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ABSTRACT

The question whether it is possible to develop monotone sequences that
converge to the solution quadratically when the function involved in the initial
value problem admits a decomposition into a sum of two functions, is answered
positively. This extends the method of generalized quasilinearization to a large
class.

Key words: Quasilinearization Method, Monotone Sequence, Quadratic
Convergence.

AMS (MOS) subject classifications: 34A34, 34A40.

1. Introduction

It is well known [1, 2] that the method of quasilinearization offers an approach for obtaining
approximate solutions to nonlinear differential equations.

Consider the IVP

x’ f(t,x), x(O) xo on J [0, T].

If f(t,x) is uniformly convex in x for all t E [0, T], then the method of quasilinearization provides
a monotone increasing sequence of approximate solutions that converges quadratically to the
unique solution. Moreover, the sequence provides lower bounds for the solution. Recently, the
method of quasilinearization has received much attention after the publication of [9]. Since then,
there has been a lot of activity in this area and several interesting results have appeared (see, for
example, [4, 5, 6, 7, 8, 10, 11]).

In this paper, we show that it is possible to develop monotone sequences that converge to the
solution quadratically when f admits a decomposition into a sum of two functions F and G with
F + concave and G + convex for some concave function and for some convex function .
Theorem 2.1 extends Theorem 3.1 in [7] in the setup of [6]. However, we follow the direct

approach discovered in [5] rather than the complicated multistage algorithmic method reported in

[6]. We do not consider the corresponding results given in [7] that are generated by assuming
various coupled upper and lower solutions with suitable extra assumption to avoid monotony.
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Clearly, based on our results and those of [7], it is not difficult to construct the proofs of other
possible combinations.

2. Main Result

Consider the initial value problem (IVP)

x’ f(t,x), x(O) xo, t J [O,T] (2.1)

where f E C[J x R, N]. Let a0, 30 E C’[J, R] such that a0 _</0 on J. We define a set

f {(t,x):ao(t <_ x <_ o(t),t

Theorem 2.1: Assume that

A1)
A)

ao,o C’[J,] such that a’o <_ f(t, ao) ’o >- f(t,o) and ao <_/o on J;
f C[,], f admits a decomposition f F +G where Fx, Gx, Fz x, Gxx exist and
are continuous satisfying Fxx(t x) + Cxx(t, x) <_ 0 and Gxx(t x) + Cxx(t, x) >_ 0 on

f], where , C[f,], Cx(t, x), Cx(t, x), Cxx(t, x), Cxx(t, x) exist, are continuous
and Cxx(t,x) < O, Cxx(t,x) > 0 on f.

Then there exist monotone sequences {an(t)} {n(t)} which converge uniformly to the unique
solution of (2.1) and the convergence is quadratic.

Proof: In view of (A2) we see that

and

F(t,y) <_ H(t,x)- Hx(t,x)(x- y)- (t, y)

G(t,x) >_ M(t,y) + Mx(t,y)(x- y)- (t, x)
(2.2)

for x >_ y, x,y G f, where H(t,x) F(t,x) + (t,x) and M(t,x) G(t,x) + (t,x).
clear that whenever ao(t _< x2 _< x _</o(t)

Also, it is

f(t, xl) f(t, x2) <_ L(xI x2) for some L ) 0. (2.3)

Let al, fll be the solutions of linear IVPs

ci f(t,cO)+ [Mx(t, a0) + Hx(t,O) Cx(t, Co)- Cx(t,/3o)](c1 -ao), O1(0 X0, (2.4)

and

/31 f(t,/3o) + [Mx(t, ao) + Hx(t, 13o)- Cx(t, ao)-x(t, t3o)](131 /o), /1(0) X0’ (2.5)

where ao(0) _< xo _</3o(0).
We shall prove that ao<_a1 onJ. To do this, let p-ao-casothat p(0)_<0. Then

0 1

<_ f(t, ao) If(t, ao) + {Mx(t, ao) + Hx(t, o) Cx(t, ao) Cx(t,/0)}(Ctl Ct0)]

[Mx(t, ao) + Hx(t, 0) x(t, c0) x(t, 0)]P"
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Since p(0) _< 0, we get Oo(t _< Ctl(t on J.
Now

Next we let p- ctI --flO and note that p(O) _< O.

<_ f(t, Co) + [Mz(t, Co) + Hx(t, o) (t, Co) Cx(t,/0)](Ctl Ct0) f(t, fl0)"

But since/3o > Co, using (2.2) and (A2) we have

and
r(t, o) < H(t, flo) H(t, flo)(flo o) (t, o)

G(t,/3o) >_ M(t, o) + M(t, Oo)(flo Oo) (t, flo),

or

F(t, Co) <_ F(t,/3o) Hx(t, flo)(flo Co) + [O(t,/30) (t, Cto)

and

G(t, o) >- G(t, Co) + Mx(t, Co)(flo Co) [(t, flo) (t, Oo) ].

