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ABSTRACT

In this paper we examine second-order nonlinear evolution inclusions and
prove two existence theorems; one with a convex-valued orientor field and the
other with a nonconvex-valued field. An example of a hyperbolic partial differen-
tial inclusion is also presented.
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1. Introduction

In this paper we study the existence of solutions for second order nonlinear evolution
inclusions. Our work here complements the existence results of [7], where we considered first
order nonlinear evolution inclusions. We present two existence results. One in which the multi-
valued term (orientor field) is convex valued and the other with a nonconvex valued orientor
field. At the end of the paper, we work in detail an example of a hyperbolic partial differential
inclusion, illustrating the applicability of our result.

2. Mathematical Preliminaries

Let T- [0, r] and Y a separable Banach space. Throughout this paper we will be using the
following notation: PI(c)(Y)= {A C Y: nonempty, closed (and convex)}. A multifunction (set-
valued function), F: T:-;PI(Y) is sa-d to be measurable if for all x E Y, the N +-valued function

td(x, F(t)) inf{ II x- y I1: y e F(t)} is measurable. By S(1 _< p _< oe), we will denote the set
of selectors of F(. that belong to the Lebesgue-Bochner space LP(Y); i.e. S- {I e LP(Y):
f(t) e F(t) a.e.}. It is easy to check using Aumann’s selection theorem (see for example Wagner
[8], theorem 5.10), that S is nonempty if and only if the N+-valued function

tinf{ II x II "x F(t)} belongs to Lp+.
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Let H be a separable Banach space and X a dense subspace of H, carrying the structure of a

separable, reflexive Banach space, which embeds in H continuously. Identifying H with its dual
(pivot space), we have X--+H--+X*, with all embeddings being continuous and dense. Such a tri-
ple of spaces is known in the literature as "evolution triple" (or "Gelfand triple" or "spaces in nor-

mal position"). We will also assume that the above embeddings are compact, a condition that is
very often satisfied in applications. By II" II (resp. 1. l, I1" II .), we will denote the norm of X
(resp. of H,X*). Also by (.,. we will denote the duality brackets for the pair (X,X*) and by
(.,.) the inner product of H. The two are compatible in the sense that (.,.)]XxH=(.,.).
To have a concrete example in mind let Z C_ NN be a bounded domain, X- W’P(Z), H

1L2(Z) and X W’P(Z) W m’q(z), 2 _< p < oo, -}+- 1. From the well-known Sobolev’s
embedding theorem we know that (X,H,X*) is an evolution triple and furthermore all em-

beddings are compact. Let W(T)- {x e L2(X): 5: e L2(X*)}. The derivative in this definition is
taken in the sense of vector valued distributions. Equipped with the norm II II W(T)-
[11 II 2L2(x) --t- II 5: II L2(X,)]1/2, W(T) becomes a separable reflexive Banach space. Furthermore

if X is a Hilbert space, then W(T) is too, with inner product (x,Y)w(T)--(x,Y)L2(X)+
(5:,i])L2(X.),x,y e W(T). Note that the elements in W(T) are up to a Lebesgue-null subset of r,
equal to an X*-valued absolutely continuous function, and, therefore the derivative 5:(. ), is also
the strong derivative of the function x:T--+X*. Also, it is well-known that W(T) embeds
continuously into C(T, H). Thus, every equivalence class in W(T), has a unique representative in
C(T,H). Furthermore, since we have assumed that X--+H compactly, we have that
W(T)---+L2(H) compactly. Recently, Nagy [3] proved that if X is a Hilbert space too, then
W(T)--+C(T,H) compactly. For further details on evolution triples and the abstract Sobolev
space W(T) we refer to the book of Zeidler [9] and, in particular, chapter 23.

Let Z and V be Hausdorff topological spaces. A multifunction G:z2V\{o} is said to be
upper semicontinuous (u.s.c.) (resp. lower semicontinuous (1.s.c.)), if for every open s’et U C_ V,
the set G + (U) {z e Z: G(z) C_ U} (resp. the set G- (U) {z e Z’G(z) rq U # 0}) is open in Z.
Other equivalent definitions and further properties of such multifunctions can be found in the
book of Klein-Thompson [2].

