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ABSTRACT

An open-loop window flow-control scheme regulates the flow into a system
by allowing at most a specified window size W of flow in any interval of length
L. The sliding window considers all subintervals of length L, while the jumping
window considers consecutive disjoint intervals of length L. To better understand
how these window control schemes perform for stationary sources, we describe for
a large class of stochastic input processes the asymptotic behavior of the maxi-
mum flow in such window intervals over a time interval [0, T] as T and L get
large, with T substantially bigger than L. We use strong approximations to
show that when T >> L > log T an invariance principle holds, so that the
asymptotic behavior depends on the stochastic input process only via its rate and
asymptotic variability parameters. In considerable generality, the sliding and
jumping windows arc asymptotically equivalent. We also develop an approxi-
mate relation between the two maximum window sizes. We apply the asympto-
tic results to develop approximations for the means and standard deviations of
the two maximum window contents. We apply computer simulation to evaluate
and refine these approximations.
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1. Introduction

The Hungarian influence on probability theory, and mathematics more generally, seems to be
greater than can be accounted for solely by chance. In this paper we pay tribute to an

outstanding example (who we also claim as an American), Lajos Takcs, on the occasion of his

70th birthday, by applying some Hungarian probability theory to a problem of interest in the
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design of emerging high-speed communication networks. In particular, we apply strong approxi-
mations as in Koml6s, Major and Tusndy [9], [12], Cs6rg5 and Rvsz [6] and Cshrgh, Horvth
and Steinebach [5] to study open-loop window flow-control schemes. We also refer to relate work
by Erdhs and Rnyi [7].

The most familiar window flow-control scheme is a closed-loop control mechanism. Sources
regulate their flow into the system (e.g., packets into a network) by keeping track of the flow that
has been transmitted but not yet received, typically using acknowledgements sent back from the
receiver to the source. The source stops sending when the unacknowledged flow reaches a speci-
fied window size; e.g., see pp. 97 and 429 of Bertsekas and Gallager [2].

In contrast, open-loop window flow-control schemes use only local information. For high-
speed communication networks, there is growing interest in open-loop control schemes, because
end-to-end delays over long distances can become very large relative to the time significant
change in the network state occurs; see Budka [3], Reibman and Berger [14] and Sections 2.2 and
3.3 of Roberts [15]. The idea in the open-loop window flow control is to simply limit the
maximum input in any interval (window) of specified length. Our purpose here is to gain a
better understanding of the way these open-loop window control schemes perform for stationary
sources. To do this, we study open-loop sliding and jumping window control schemes via
asymptotics.

Let I(t) represent the input to a system in the interval [0, t]. We regard I(t) as random, so

that I {I(t) t > 0} is a real-valued stochastic process. We think of I as being nondecreasing
and integer valued, but neither of these properties are required. Let T be the time period and let
L be the window length. For simplicity, assume that T is a multiple of L. Let J J(L,T,I) be
the random variable representing the maximum jumping window content as a function of L, T,
and I, i.e.,

J J(L,T,I) max(I(kL)- I((k- 1)L)" 1 < k < T/L),

and let S S(L,T,I) be the random variable representing the maximum sliding window content
as a function of L, T, and I, i.e.,

S S(L,T,I) sup{I(t + L)- I(t) 0 < t < T- L}.

In the statistics literature, the sliding window is also called the scan statistic; see Naus [12], [13].
More related literature is cited there.

A trivial consequence of these definitions is the ordering

J(L,T,I) < S(L,T,I) w.p.1.

Moreover, since any interval of length L yielding a maximum for S is contained in two
consecutive intervals in J, and since the maximum jumping window is at least as big as each of
these,

S(L,T,I) <_ 2J(L,T,I) w.p.1.

Hence, for any process I and any time interval [0, T], the ratio J/S is a random variable with
0.5 < J/S < 1. One purpose here is to develop approximations for this ratio.

In general, the distributions of J and S depend on the distribution of the stochastic process I
in a rather complicated way. However, as T and L become large, some statistical regularity
emerges. Since it is natural to consider large values of T and L in communication network
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applications, in the remaining sections we discuss asymptotics. We start in 2 by reviewing the
central limit theorem and strong approximations, which justify an approximation by Brownian
motion. In 3 we consider extreme-value asymptotics for Brownian motion as T-cx. In 4 we

provide conditions for the Brownian approximation to be asymptotically correct and establish
limits for S and J as both T and L get large. In particular, there we develop support for the
following relatively simple approximations for the random variables (and their means) provided
that log T << L << T, where << means much smaller than:

(1)
where

,3(T,L) = V/21og(T/L) + 2log log T 1.28
V/21og(T/L)

J EJ AL + Cj(T,L)V/Ac2L,

where

Cj(T,L) V/21og(T/L)- log log(T/L)+ 1.38

2V/21og(T/L

S- ---- ES- L E._ L " s(T, L)
for (I)S and (I)j defined above. In (1)-(3), A is the rate and c2 is the asymptotic variability
parameter of I (defined in (6) below). In (1)-(3) and throughout the paper, log means the
natural logarithm, i.e., to the base e. Without loss of generality (by the choice of the measuring
units), we can let A- 1. Hence, there are really only three parameters in (1)- (3)" L, T, and c2.