Now, by using the mean value theorem,

(t, flo) (t, o) (t, )(flo o)

and
6(t, #o) 6(t, o) 6(t, 6)(#o o),

where co < , 5 </3o. Because Cx(t,x) is decreasing in x and Cz(t,x) is increasing in x, it follows
that

and
(t, flo) (t, o) -< (t, o)(o o)

(t, o) (t, o) -< (t, flo)(flo o).

Thus we get

F(t, Co) <_ F(t,/30) [Hx(t,/30) (t, ao)](flo Oo)

and

G(t, /30) >_ G(t, Co) + [Mx(t, Co) Cx(t,/30)](/30 Co)

which in turn yields

P’ < [Mx(t, Co) + Hx(t, o) Cx( t, Co) Cx(t,/o)]P"

Consequently, p(t) <_ 0 on J proving c

_
/0 on Y.
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As a result, we have

s0(t

_
Sl(t

_
/0(t) on J.

Similarly, we can show that ao(t <_/31(t _< flo(t) on J. We need to prove that al(t _</31(t
on J so that it follows

so(t _< Sl(t _< ill(t) <_ flo(t) on J. (2.6)

Since s0 < S1 < fl0, using (2.2) and (2.4), we see that

s’ f(t, So) + [Mx(t So) + Hx(t,/30) (t, So) Cx(t, #0)](Sl S0)

[F(t, So) + Hx(t, 3o)(S So) + [G(t, So) + Mx(t, S0)(S1 S0)

Cx(t, S0)(S1 S0) Cx(t,/0)(Sl S0)

<_ iF(t, So) + Hx(t, s1)(sI S0) -- [G(t, So) - M(t, S0)(S1 S0)

Cx(t, S0)(Sl S0) Cx(t,/0)(Sl S0)

<_ [F(t, Sl) -- (t, Sl) (t, S0) -- [a(t, Sl) -- (t, Sl) (t, S0)

Cx(t, S0)(S1 S0) Cx(t,/0)(Sl S0)

<_ f(t, Sl) -- Cx(t, So)(S1 s0) -t- Cx(t, flo)(sl So)

)x(t, So)(S1 s0) Cx(t, flo)(sl So)

f(t, sl).

Here we have used the mean value theorem and the facts that Hz(t,x), x(t,x) are decreasing in
x and x(t,x) is increasing in x.

Similarly, we can prove that /3] > f(t,31) and therefore by Theorem 1.1.1 [3], it follows that
sl(t </31(t on J which shows that (2.6) is valid.

Assume now that for some k >1, s -< f(t, sk), ’k > f(t,k) and sk(t _< k(t) on J, we
shall show that

Sk(t) Sk + 1(t) k -t- (t) flk (t) on J, (2.7)

where sk + and/3k + are the solutions of linear IVP’s

Sk + f(t, sk) + [Mx(t sk) + Hx(t k) (t, sk) (t,/3k)](sk + 1 Sk)’

Sk + 1(0) X0, (2.8)

and

’k + f(t,) + [Mx(t, sk) + Hx(t, k) x(t, sk) Cx( t,/3k)](/3k + --/k)’
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(2.9)

Hence setting p- ak -ak + 1, it follows as before that

p’ <_ [Mx(t ak) + Hz(t, ilk) Cz( t, ak) z(t, flk)]P on J

and p(0)- 0 which again implies p(t)<_ 0 on J. On the other hand, letting p- ck+a-flk
yields as before p’ <_ [ix(t, ck) + Ux(t, ilk) x(t, ck) Cx(t, /)]P" This proves that p(t) <_ O,
since p(0) 0 and therefore we have ck _< ck + -< k on J. In a similar manner, we can prove
that

k -- flk -t-1 -- flk on J.

Now using (2.2), (2.8) and the fact flk --> ck +1 -- Ck’ we get

0 q_ 1 f(t, ak) + [Mx(t, ak) + Hz(t, k) z(t, Ck) Cx(t, flk)](Ck + Ok)

[F(t, ak) + Hx(t, k)(ak + 1 Ck)] -+- [G(t, Ok) q- Mx(t, ak)(ak + 1 Ok)]

Cx(t’ Ok)(Ok q- --Ok)- Cx(t’ flk)(Ok + 1 --Ok)]

<- [F(t, ak) + Hx(t, ak + )(ak + 1 --Ok)] -{- [G(t’k) q- Mx(t, ak)(ak + Ok)]

(t, Ok)(Oek + --Ok)- Cx( t’ k)(Ok + --Ok)

[F(t’ok q- 1) q- (t’Ok q- 1)- (t’ Ok)] -+- [G(t’k q- 1) + (t’Ok q- 1)

)x( ;t’ Ok)(Ok + --Ok)- Cx(t’ k)(Ok + --Ok)

f(t,ok + 1).

Here we have used the mean value theorem and the facts that Hx(t,x), Cx(t,x) are decreasing in
x and Cx(t,x) is increasing in x.

