mo(do)

+(/(e Y —a,z)—e (- a2’x))2“0(d$)>1/2’

where ||z||,=sup |z,].
t

)

Theorem 4: Denote by

Qa) = [ pemg(do).

Then

Ap={o, lim  QG)=Q@)

’

Proof: We have

[ (0= @) Pfd) = Q) + Q) =2 [ (T ()

O
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Let d(@,a)—0. Then,

tim [ puTy Dmoldz) = [ pu(T,2nolde) = Q).

d(@ ,a)—0
Therefore,
lim sup /(pa(m) = py (2))p(dz) = lim sup (Q(d ) — Q(a)). (16)
d(@ ,a)—0 d(@ ,a)

Introduce the sequence
a,(s,z) = Ea(s,3w(-)+ f,(z,)), z€C, (17)

where w(t) is a Wiener process,
s

Fo(zys) = n/ x,du.

OVs—%
It is easy to verify that
Jim d(a,,a)=0ifa €A. (18)
a, can be rewritten in the form
1 1
a,(s,z) = Ea(s,%w( . ))e:cp{ /gn(z,u)dw(u) ——%/gi(m,u)du}, (19)
0 0

where
0n(,u) = n(2(u) — 2(0V u— 1)),
(18) implies that there exists a constant {,, for which
la,(s,z)—a,(5,2)| <, ||z-%F ||, =% €C. (20)
Therefore, T“n €Tpg. Let éiTaQ(ﬁ' ) — Q(a), then (16), (18) and theorem 3 imply that a € Ap.

Now we consider the space L,(p,) of functions f for which [ f%(z)py(dz) <oco. It is a
separable Hilbert space. Let {p;,k =1,2,...} be an orthonormal base in Ly(,). Then,

Qa) = Zk:qi(a),
where for all &,
0@ = [ pu@er@moldn) = [ oy amolda)

are continuous functions. Therefore,

liminf Q@) > Q(a).

d(@ ,a)—0
If

Qo) <limQ(a,) =iy, [ p, (T4 Drolde)
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= im, [ e~ Ya=ay Duglde) = [ ¢~ a2ugld)

then, [ (p (T z)— e~ '(—a,z))puy(dz) < 0, and a € A\AR because of theorem 2. 0
Corollary: Let A(t): R —R , be a decreasing continuous function for whichtlirsz_ A(t) =0.
Denote e

1
Ar ={a€A: /az(s,m)ds <rX(r) forzeU, .
0

1s of second Baire’s category.

This follows from the properties of the set of points of continuity of a half-continuous
function (see for example [5], p. 57).

5. Consequences for Stochastic Differential Equations

We recall that y(t) is a weak solution of equation (6) if the stochastic process
t

) =y(0)— [ als,u(-))ds
0
is a Wiener process. Note that the measure y, corresponding to the process z is determined by

the measure m, which corresponds to y. It is natural to call a weak solution of equation (6) a
measure p for which uT :‘11 = Yo-

Theorem 5: Let S = {u: pT:i = /‘0}' Then,
1) 5% is a conver weakly closed set in M(C), where M(C) is the set of all probability

measures on Cy.
2) a € Ag if and only if S® = {4}, where p® is the measure for which

d—ﬂa(m) = e(a, ).

Proof: Girsanov’s theorem implies that p® € S® for all a € A. Let —a € A\Ag. Then for a
bounded C,-measurable function f:C—R we have that

[ @tz = [ ea)r(x _ auglde)

= /Eﬂo(e(a,x)/a(']"_axs,s <1))- f(T _ jz)u(de).

Therefore, the measure i, which is determined by the relation

-—(Z‘) = Juo(e(a’x)/o'(T —alg S 1))3

belongs to S since

0
[ 1@t = [ 11 _z)atda),

It may be shown that the equality 7i = u® implies the measurability of e,(a,2) with respect to the
o-algebra o((T _ ,),,5 < t) and invertibility of 7' _ ,. Thus, i and p* are two distinct points of
Se. O

—a
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y(t) is a strong solution of equation (6) if y(t) is o(w(s), s < t)-measurable for all ¢ € [0,1].

Theorem 6: 1) Let y(t) be a strong solution of equation (6). Then, T _,€ Ty, y(t) =
(T = w), and y(t) is the unigue solution of equation (6).

2) Equation (6) has no strong solution if a € A\AR.

Proof: 1) y(t) may be represented in the form: y(t)=Y(t,w(-)), where Y(t,z) is
‘EB[O 11® C,-measurable function and, for a fixed ¢ € [0,1], it is C,-measurable. Therefore,

' t

v(®) = w(®)+ [ als,Y(- u(-))ds (21)
0
Set

b(s,z) = a(s,Y(-,x)).
It follows from (21) and (6) that
y(t) = (Tyw), and (T _ Tyw), = w(t)

Hence,
T_,€Tg Ty=TI1 and y(t) = (T - lw),
This is true for any solution of (6). Therefore, y(t) is unique.
2) follows from 1). 0O

Corollary: Egquation (6) has a strong solution and then it is unique if and only if this
equation has a unique weak solution.
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