The approximations for S and J in (1) and (2) have a simple interpretation: The first term
AL is the approximate mean for a single interval of length L; the term is the approximate
standard deviation for a single interval of length L; and the remaining factors (s(T, L) for S in

(1) and (j(T,L) for g in (2) represent the increase due to the maximization. It is significant that
the factors (I)S and (I)j depend only on T and L, and not upon A and c2.

Note that, by (3), the ratio (J-AL)/(S-L)approaches 1 as T---,cx, but (3) provides an

approximation for the ratio for finite T. This ratio estimate as a function of L and T is displayed
in Table 1. We can also use (1) and (2) to develop an approximate expansion directly for the
ratio J/S in powers of 1/. In particular, by (1) and (2),

1+ j
J c2 c2%) + %)

C
2

1+ V- s

However, we will focus on (3).
The maximum window contents S and J are of course random variables.

rough estimates for the standard deviations, namely,

/ Ac2LSOY(S) , SOY(J) 1.281Olo-27-7=,LV l

We also derive

(4)
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see Section 3. Moreover, we would approximate the distributions of S and J, after appropriate
normalization, by the type-/ extreme-value distribution, i.e., the cdf (cumulative distribution
function) exp(-e-x), -o < x < c.; see p. 4 of Leadbetter, Lindgren and RootzSn [11] and
(10) -(13) below.

We can combine (1), (2), and (4) to obtain estimates of the coefficients of variation (CV,
standard deviation divided by the mean) of S-SL and J-SL. Keeping only the dominant
V/21og(T/L) term in (I) and (I), we obtain

CV(S- )tL) ,, CV(J- )tL) ,, logO(’6TL)._ (5)

Hence, if T/L-10k, then CV(S-$L) 0.278/k. If k > 3, then the standard deviation of
S- SL should be less than 10% of the mean.

In 5 we briefly discuss discriminating windows with L O(log T), for which the asymptotics
depend upon more than two parameters $ and c2, and thus have more potential for providing
information about the input process.

In 6 we make numerical comparisons using computer simulations. In particular, we consider
10 replications each of several renewal processes with - 1, T 106 and various values of L.
These simulation experiments provide additional support for approximations (1)- (5). Indeed,
the last term in (I,s in (1) was suggested by the simulations. In 7 we state our conclusions.

We were motivated to look for approximations (1) and (2), because we want to compare the
open-loop window flow-control schemes to other open-loop flow-control schemes. In particular, in
[1] we compare the sliding window to a leaky-bucket-based flow-control scheme. There we
conclude that the sliding window admits larger bursts than the leaky bucket for given peak rate
and given sustainable rate. To draw this conclusion, we carry out a specific construction: We
generate a sample path of a stationary point process I and specify a window length L. The
reciprocal of the observed minimum distance between consecutive points is the realized peak rate,
and the ratio S/L is the maximum possible sustainable rate, when S S(L,T,I) is the maximum
sliding window content. With this peak rate and sustainable rate, the observed sample path just
passes through the sliding window control. We then let the leaky bucket have drain rate v equal
to the sustainable rate for the sliding window, and let the bucket capacity be the smallest level
such that the observed stochastic sample path just passes through the leaky bucket. With this
construction, both controls have the same peak and sustainable rates, and the given sample path
just passes through both controls. Finally, with the control parameters so determined, we ask
which control scheme allows larger bursts, where a burst is defined as the maximum number of
consecutive arrivals at the peak rate. We find that the sliding window allows larger bursts, and
we use (1) to estimate the difference. See [1] for more details. Reibman and Berger [14] reach the
same conclusions for sample video teleconferencing sequences.

2. The Central Limit Theorem and Strong Approximations

First, as T gets large, we can apply extreme value theory, as in Leadbetter, Lindgren and
Rootzn [11]. In general, though, the limiting behavior depends quite delicately upon the input
process I. However, if we can assume that L also is suitably large, then we can hope for
significant simplification. As L gets large, in great generality, each increment I(t + L)-I(t)
becomes approximately normally distributed by the central limit theorem (CLT), i.e.,

I(t+L)-I(t)-AL g(0,1)as L-oc (6)V/Ac2L
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for all t, where =: denotes convergence in distribution, N(0,1) denotes a standard (zero mean,
unit variance) normal random variable, A is a positive constant called the input rate and c2 is a

positive constant called the asymptotic variability parameter.

To have the CLT (6), we need to have the second moment EI(t)2 finite and we need to have
the dependence between the increments I(t + h)-I(t) and I(s)-I(s-h) for s <t and h > 0
decrease suitably as t- s increases. We assume that we do not have infinite second moments or

the long-range dependence that would invalidate (6).
If I is a stationary stochastic point process (i.e., has stationary increments) then c2 is

typically the limiting value of the index of dispersion for counts (IDC), i.e.,

c2- Ic(oc -lira
Vat I(t)

t-o EI(t------ (7)

see p. 71 of Cox and Lewis [4]. (The role of the second moment condition is clear in (7).) If I is a

renewal counting process with i.i.d interrenewal times Xk, then c2 is the squared coefficient of
variation of (SCV) of X1, i.e.,