Similar arguments yield ’ >f(t I and hence Theorem 1.1 1 [3] shows thatk+l +1

+ 1(t) -< flk + 1(t) on J which proves (2.7).
Hence we obtain by induction

00 -- OZl Ct2 -- < OZn -- fin -- -- f12 -- fl -- flO on d.

Now using standard arguments, it is easy to show that the sequences {an(t)}, {fin(t)}
converge uniformly and monotonically to the unique solution x(t) of (2.1) on J. Finally, to prove
quadratic convergence, we consider

Pn + l(t)- x(t) n + l(t)-> O, qn + l(t)- n+l(t)-x(t) >_ O.

Note that Pn + 1(0) 0 qn + 1(0)" We then have

p +l--X --Ctn+

f(t, x) If(t, an) + {Mx(t, an) + Hx(t’ n) Cx( t’ an) Cx( t’ fln)](cn +
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{H(t,x)- H(t, an) } + {M(t,x)- M(t, an)} {(t, x)- (t, an)}

{(t, x) (t, an)} {Mx(t, an) + Hx(t, n) Cx(t’ an) Cx(t, n)}(an + an)]_
Hx(t, an)(x an) + Mx(t,x)(x an) Cx(t,x)(x an)

{Mx(t an) + Hx(t, fin) Cx(t, an) Cx(t, fln)J(an + 1 X -- X an)

Hzz(t, )(an n)(x an) + Mxx(t, 5)(x an)2 Cxx(t, 7)(x a.)2

+ Cxx(t, O)(n an)(x an) + {Mx(t, an) + Hx(t n) x(t, an) Cx(t, n)}Pn + 1

{xx(t, O) Hxx(t, ,)}Pn(qn + Pn) + {Mxx(t’ 5) Cxx(t, 7)}p2n

+ {Mx(t, an) + Hx(t’ n) x(t, an) Cx(t, fin)}Pn +_
{xx(t, O)- Hxx(t, )}Pn(qn + Pn) + {Mxx(t, 5) Cxx(t, 7)}p2n

-t- {ax(t, an) -- Fx(t, n)}Pn -l- 1,

wherean<(, 0<flnandan<5, 7<x.

Hence, we obtain

Pn + 1 " (A + B + C)Pn(qn + Pn) + (A + C + D)p2n + (E + K)pn + 1

_< (A + B + C)(2P2
n + q2n) + (A + C + D)p2n + (E + K)pn + 1

Qp2n + Rq2n + SPn + 1’

where on

I(t,x) < A, Ir(t,x) < B, I%x(t,x) < C, Ia(t,x) < D,

la(t,x) <, IF(t,x) <K, Q-3A+2B+aC+D, R-A+B+C

and S-E+K. (2.10)

Now Gronwall’s inequality implies

0 _< Pn + 1(t) < / es(t S)[Qpn(S)+2 Rq2u(s)]ds on g

0

which yield the desired result

maxlx(t)- (t) < Qmxlx(t)-.(t)12/-Rmxl3.(tD-x(t)l 2

j +1 -----Similarly,

q’ x’n+l fln+l

f(t,n)+[Mx(t, an)+ Hx(t,n)-x(t, an)-x(t,n)](fln+ 1--n)--f(t, x)
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{H(t,n)- H(t,x)} + {M(t,n)- M(t,x)} + {(t, x)- (t, n)}

+ {(t, x) (t, fin)} + {Mz(t’ an) + Hx(t, n) Cx( t, an) Cx(t, fn)}(fln + ,)

<_ Hx(t,x)(n- x) + Mx(t, fln)(n x)- Cx(t,n)(n- X)--x(t,x)(n-- X)

+ {Mx(t’ an) + Hx(t,/n) Cx( t, an) Cx(t,/n)}(/n + 1 x x

<_ {xx(t, O) Hxx(t t)}(n x)2 + {Mxx(t, 5) Cxx(t, ")’)}(fin an)(n x)

+ {Gx(t, an) + Fx(t, n)}(n + 1 x)

{xx(t, O) Hxz(t t)}q2n + {Mxx(t, 5) Czx(t, 7)}(qn + Pn)qn

+ {Gx(t, an) + rx(t, tn)}qn + 1

where an < , O < fln and an < 5, 7 < x.

Hence, we obtain

q’ + <_ (A + B + C)q2n(A + C + D)q,(qn + p,) + (E + K)qn + 1

<_ (A + B + C)q2n + (A + C + D)(2qn + Pn) + (E + K)qn +1
2-Q*q2n+R pn+Sqn+

where the constants A, B, C, D, E, K and S are as in (2.10) and Q*-3A+B+3C+2D,
R*-A+C+D.

An application of Gronwall’s inequality yields

O <_ qn + l(t)-< eS(t S) Q,q2n(s) + R pn(s) ds on J
0

and hence

maxj /n + l(t)- x(t) _< e-Q*rnx .(t)- x(t) + R*maxj Ix(t)

This completes the proof of the theorem.
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