3. Existence Theorems

Let T -[0, r] and (X, H,X*) be an evolution triple of spaces with all embeddings assumed to
be compact. We will be considering the following second order nonlinear evolution inclusion"

A(t,5:(t))+ Bx(t)e F(t,x(t)) a.e.

x(0)- x0 E X, 5:(0)- x E H.

By a solution of (,), we understand a function x C(T,X) such that 5: @ W(T) and an

f S( such that 5(t)+ A(t,5:(t))+ Bx(t)- f(t) a.e. with x(O)- x0 and 5:(0)- x(.))
Recall (see Section 2), that W(T)C(T,H) and so the initial condition 5:(0)- x H makes
sense.

First we prove an existence theorem for (,), for the case where the multivalued perturbation
term F(t,x) is convex-valued. To this end, we will need the following hypotheses on the data of
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H(A): A: T X-X* is a map such that
(1) t-A(t, v)is measurable,
(2) v--A(t,v) is monotone, hemicontinuous (i.e. for all v, v’E X, (A(t,v)- A(t,v’),

v-v’)_O (monotonicity) and for all vectors v, y, xEX, the map
-(A(t, v + y),x) is continuous on [0, 1] (demicontinuity)),

(3_) (A(t, v), v)

_
c II v II 2 a.e. with c > 0,

(4_) II A(t, v) ll . - a(t) + b ll v ll a.e. with a( L+ b>0.
H(B): B (X,X*), Bx, y) (x, By) for all x,y X (i.e. B is symmetric) and

(Bx, x) >_ c’ II x II with c’> 0.
H(F)I" F: T H-PIc(H is a multifunction such that

(1) t-F(t,x) is measurable,
(2_) xF(t,x) is u.s.c, from H into Hw,
(3) IF(t,x) -sup{Ivl’vGF(t,x)}<al(t)+bllxl a.e. withal(.)EL2+,b1>0.

We will denote the solution set of (.) by S(Xo, Xl) C_ C(T,X).
Theorem 3.1: /_f hypotheses H(A), H(B), H(F)I hold and xo X, x1 H, then (x0, Xl) is a

nonempty and compact subset of C(T,X).
Proof: First we will derive some a priori bounds for the solutions of (.). Let x(.)G

C(T,X) be such a solution. Then, by the definition, for some f G S(. ,x(. )), we have

(t) + A(t, ic(t)) + B(x(t)) f(t) a.e.

it yields ((t),ic(t)) + (A(t,&(t)),ic(t)) + (Bx(t),&(t)) (f(t),ic(t)) a.e. (1)

Since & E W(T), from proposition 23.23 (iv), p. 422 of Zeidler [9], we know that

((t), (t)) 1/2 (t) .
Also because of hypothesis H(A) (3), we have that

(A(t,&(t)),ic(t)) >_ c ]l k(t) ]l 2
aoC, (3)

Using the product rule and the symmetry hypothesis on B, we get

t.(Bx(t),x(t)) (B&(t),x(t)) + (Bx(t),&(t))

=2(Bx(t),&(t)). (4)

Substituting (2), (3) and (4)into (1)above, we finally have

1 d 2 2
2 dt (t) / c II (t)II / 1/2 (B(t),(t)) <_ (f(t),5:(t)) a.e.

Integrating the above inequality, we get that

1 221 (t) --1/2IX1
o 0
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it yields

(t) 12 + 2c / II ()II d + c’ II (t)II <_ M + 2 / (f(s),2(s))ds
0 0

where M Ix1 2 + II B II II o II 2.

Applying Cauchy’s inequality with e > 0, we get

0

(2al(s)2q 2b lx(s) 12)ds-4--/ [c(s) 12ds
0 0

</ (al(8)2A-b12’x(s)i2)dsq-2--j f12 ]}(8)112"
0 0

where /3 > 0 is such that I" _< fl II. II. It exists since by hypothesis X--+H continuously. So,
we have

[(t)[ 2+2c/ [[(s) ll 2ds+c’[[x(t) l[ 2

0

< M A-e II al I1 + Cb x(s) ds+ II ()II =d.
0 0

Z2 2Let We- 2c implies that e- -. Then we have"

&(t) 2 -- - x(t) 2 M +- 11 a 1] 2
2 ----’1 ]x(s) 2ds"

0

From (,) by neglecting b(t) 2 and using Gronwall’s inequality, we get

t-" _M2Ix(t)[ 2 <_ --M +- ll al I1 exp 4cc, r 2, E T.