Vat X1
C2- SCV(X1)-

(EX1)2

(It is important that a square appears in the denominator of (8), but not in (7).)
In fact, we need more than (6), and we often have it. In great generality, a properly

normalized input process such as I can be approximated by a Brownian motion. Indeed, our key
assumption will be that I can be approximated strongly by a Brownian motion, i.e., there exists a

standard (zero drift, unit variance) Brownian motion (BM) B {B(t) _> 0} such that

0 <_ t<_T}-O(logT) w.p.lasToe; (9)

see CsSrg6 and R6v4sz [6] and Csarg6, Horvth and Steinebach [5]. These references show that

(9) holds in great generality, so that this seems to be a reasonable starting point for us. Note
that (9) can be regarded as a form of functional central limit theorem (FELT) generalizing the
CLT in (6). To convert (9) into the FELT, replace in (9) by nt, T by n, and then divide by

X/. This yields

V/Ac2n
"0 <_ t<_l -0

V/-,
w.p. 1 as n----oe

and note that tbr each n, {B(nt)/v/-" t>_O} is distributed the same as {B(t)" t>_O}. Hence,
from (9) we get

I(nt)-Ant
=V B(t) as

with the convergence being in the Nnction space D[0, 1]; see pp. 11- 15 and 88-95 of [6] for

%rther discussion.

It is also significant that the error in (9) can be regarded as best possible; see [5], [6]. For a

renewal process with interrenewal times Xk having mean I - and SCV c2, (9) holds when

esX1 < for some s > 0; see Corollary 3.1 on p. 1450 of CsSrg5 ttorvth and Steinebach [5].
(Other strong approximations hold with bigger errors when only EX < Nr some p > 2; see
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[5], [6].) Theorem 3.1 of [5] also provides a means to treat a large class of counting processes with
dependent intervals. Moreover, I(t) need not be a counting process; e.g., it could be the input in
a fluid model.

In applications, e.g., to communications networks, we are often interested in large L and large
T. A key issue in the asymptotics is the way these two parameters grow. We consider this issue
in 4.

3. Extreme Values for Brownian Motion

In this section we simply surose that I can be approximated by a BM. Consistent with (9),
we assume that I(t) t / /c2 B(t), where B is a standard BM. In this case, we can apply
classical results to describe J and S as T--,cx for any fixed L, omitting I from the notation. In
particular, by the extreme-value theorem for i.i.d, normal random variables in Theorem 1.5.3 on

p. 14 of [11],

a(L,T)(J(L,T)- )L- b(L,T)):::Z as Toc, (10)

where Z is the classical type-/extreme-value distribution with cdf

and

P(Z <_ x) = exp(-e-x), oc < x < c, (11)

a(L,T)- 21og(T/L)/$c2L (12)

b(L,T)-v/AC2L[v/21og(T/L) -[lg log(T/L)+log 4r]]2V/2.1og(T/L (13)

Note that EZ-0.5772 (Euler’s constant), VarZ-r2/6-1.645, SCV(Z)-4.94,
median(Z) 0.3667 and mod(Z)= 0.9624 for the type-/ extreme-value random variable Z in
(10); see Chapter 21 of Johnson and Kotz [8].

We use (10) to develop approximation (2) for the mean of J and thus J itself.
we let

In particular,

J(L,T) L + b(L,T) + EZ
a(L,T)

which reduces to (2). We also use (10) to obtain an estimate of the variability of J.
(10), we have the approximation

(14)

which yields (4).

Based on

We point out that it is not obvious that approximations (14) and (15) ((2) and (4)) will be
good. First, we need to approximate I by Brownian motion and, second, we need the extreme-
value asymptotics for Brownian motion to perform suitably well for realistic values of T. It is
well known that the CLT (6) often yields remarkably good approximations for moderate values of
the limiting variable (when there is weak dependence). In contrast, the extreme-value limit

SDV(Z)SDV(J), a(L,T)’ (15)
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theorems do not yield such good approximations. In part, this is due to the rate of convergence
in the extreme-value theorems being remarkably slow; see Section 2.4 of Leadbetter, Lindgren and
Rootzn [11]. For example, for the limit (10) the rate of convergence of the normalized cdf’s is
slower than l/log(T/L); see (2.4.8) and (2.4.10) of [11]. Hence, even if T 106 and L 103,
good approximations based on (10) are not automatic. Thus, we should be interested in the
computer simulations in 6.

As a corollary to (10), we can divide by a(L,T) and obtain the simpler result

J(L,T)- AL- 2c2Llog(T/L) = 0 as T--c. (16)

When we divide by v/log(T/L)in (16), we obtain

J(L,T)-AL
=V V/2c2L as T---,oc (17)v/log(T/L)

for fixed L. In (16) and (17) convergence in distribution is equivalent to convergence in
probability since the limits are deterministic. Note that (16) and (17) yield cruder
approximations than (10).

An analog of (17) also exists for S; see Corollary 1.2.3 on p. 31 of [6] (also using the
observation on the bottom of p. 29 and Remark 1.2.1 on p. 30 of [6]). In particular,

S(L,T)- L 2c2L w.p. 1 as T. (18)

The limits (17) and (18)imply that

S(L,T)-L
1 as T. (19)J(L,T)-AL

Hence, using the Brownian approximation, by (19) S and J are asymptotically equivalent as
T---,cx for any fixed L. Moreover, (17) and (18) are consistent with S and J being asymptotically
approximated by (1) and (2), but we need additional refinement to get the approximations in (1)
and (2).