CUsing (6) and neglecting () in (,), we obtain
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5:(t) 2 _< M +-II al [[ 2
2 q---’1 (7)

Coming back to (5) and using estimates (6)and (7)above, we get

II II L2(x)_< 2-(M + 2 II al [[22 + M22r + M2r)l M23 (8)

Finally, from (5) and (8), we deduce that

II (t)II 2 ,,(M + 2 II al II. + 2bMr + Mr) M4 (9)

Finally, let p e L2(X) and denote by ((.,.))0 the duality brackets for the pair (L2(X),
L2(X*) -L2(X)*).:.. Also let :L2(X)---,L2(X*) be the Nemitsky operator corresponding to the
map A(t,x); i.e. (Ax)(t)- A(t,x(t)). Then we have:

((’, P))o -< ((A(&), P))o[ -I- ((Bx, P))ol + ((f, P))o

[ll A(x)II L2(X.) + II B [I L2(x,) + II f II L2(x.)] I[ p II L2(x)
[11 a II 2 q- bM3 q- [IB l[ .Mrrl/2 q- fl’ II al II 2 q- fl’blM2rl/2] [[ P II L2(x),

where fl’> 0 is such that II II. ’l I. It exists since H-,X* continuously. Since p C L2(X)
was arbitrary, we deduce that there exists M5 > 0 such that for all x E S(Xo, Xl), we have

II II L2(X,) -- M5" (10)

From (8) and (10) above, we deduce that the set

S’(XO, XO)- { C W(T):x C S(XO, Xl) }

is bounded, hence relatively weakly compact in W(T).
Now introduce the following modification of the original orientor field F(t,x)"

F(t,x) if Ix _< M2
F(t,x)

M2xF(t,---(-) if I1 > M2.

Observe that F(t,x)- F(t, pMu(X)), where PMu(’)is the Me-radial retraction in H. Since

pM2(. is Lipschitz continuous, we have, using hypothesis H(F)I that t-F(t,x) is measurable

while x--F(t, x) is u.s.c, from H into Hw. Furthermore, note that F(, )1 _< () / bM ()
.., with (. L\. Let K {h L(H) h()[ _< ()a..}. Thi t, dowCd with the rela-
tive weak L2(H)-topology, is compactly metrizable. In what follows, this will be the topology con-

sidered on K. Let 7: K--C(T, X) be the map which to each h K, assigns the unique solution of
the initial value problem (t)+ A(t,&(t))+ Bx(t)- h(t), x(0)- x0, :(0)- x (see Zeidler [9],
theorem 33.A, p. 224). We claim that 7(" is continuous. To this end, let hn--h in K and let
xn "y(hn). Recall that {&n}n > C_ W(T) is relatively weakly compact. Hence, by passing to a

subsequence if necessary, we may assume that w
xny in W(T) Let x 7(h). We need to show

that y- ’. We have:
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(n(t)- (t),&n(t ie(t)) + (A(t, ien(t))- A(t,k(t)),ien(t

+ (Bxn(t) Bx(t),&n(t

(hn(t) h(t), ien(t ie(t)) a.e.

Exploiting the fact that A(t,. is monotone and using the integration by parts formula for
functions in W(T) (see Zeidler [9], proposition 23.23, p. 422), we get

l d 2 (t)),ie(t) ie(t))<_(hn(t h(t),ien(t ie(t))a.e.2 dt lien(t) ie(t) + (B(xn(t)- x

But, as before, exploiting the symmetry of the operator B, we have

(B(xn(t) x(t)), ien(t ie(t)) 1/2 t(B(xn(t)- x(t)), xn(t x(t)).

So ,we get:

1 d 2
2 dt lien(t) &(t)] +1/2 t(B(xn(t)- x(t)),xn(t x(t)) <_ (hn(t) h(t),ien(t e(t)) a.e.