4. The Role of L in the Brownian Motion Approximation

The asymptotics in the previous section apply if we do indeed have a BM approximation.
However, the quality of the Brownian approximation for the increments of another process I
depends on L being large. Indeed, for the CLT in (6), we required that Lc.

Moreover, in order to have the Brownian extreme-value theory apply to the process I, it is
evident that L must go o infinity as T goes to infinity. In particular, we need LT/logT---c,
where the notation LT indicates that L depends on T. When LT O(log T), the asymptotics for
I depend on more than two parameters and c2. The case in which I(t) is a partial sum of i.i.d.
random variables is discussed in Sections 2.4 and 3.1 of [6]; also see 5 below.

When we stipulate that LT grows suitably fast as Tc, we can obtain a positive result.
The following parallels Theorem 3.1.1 on p. 115 of [6].

Theorem 1: If I admits the strong approximation (9) and if LT--,c as T--cx with 0 < LT <
T/LT nondecreasing, log(T//LT)//loglogT---,oc and LT/lOg T---c, then

S(LT,T I)-,,kLT (20)---, 1 w.p. 1 as T-x,
LT, T)4) c2
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where

(LT, T) (2LT[log(TILT) / log log T])1/2 (21)

Proof: Combine Theorem 1.2.1 on p. 30 of [6] with (9), paralleling the proof of Theorem
3.1.1 on p.115 of [6]. It suffices to work with the Brownian motion because our assumption that
LT/lOg T--c as T-c implies that (log T)/(LT, T)---,O as T--,oc. Yl

Note that Theorem 1 remains unchanged if we replace /(LT, T in (21) by
(2LTlog(T/LT))1/2, because of our assumption that log(TILT)/log log T--oc as T--oc.
However, (LT, T in (21) arises naturally in the proof. Moreover, a partial result holds even
when log(TILT)/log log T-,r, 0 < r < oc; see Remark 1.2.2 on page 35 of [6]. Hence, there is a

basis for (21) in its current form.

Note that, except for the last term, the approximations for S in (1) comes directly from (20);
i.e., we use the approximation S , ,LT+ (LT, T)vc2. The last term in (1) is added based on
our numerical experience with simulations; see Section 6. It evidently remains to establish a
theorem of the form (10) for the sliding window applied to Brownian motion.

To have a more concrete form for approximations, we suppose that LT xTp for fixed x and
0<p<l. Note that the conditions on LT in Theorem 1 are satisfied if LT=xTp for any p,
0 < p < 1, but not for p 1, no matter how small x is.

Corollary:
1, then

where

If I admits the strong approximation (9) and if LT xTp, for x > 0 and 0 < p <

S(zTV,T,1)- zT
T)V/ c

1 w.p. 1 as

7(x,T)-(2xTP[(1-p)log T-log x+log log T])1/2

We now obtain a related result for the jumping window J and relate the asymptotics for J
and S. In particular, we show that they are asymptotically equivalent in this asymptotic regime
and provide support for (2).

Theorem 2: Under the assumptions of Theorem 1,

for b(L,T) in (13).

J(LT’T’I)-ALT = 1 w.p. 1 as T--<x
T)

If, in addition, LT/(log T)3---< as T---,oc, then

(22)

a(LT, T)[ J(LT, T,I ALT b(LT, T)] :: Z as T--<x (23)

for a(L,T), b(L,T) and Z in (11)- (13).
Proof: Combine the strong approximation (9) with the extreme-value result (10). The limit

(10) holds as Toc for fixed L, but we need a limit as Toc and L--,oc. By the properties of
Brownian motion, (10) holds uniformly in L provided that T/L oc; i.e., given that T is an

integer multiple of L, [J(L,T)-,L]/x/-- for Brownian motion with drift , and variance
coefficient 1 is distributed the same as J(1,T/L) for Brownian motion with drift 0 and variance
coefficient 1. For the case in which I in J(LT, T,I is Brownian motion, (22) follows from (10)
by dividing by a(LT, T)b(LT, T). For the case of a general I in J(LT, T,I), we apply (9). Under
the assumptions of Theorem 1, Lr/log T--,oc, so that (log T)/b(LT, T)O as T--,oc. For (23),
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we use the additional assumption to obtain a(LT, T)log T-O as T--oc. [-1

In Theorems 1 and 2 we have provided asymptotics that can serve as the basis for
approximations. If better numerical results are desired, especially for smaller values of T and L,
then the more involved approximation method of Naus [12], [13] is useful.

5. Discriminating Windows

The appeal of the asymptotics in 4 is the simple formulas depending on the,process I only
via the two parameters ,k and c2. However in some circumstances we may want to learn more
about the process I from window processes. For this purpose, it is natural to be guided by 2.4 of
[6], and let

LT xlog T. (24)

For the case of partial sums of i.i.d, random variables, i.e., I(t) X -[-...-[- X[tj, where [tJ is the
integer part of t,

s(.toa T, T, )
xlog T

--+ a(x) w.p. 1 as T+oo, (25)

where

a(x) sup{x:inf e-txEetX1
_

e-l/x}; (26)

see Theorem 2.4.3 on p. 98 of [6]. Moreover, by Theorem 2.4.5 of [6], the function c(x) in (26)
uniquely determines the distribution function of X1. More generally, the limit (25) regarded as a

function of x seems promising for characterizing the entire process I. This seems to be a

promising direction for research.