Integrating and recalling that xn(O x(O)- Xo, 5n(O 2(0)- Xl, we have:

2 (t)- (t) +1/2(B(x(t)- x(t)),x(t)- x(t))

_
(h(s)- h(s),(s)- c(s))ds

0

which yields

-II ,(t)- (t)II 2 < (h,()- h(), :,(s)- :())d
0

which yields

II n(t)- (t)II 2 < 2__/ (hn()_ h(), n()- ())d
C

0

Note that hh in L2(H) and icn-y in W(T). Since W(T)L2(H) compactly, we have that
iCnAy in L2(H). Thus we have:

(hn(s h(s),#,n(S ,(s))ds
o

/ (hn(S) h(s), n(S)- y(s))ds -t- / (hn(S) h(s), y(s)- (s))ds---O as n---,cx:.

o o

So x(t)-Lx(t) in X yields ic y E W(T). Now note that

II x(t)- (t)II 2 < II hn- h II g2 II IIc’ (H) n L2(H)

<Nforalln> 1 and someN>0. ThusSince hnh in K, we have 1[ hn -h II L2(H)



Existence of Solutions for Second-Order Evolution Inclusions 531

Il xn(t) x(t) l[ 2 < 2N [l ie --kill2c’ ’ (H)

which implies that 3’(" is indeed continuous as claimed.

Let R" K--2K be the multifunction defined by

/(h)- S
(.,(h/(.//

First we will show that R(. has nonempty values. Let sn(. be simple functions such that
sn(t)-L3"(h)(t a.e. in H. Then because of hypothesis H(F)I(1), for each n _> 1, t(t, sn(t))is
measurable. Apply Aumann’s selection theorem to get fn:TH measurable such that fn(t)E
(t, Xn(t)) a.e., n _> 1. Note that If(t) _< (t) a.. with (.)E L2+. Hence by passing to a
subsequence if necessary, we may assume that f.f in L2(H). Then theorem 3.1 of [6], tells us
that

f(t) e cony w-lim{f(t)} >

C__ cony w-limF(t, sn(t))

C_ F(t, 7(t)(t)) a.e.

The last inclusion follows from the fact that F(t,. is u.s.c, from H into Hw and since sn(t)--*
3’(h)(t) a.e. in H. Therefore f E $2-- and so we have established that the values of the

F(.,p(h)(.))
multifunction R(. are nonempty. Also since F(t,z) is Pyc(H)-valued, it is clear that for every
hE It’, R(h)E PIc(K). Furthermore using theorem 4.2 of [6] and recalling that 3’(-)is
continuous on K into C(T,X), we get that R(. is u.s.c. Apply the Kakutani-KyFan fixed point
theorem to get h E R(h). Then z- 3’(h)is a solution of (,), with F(t,z) replaced by F(t,z).
But as in the beginning of the proof, with the same a priori estimation, we can show that
z(t) _< M for all t T implies that F(t,z(t)) F(t,z(t)) and this yields that z(. solves (,).

Finally to establish the compactness of S(Xo, X1) in C(T, X), note that S(Xo, x1)

_
3"(K) and

the latter is compact in C(T,X) since 3’: KC(T, X) is continuous So it suffices to show that

S(Xo, Xl) is closed in C(T, X). So let {xn}n > -- S(X0’Xl) and assume that xnx in C(T, X).
Then by definition xn 3’(In) with In S(.)(n(. ))" Note that because of hypothesis H(F)I(
fn(t) al(t + bl where sup II Xn II C(T,X)" So we may assume that fnf in L2(H)
implies that 7(f)7(f)in C(T,X) which yields x 7(/)and from theorem 3.1 of [6], we have
that f(t) cony w-li {f(t)} > COV W--liF(t, Zn(t)) F(t,x(t)) a.e. which yields
X e S(xO, x1). Q.E.D.

Now we consider the case where the multivalued perturbation term F(t,x) is not necessarily
convex-valued. We will need the following hypothesis on the orientor field F(t,x).
H(F2)" F: T x H--PI(H is a multifunction such that

(1) (t,x)-F(t,x) is graph measurable; i.e. GrF {(t,x,y) E T x H x H:y E
F(t,x)} E B(T)x B(H), with B(T)(resp. B(H)), being the Borel r-field of T
(resp. of H) (recall that measurability of F(.,. )implies graph measurability).