6. NumericM Comparisons

In this section we use computer simulation to investigate the approximations in (1)- (5).
all cases we let ,- 1. We start by letting T- 106.

In

We first consider the Poisson process, which has c2- 1. Tables 2 and 3 display results for S
and J based on two experiments, each with 10 independent replications. We let L range from 20
to 5000. Since T- 106 and log T- 13.8, in this range for L we clearly have L << T, but we

only have log T << L for larger values of L, say L _> 100.

Frown the first experiment, we saw that the approximation for S provided by Theorem 1
performs reasonably well, but that it can be improved by subtracting the standard deviation in

(4_). This yields the approximation for S or ES in (1). This refinement was found to help in

other experiments as well, so we include it in (1). However, it still remains to develop theoretical
justification for this refinement. Note that the standard deviation in (4) is of the same order as

1/a(L,T) in (10)-(14), so that it is natural to anticipate a refinement for S of this form. To
confirm this refinement, we conducted the second experiment with different random seeds.

In Table 2 we display the error in the mean of S for each simulation experiment. This is the

approximation value (1) minus the simulation estimate. Notice that the approximation for the

mean performs well for the entire range of window lengths. Also notice that the estimated errors

in the mean are quite a bit smaller than the standard deviation when L is not too small (e.g., for
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L > 100), both predicted by (4) and estimated by simulation. Hence, in the region log T << L
<< T, the approximation is accurate to within the noise, e.g., the maximum of the strong
approximation error O(log T)- O(13.8) and one standard deviation.

Table 3 describes similar results for the jumping window, based on the same simulation
experiments. Again, the error in the mean is the approximate value minus the simulation
estimate. Here no additional refinement was deemed necessary, so approximation (2) for J
follows directly from Theorem 2 and (10)- (14). As with the sliding window, the approximation
for the mean performs quite well for a Poisson process over the entire range of window lengths.
Again the error in the mean is less than one standard deviation for L > 100.

From Tables 2 and 3, we see that there is considerable variability in the standard deviation
estimates. However, (4) is evidently a reasonable estimate of the standard deviation of both S
and J.

To test the invariance principle, we also performed the identical simulation experiment for
two rate-1 renewal processes with common SCV c2- 15.4. One renewal process is an on-off
process with a deterministic distance of 0.1 between arrivals during an on period. The on period
is geometrically distributed with mean 1, so that the mean number of arrivals during an on
period is 10. As usual, the off period is exponentially distributed. An interarrival time is the
mixture of 0.1 and 0.1 plus the exponential off period. The mean of the exponential random
variable is chosen so that the mean interarrival time is 1.0. This makes the SCV c2 15.4.

The other renewal process has interarrival times equal to a constant 0.1 plus a

hyperexponential (H2) random variable, which has a distribution which is a mixture of two
exponential distributions; i.e., the H2 distribution has density

It 2f(t) pAe + (1 p)A2e t > O. (27)

The H2 distribution is given balanced means, i.e., P$1-1_ (1- P)’2-1. The remaining two
parameters are chosen so that the overall distribution has mean 1 and SCV c2 15.4.

Tables 4 and 5 display the results for these two renewal processes with common SCV
c2- 15.4. Table 4 displays results for the sliding window, while Table 5 displays results for the
jumping window. As in Tables 2 and 3, the simulation estimates are based on ten independent
replications for each renewal process. A second experiment of ten independent replications yielded
similar results.

From Tables 4 and 5, we see that there are significant differences between these two renewal
process. However, for larger values of L, these differences are relatively small compared to the
standard deviation. For L < 500, though, the differences are dramatic. For larger values of L,
say L > 500, the results are roughly consistent with the invariance principle. The approximate
mean overestimates the (D + H2) mean values by about the same amount it underestimates the
on-off mean values. The error in the mean relative to the standard deviation decreases
significantly as L increases. At about L > 700, the errors are no more than one standard
deviation.

For the smaller values of L, we see that the invariance principle is not appropriate.
Consistent with 5, we see that for L < 100 the two renewal processes behave very differently.
Both the means and the standard deviations differ by a factor of two to five in this range. It is

interesting that the ratio of the standard deviation estimates of the D + H2 renewal process to the
on-off renewal process increases from 0.22 at L 20 to 1.8 for L 5000. As with the mean, the
approximation falls nicely between the two standard deviation estimates.

We also performed similar experiments with less bursty variants of these same two renewal
processes. We found that the approximations performed better when the SCV is decreased from
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15.4 to 4.0. As might be anticipated, this case falls in between the cases c2- 1 and c2- 15.4
that we have described in detail.

Next, Table 6 compares the approximation for the ratio (J-L)/(S-.L) in (3) with
simulation estimates for the three renewal processes considered above. Note that the
approximation is the same for all three processes. The estimates are the sample means and
sample standard deviations of the observed ratio. The average errors over the 14 values with
L _> 500 are -0.015 for the Poisson process, -0.001 for the on-off renewal process and -0.027 for the
(D / H2)-renewal process. Notice that the estimated standard deviations are about 0.09 for the
larger L values and about 0.05 for the smaller L values. The estimated errors in the mean are
quite small compared to these standard deviation estimates.