(2) x-F(t,x) is 1.s.c.
(3) F(t,x) sup{ y "y E F(t,x)} < a(t) / b x a.e. with aa( E L2+

b>0.
Theorem 3.2: I_[ hypotheses H(A), H(B), H(F)2 hold and xo E X, X E H, the._._n S(X0, Xl)
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Proof: As in the proof of theorem 3.1, let F(t,x) F(t, PM2(X)) (it is clear that the same a

priori estimation is valid in the present situation). Then given that PM2(. is Lipschitz contin-
uous, we have that (t,x)--(t,x)is graph measurable, x--(t, x) is 1.s.c. and furthermore note
that I(t x) < al(t)+blM2-(t) a.e.with(.)EL:

Let Y C_ LI(H) be defined by Y- {h E LI(H): Ih(t) < (t) a.e.}. From proposition 3.1 of
[5], we know that V, equipped with the relative weak Ll-(H)-topology, is compact metrizable.
Consider the multifunction F: V--Pf(LI(H)) defined by F(h)- $1 t is easy to check

(.,()( .))"
using the continuity of "(.) and theorem 4.1 of [6], that F(-) is l.s.c. note that if h,-h in
Y C_ LI(H), then hnW--h in L2(H), since (. L2+). So, we can apply Fryszkowski’s continuous
selection theorem [1], to get k:Y-Y continuous such that k(h)e R(h). Applying the Schauder-
Tichonov fixed point theorem, we get h Y such that h- k(h). Then x- p(h) solves (.) with

F(t,x) replaced by F(t,x). But as before we can check that Ix(t) < M2 which implies
F(t, x(t)) implies that F(t, x(t)) which yields x S(Xo, x1). Q.E.D.

4. An Example

In this section we present an example of a nonlinear hyperbolic partial differential inclusion
illustrating the applicability of our work.

So let T- [0, r] and Z a bounded domain in N, with smooth boundary F- OZ. We will
consider the following initial-boundary value problem of hyperbolic type with multivalued terms.

N

{
c92x Ax-EDi(k(t, IDxtl2)Dixt)E[fl(t,z,x(t,z)),f2(t,z,x(t,z))]Or2 i= 1 (**)

X T x F 0, x(0, z) Xo(Z), xt(0 z) xl(z).

N
DxDy- DixDiy

i=1

0 i--1 N Dx-(DlX DNX)-grad(x),Here Di Dz. 1’ and

N

i=1
We will need the following hypotheses on the data of (**):

H(k): k" T [+-+ ’is a function such that
(1) t---k(t,#) is measurable,
(2) #---k(t, #) is continuous,
(3) 0 < k(t,2) < L for all (t,) T x +, with L > 0 and k(t,O) O,
(4) k(t, A2)A- k(t, #2)# > d(A- #) for all A, # G +, A > # and for some d > 0.

H(f)" fl,f2"TxZx---.N are measurable functions such that x-fl(t,z,x),-f2(t,z,x) are
1.s.c. and fi(t,z,x) <_ a(t,z) + bl(Z) X a.e. i-1,2 with el(. ,-)L2(TxZ),
b(. Lc(Z) and fl ( f2

A0: x0( )e H10(Z), Xl(" )C L2().
In this case, X-H(Z), H-L2(Z) and X*-H(Z)*-H-I(z). We know that

(X,H,X*) is an evolution triple with all embeddings being compact (Sobolev embedding
theorem). Consider the following Dirichlet forms:

Z i-1 Z

and a2(x y) DixDiydz DxDydz

Z i-1 Z
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for all x, y E Hlo(Z).
Using hypothesis H(k) (3_), we get

al(t,x,y)] _LIIXl]H(Z) I[yl]H(Z).
So there exists a nonlinear operator A: T X--X* such that

(A(t,z),y) al(t,x,y).

From Fubini’s theorem we have that t---al(t,x,y is measurable which implies that t-A(t,x)
is weakly measurable. But H-I(Z) is a separable Hilbert space. So the Pettis measurability
theorem tells us that t--,A(t, x) is measurable. Also if xn-x in H(Z), then by passing to a

subsequence if necessary, we will have that IDxn(z) 12-- IDx(z) 2 a.e. and since by hypothesis
U(k)(2_) k(t,. is continuous we have k(t, [nxn(z)[2)--k(t, nx(z)[ 2) for all t E T and almost
all z Z. Also DixnA*Dix in L2(Z). Thus f k(t, Dxn 2)DxnDydz- f k(t, Dx 12)DxDydz

z z
implies that A(t, xn)A(t,x which yields A(t,.)is demicontinuous, this.hemicontinuous. Also
we have

(A(t, x)- A(t, y), x y) / (k(t, Dx 12)Dx- k(t, Dyl2)Dy)(Dx- Dy)dz.
z

Then, because of hypothesis H(k)(2) and lemma 25.26 (b), p. 524 of Zeidler [9], we have

(A(t, x)- A(t, y), x- y) >_ c II x- y II /(z),C > 0

which yields that A(t, is strongly monotone.

Also since k(t,O)- 0 (by hypothesis H(k)(3_)), we have A(t,O)- 0 yields that A(t,.)is
coercive; i.e. (A(t x),x) > c II x ]1 2H1(, Thus, wesatisfied hypothesis H(A).z)"

Next note that by the Cauchy-Schwartz inequality, we have

So there exists a continuous linear operator B: X-X* such that

(Bx, y) a2(x y).

Clearly (Bx, y)- (x, By); i.e. B is symmetric and by Poincar’s inequality, we have (Bx, x) >_
c’ II x II (Z)’ c’> 0. Therefore, we satisfied hypothesis H(B).

Next let F:TL2(Z)--PIc(L2(Z)),,,,//bedefinedby

F(t,x) {h L2(Z): fl(t,z,x(z)) <_ h(z) <_ f2(t,z,x(z)) a.e.}.

Let rl:TxZxR--Pic(R be defined by q(t,z,x)--[fl(t,z,x),f2(t,z,x)]. Because of hypo-
thesis H(f), we deduce that r/(., .,-)is measurable while rl(t,z,. )is u.s.c. (see Klein-Thompson

2 So, from theorem 4.2 of [6], we have that F(t,. )is[2], p. 74). Note that F(t,x)- cov(t, .,x(.))"
u.s.c, from H into Hw, while clearly t-F(t,z) is measurable. Also, IF(t,x) sup{lylL2(Z):
y F(t,x)} < 3l(t) /’1 x L2(Z), with 31(t) II a(t,.)ll L2(Z), "gl II b II LO(Z) Thus, we

satisfied hypothesis H(F). Finally, let ’0- x0(" )e H(Z), 1- Xl(" )e L2(Z).
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Rewrite (**) in the following equivalent nonlinear evolution inclusion form:

i (t) + A(t, ic(t))+ Bx(t) F(t,x(t))

x(0)-

Theorem 4.1" I_[ hypotheses H(k), H(f) and H0 hold, then (**) has a solution x e
ox Hlo(Z)) C(T, L2 2x L2(T, H 1C(T,Ho(Z)) such that-bye L2(T, V (Z)) and t2 e (Z)). Also, the

co vac,
Now suppose that (**) corresponds to an optimal control problem; i.e.

fl(t,z,x) f(t,z,x)ul(z

and f2(t, z, x) f(t, z, x)u2(z

with a function f" T x Z x NN + such that (t, z)f(t, z, x) is measurable, x--f(t, z, x) is contin-
uous and f(t,z,x)] <_ al(t,z + bl(Z)X a.e., with al(. e L2(T x Z), bl(. e L(Z). The
control constraint set is defined as

V(t,z) {V e [: tl(Z V t2(Z))

with 0 < ttl(Z < ?/2(Z) M a.e.
b

We are also given a cost functional J(x)- f f L(t,z,x(t,z))dzdt to be minimized over all ad
0 Z

missible trajectories. Assume that L: T x Z x N---N N U { + cx} is a measurable integrand such
that L(t,z,.) is 1.s.c. and (t,z)-M(z)lxl <_L(t,z,x) a.e. with (.,.)eLI(TxZ),
M(. e L (Z). Then, J(. is l.s.c, on C(T,H(Z)), and so, using theorem 4.1 above, we deduce
that this distributed parameter optimal control problem has a solution. Analogous results for
parabolic systems can be found in [4].
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