Finally, it is interesting to see how the approximations perform for smaller values of T than
106. To give an idea, Tables 7 and 8 display results for the sliding and jumping windows,
respectively, applied to the Poisson process for T- 103 and T- 104. Again, the simulation
estimates are based on ten independent replications and the error in the mean is the
approximation minus the sample mean. Consistent with Tables 2 and 3, the approximation for
the means tend to be slightly low for small values of L. Table 7 shows that for T- 104 and
L >_ 1000, where T/L < 10, the approximation degrades, but it still is within one standard
deviation. Table 8 shows that the approximation for the jumping window degrades more for
large L. The ratio estimates are also highly variable in this region. For example, for T- 104
and L- 2.5 x 103, the sample mean and variance of (J-,L)/(S-L) were 1.19 and 1.83,
respectively. This should not be surprising, since T/L- 4 in this case. Contrary to the
conditions of Theorems 1 and 2, log(T/L) is not large compared to log log T in this range, so this
degradation in performance can be anticipated.

However, for L neither very small nor very large, Tables 7 and 8 show that the
approximations still perform well.

7. Conclusions

Our purpose in this paper was to develop simple approximations for the maximum sliding
and jumping window content associated with a general input process I. Since our intended
application is high-speed communication networks, we are interested in relatively long sample
paths (very large values of T) and large window length L, with T much larger than L. Hence, it
is natural to consider applications based on asymptotics.

We proposed approximating the general input process I by a Brownian motion. This
approximation depends on the general input process I through only two parameters" its rate A
and the limiting value of its index of dispersion, c2 in (7). Strong approximations allow us to do
this for the entire process yielding an error of O(log T); see (9).

We then consider extreme-value asymptotics for Brownian motion in order to obtain the basic

approximations in (1) and (2). These approximations were supported by Theorems 1 and 2,
which established limits as both Toc and Loc with L/log Toc.

We developed the final form of the approximations for ES in (1) and provided additional
support for the other approximations by making numerical comparisons with computer
simulations. (However, a refinement of Theorem 1 supporting approximation (1) is still needed.)
When T 106 and L 103, the basic approximations (1)-(4) perform well. However, when
T- 106 and L 50, and L is no longer much bigger than log T, the simulations confirm that the

invariance principle can break down, as predicted by the theory (see 5). This break down was

illustrated by the example of the two renewal processes with SCV 15.4.
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Overall, the approximations seem remarkably effective for the parameter range indicated by
the theory. Once again, we see that statistical regularity can be captured by appropriate
probability limit theorems.
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T

5O

100

5OO

1000

5O0O

10000

0.834

0.822

0.787

0.767

0.700

0.656

106

0.856

0.848

0.826

0.813

0.777

0.756

107

0.872

0.866

0.850

0.842

0.819

0.806

108

0.885

0.880

0.868

0.862

0.846

0.837

109

0.894

0.891

0.881

0.877

0.865

0.858

10o

0.902

0.900

0.892

0.888

0.879

0.874

Table 1" The estimated ratio (J-L)/(S-.L) in (3) as a function ofL and T.
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window
length
L

approxi-
mations

mean std.
dev.
(4)

20 42 1.2
40 70 1.8
60 96 2.2
80 121 2.6
100 146 3.0
200 262 4.4
300 375 5.5
400 485 6.5
500 594 7.3
600 702 8.1
700 809 8.9
800 915 9.6
900 1021 10.3
1000 1127 10.9
1500 1652 13.7
2000 2172 16.2
2500 2689 18.5
3000 3204 20.6
3500 3718 22.5
4000 4231 24.4
4500 4743 26.1
5000 5254 27.8

simulation estimates

first experiment

mean

45
73
99
125
148
262
376
486
594
703
809
918
1024
1128
1654
2173
2692
3206
3718
4223
4732
5247

second experiment

std. error mean std. error
dev. in dev. in

mean mean

1.8 -3 44 0.9 -2
1.8 -3 72 1.6 -2
2.4 -3 98 2.0 -2
2.1 -4 122 2.2 -1
1.5 -2 147 1.8 -1
3.2 0 263 4.5 -1
3.5 -1 375 4.3 0
5.9 -1 484 5.0
6.3 0 591 5.6 3
8.1 -1 697 7.2 5
8.2 0 802 7.3 7

11.6 -3 910 10.2 5
8.8 -3 1016 9.6 5
8.6 -1 1118 6.9 9

22.3 -2 1645 10.5 7
23.6 -1 2164 12.7 8
29.6 -3 2685 21.1 4
22.5 -2 3199 24.9 5
22.2 0 3721 26.6 -3
19.0 8 4228 29.1 3
15.4 11 4734 38.2 9
19.7 7 5237 35.9 17

Table 2. A comparison of approximations with simulation estimates for the mean and
standard deviation of the maximum sliding window content of a rate-1 Poisson pro-
cess for a total time period T 106 as a function of the window length L. The simula-
tion estimates are based on two experiments, each of ten independent replications.
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window
length
L

20
40
60
80
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000

approxi-
mations

mean

39
66
91
115
139
252
362
470
577
684
789
894
999
1103
1622
2137
2650
3161
3672
4181
4689
5197

std.
dev.
(4)

1.2
1.8
2.2
2.6
3.0
4.4
5.5
6.5
7.3
8.1
8.9
9.6

10.3
10.9
13.7
16.2
18.5
20.6
22.5
24.4
26.1
27.8

simulation estimates

first experiment

mean

42
69
93
117
141
253
364
474
579
688
793
896
1001
1100
1624
2134
2661
3164
3669
4168
4696
5181

std.
dev.

1.9
2.9
2.9
2.6
3.5
4.4
4.6
9.4
6.6
7.7
8.9
8.9

10.4
12.0
15.7
19.4
31.3
25.8
23.9
19.0
24.7
26.1

error in
mean

-3
-3
-2
-2
-2
-1
-2
-4
-2
-4
-4
-2
-2
3
-2
3

-11
-3
3

13
-7
16

mean

41
68
93
117
141
251
365
471
575
684
785
887
999
1097
1627
2133
2654
3167
3663
4181
4684
5178

second experiment

std. dev.

0.9
1.6
2.2
2.3
4.3
4.3
5.0
4.2
6.1
6.1
6.9
6.8
8.4
9.0

14.2
17.2
12.7
27.3
21.2
17.0
31.7
18.1

error in
mean

-2
-2
-2
-2
-2

-3
-1
2
0
4
7
0
6
-5
4
-4
-6
9
0
5

19

Table 3. A comparison of approximations with simulation estimate for the mean and standard deviation of
the maximum jumping window content of a rate-1 Poisson process for a total time period T 106 as a
function of the window length L. The simulation estimates are based on two experiments, each of ten
independent replications.
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window
length
L

20
40
60
80
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5OO0

approximations

mean
(1)

106
158
202
242
279
445
593
733
868
999
1127
1252
1376
1499
2095
2674
3242
3802
4356
4906
5452
5995

std. dev.
(4)

4.8
7.1
8.8

10.3
11.7
17.2
21.6
25.4
28.8
31.9
34.9
37.6
40.2
42.7
53.9
63.7
72.5
80.7
88.3
95.6
102.5
109.1

simulation estimates

mean

on-off

152
202
251
287
330
483
645
774
919
1035
1157
1287
1418
1542
2134
2691
3275
3829
4398
4943
5471
6008

D+H2

58
101
140
179
214
380
531
674
816
951
1078
1197
1327
1454
2037
2650
3209
3799
4332
4851
5410
5966

error in mean

on-off

-46
-44
-49
-45
-51
-38
-52
-41
-51
-36
-30
-35
-42
-43
-39
-17
-33
-27
-42
-37
-19
-13

D+H2

48
57
62
63
65
65
62
59
52
48
49
55
49
45
58
24
33
3

24
55
42
29

std. dev.

on-off

7.3
7.7
9.6

21.3
19.0
10.5
36.3
31.4
38.7
40.6
42.2
35.4
43.0
51.6
53.9
55.7
57.9
67.1
48.4
88.4
92.5
80.9

D+H:

1.6
3.0
2.9
2.9
3.7
7.0

19.2
20.1
16.4
14.5
16.5
19.0
26.9
27.4
29.6
34.7
75.3
92.9
110.0
135.3
144.2
145.4

Table 4. A comparison of approximations with simulation estimates for the mean and standard
deviation of the maximum sliding window content of two rate-1 renewal processes with SCV
c2= 15.4 for a total time period of length T-- 106 as a function of the window length L. The simula-
tion estimates are based on ten independent replications.
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window
length
L

20
40
60
80
100
200
300
400
500
600
700
800
900
1000
1500
2000
2500
3000
3500
4000
4500
5000

simulation estimates

approximations

mean std. dev.

mean

on-off D+H2

error in mean

on-off D+H2

std. dev.

on-off
(2)

95
141
181
218
252
405
544
676
804
928
1050
1170
1289
1406
1980
2539
3089
3634
4173
4709
5243
5773

(4)

4.8
7.1
8.8

10.3
11.7
17.2
21.6
25.4
28.8
31.9
34.9
37.6
40.2
42.7
53.9
63.7
72.5
80.7
88.3
95.6
102.5
109.1

135
186
227
257
306
448
59!
728
847
958
1077
1206
1318
1434
1991
2566
3091
3644
4170
4761
5283
5801

55
96
135
170
203
362
507
647
771
897
1022
1151
1263
1388
1954
2518
3070
3665
4138
4673
5228
5774

-4O
-45
-46
-39
-54
-43
-47
-52
-43
-30
-27
-36
-29
-28
-11
-27
-2

-10
3

-52
-40
-28

40
45
46
48
49
43
37
29
33
31
28
19
26
18
26
21
19

-31
35
36
15
-1

8.2
8.8

11.4
13.0
21.9
22.8
24.4
33.5
22.9
36.3
29.7
46.1
39.1
34.4
59.2
65.7
49.0
58.2
60.6
61.2
59.6

117.7

D+H2

2.2
2.8
3.0
2.9
4.3

lO.l
15.2
19.2
15.6
27.9
25.0
29.0
24.2
32.5
20.6
82.1
76.0

116.5
80.6

103.0
142.0
109.4

Table :5. A comparison of approximations with simulation estimates for the mean and standard deviation of
the maximumjumping window content of two rate- renewal processes with SCV c2= 15.4 for a total time
period of length T 106 as a function of the window length L. The simulation estimates are based on ten
independent replications.
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window
length
L

app-
rox.
ratio

Poisson

rn
e
a
n

simulation estimates

on-off, c2= 15.4 D+H2, c2= 15.4

std. e m std e m std. e
dev. r e dev r e dev. r

r a r a r
o n o n o
r F r

20 .865 .856
40 .858 871
60 .854 .871
80 .851 .883
100 .848 .885
200 .839 .816
300 .833 .870
400 .829 .845
500 .826 .826
600 .823 .871
700 .820 .832
800 .818 .798
900 .815 .862
1000 .813 .827
1500 .806 .881
2000 .799 .814
2500 .794 .843
3000 .790 .841
3500 .786 .742
4000 .783 .803
4500 .780 .791
5000 .777 .760

average errors for
L 500

.050 .009 .878 .073 -.013 .922 .050 -.057

.045 -.013 .904 .076 -.046 .928 .042 -.070

.058 -.017 .878 .067 -.024 .936 .046 -.082

.050 -.032 .862 .096 -.011 .912 .033 -.061

.075 -.037 .900 .071 -.052 .897 .030 -.049

.086 .023 .876 .075 -.037 .903 .028 -.064

.055 -.037 .848 .084 -.015 .899 .040 -.066

.060 -.016 .878 .062 -.049 .902 .054 -.073

.080 .000 .831 .056 -.005 .859 .041 -.033

.089 -.048 .827 .093 -.004 .844 .070 -.021

.093 -.012 .828 .049 -.008 .851 .069 -.031

.079 .020 .833 .067 -.015 .884 .068 -.066

.084 -.047 .812 .094 .003 .854 .088 -.039

.088 -.014 .804 .074 .009 .856 .085 -.043

.085 -.075 .775 080 .031 .848 .066 -.042

.074 -.015 .822 .095 -.023 .795 .103 .004

.108 -.049 .765 .079 .029 .802 .040 -.008

.090 -.051 .781 .100 .009 .831 .090 -.041

.070 .044 .748 079 .038 .772 .094 .014

.082 -.020 .811 .085 -.028 .794 .072 -.011

.102 -.011 .813 .094 -.033 .801 .091 -.021

.104 .017 .794 .090 -.017 .811 .122 -.034

Table 6. A comparison ofthe approximation for the normalized ratio (J-;L)/(S-,L) with simulation estimates
for the Poisson process, the on-off renewal process, and the D+H2 renewal process for a time period T- 106
as a function of the window length L. The simulation estimates are based on ten independent replications.
The error is the approximation minus the estimated mean.
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window
length
L

approx.

T 103 T 104

simulation estimates approx. simulation estimates

mean (1) mean error std. mean mean error std.
in dev. ( ) in dev.

mean mean

10 20 20.4 -0.4 1.5 22 24.9 -2.9 1.6
20 33 34.3 -1.3 2.1 37 38.3 -1.3 2.3
40 57 57.5 -0.5 2.5 62 62.8 -0.8 2.3
60 80 78.6 1.4 2.6 87 86.6 0.4 5.1
80 102 101.7 0.3 3.3 110 110.6 -0.6 6.9
100 123 122.4 0.6 4.5 133 132.8 0.2 6.9
200 228 228.1 -0.1 9.2 243 241.3 1.7 7.8
300 329 328.1 0.9 11.2 350 347.5 2.5 12.5
400 429 427.1 1.9 13.9 456 452.2 3.8 13.9
500 527 526.4 0.6 17.9 561 558.5 2.5 16.1
1000 1076 1062.2 13.8 22.5
2000 2092 2065.2 26.8 34.9
4000 4099 4054.7 44.3 56.7
5000 5094 5048.2 45.8 64.5

Table 7. A comparison of approximations with simulation estimate for the mean of the
maximum sliding window content of a rate-1 Poisson process for total time periods T 103

and T 104 as a function of the window length L. The simulation estimates are based on ten
independent replications.
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window
length
L

app-
rox.

T 103

simulation estimates app-
rox.

T 104

simulation estimates

mean mean error std. mean mean
(2) in dev. (2)

mean

10 18 18.8 -0.8 1.2 20 21.4
20 30 30.5 -0.5 2.2 34 34.5
40 53 52.3 0.7 3.3 58 58.1
60 74 73.3 0.7 3.8 81 79.9
80 96 94.8 1.2 4.5 104 102.8
100 116 113.6 2.4 5.2 126 124.8
200 218 216.1 1.9 9.0 233 230.2
300 318 314.4 3.6 12.7 337 335.4
400 418 411.7 6.3 14.0 441 437.3
500 517 504.4 12.6 14.1 543 542.9
1000 1052 1042.3
2000 2057 2047.6
4000 4056 4018.4
5000 5053 5013.9

error
in

mean

-1.4
-0.5
-0.1
1.1
1.2
1.2
2.8
1.6
3.7
0.1
9.7
94

37.6
39.1

std.

1.6
1.3
1.9
3.6
5.1
3.8
7.8

13.4
18.2
17.3
24.8
33.1
39.2
59.0

Table 8. A comparison of approximations with simulation estimates for the mean of the
maximumjumping window content of a rate- Poisson process for total time periods T- 103
and T 104 as a function of the window length L. The simulation estimates are based on ten
independent replications.


