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ABSTItACT

Some asymptotic properties of the nonoscillating solutions of operator-
differential equations of arbitrary order are investigated.
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1. Introduction

The goal of the present paper is, by means of a single approach, to investigate some

asymptotic properties of the nonoscillating solutions of differential equations with "maximum",
with distributed delay, with autoregulable deviation, with integro-differential equations, and with
other properties. To realize this single approach, an operator with certain properties is
introduced, as well as appropriately chosen operator-differential equations and inequalities. In the
paper, some results obtained in [2]-[4], [6], [7], [10], [11] are generalized.

Each of the concrete realizations of the operator introduced generates a class of differential
equations which find application in the theory of optimal control, theoretical physics, population
dynamics, pharmacokinetics and economics.

We shall note that the ordinary differential equations with "maxima" (where the operator A
considered has the form (Ax)(t)- max (x.(s))are still seldom studied. On the other hand, such

e [a()
equations arise, for instance, in the mathematical simulation of some systems with automatic
regulation. We shall illustrate the above by an example a mathematical model of a system fo.r
automatic regulation of the voltage of a constant current generator ([5], [8]).
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The object regulated is a constant current generator with parallel stimulation. The quantity
regulated is the voltage between the clamps of the generator which feeds an electric circuit with
various consumers. External disturbances f(t) occur under a change of the consumption of
electricity in the circuit or under a change of the normal angular velocity of the rotor of the
generator. They cause an undesirable deviation of the voltage u(t) from the previously fixed
regime u0 const. The automatic regulator is intended to maintain a constant voltage u0 under
external disturbances. It consists of a measuring device and of a regulating device which are
connected in series. Under a deviation x(t) of the voltage from the fixed stationary regime u0, the
regulating device (rheostat) changes the resistance v of the stimulating circuit. Then as a result
of this correction 5 A-, the voltage produced returns to the stationary regime u0.

The dynamics of the process of regulation of the voltage is described by the equation

Tox’(t + x(t) go6(t) + f(t)

where x(t) is the deviation of the voltage from the given regime u0, To is a constant of time
dimension which depends on the inductivity of the stimulating circuit and on the static
characteristics of the generator, t0 is the amplification factor of the object, and f(t) the external
effect.

On the other hand, the equation of the "ideal" regulator which corresponds to the maximal
deviation of the voltage in an interval of time h has the form

5() ’1" max{x(8), 8 e [t h,

where 1 is the amplification factor of the regulator. Then the equation of the system for
automatic regulation of the voltage of a constant current generator takes on the form

Tox’(t + x(t) + tCog rnax{x(s), s E It h, t]} f(t).

2. Preliminary Notes

Consider the operator-differential equation

[’n l(t)[Vn 2(t)[ "[Vo(t)x(t)]"" "]’]’]’ +.SF(t, (tx)(t)) b(t) (1)

for t_> to, where t0. E N is a fixed number, n >_ 1 is an integer, A is an operator with certain
properties, 5 + 1 and

rie Cn-i([to, oC);(O, oc)), i-0,1,...,n-1, beC([to, oC);).

Introduce the following notation"

(Lix)(t) Ti(t)[(L lx)(t)] ’, <_ <_ n, rn(t 1,

where x" [Tx, oc)--N, Tx >- to"
Denote by n the set of all functions

(0 _< _< n) exist and are continuous in [Tx, oc).
x e C([Tx,oo),N) such that the functions Lix
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Definition 1" The function x is said to be a solution of equation (1) if x E n and x satisfies
equation (1) for t

_
max{T

Definition 2: A given function u’[t0, c)--,R is said to eventually enjoy the property P if there
exists a point tp, u - to such that for

_
tp, u it enjoys the property P.(See note from proofer)

Definition 3: The solution x of equation (1) is said to be regular if sup{lx(t) l} > 0 event-
ually.

Definition 4: The regular solution x of equation (1) is said to oscillate if sup{t,x(t)- O)-
c. Otherwise, the regular solution x is said to be nonoscillating.

Introduce the follow.ing conditions:
H1-
//2:

H3:

H4:
H5:
H6:
HT:

H8:

H9:

Lemma 1 [11]: Let the following conditions hold:
1. Conditions H1- H3 are met.. %, () > o fo >_ T (T >_ o)"
3. (L,x)(t) is of constant sign in [T,c).

v G Cn- ’([to, cxz); (0, cx)), 0 _< _< n.
6-+/-1.

ri(t)
cx:, 1 _( n- 1.

e c([0,);).
A"C([TAx, ); ), TAx 0"
If u, v G n and u(t) v(t) for t0, then (Au)(t) (Av)(t) for TAx.
If Up, UGn (P=1,2, and {u } 1 is a monotone sequence and limu(t)-p P p -u(t) for t to, then l(AUp)(t): (Au)(t) Ibr each t o.
If u @n and the nction u is eventually of constant sign and nonzero, then the
function Au is also eventually of constant sign and nonzero, and they have the same

sign.
F c([o,)( + vu_ )),u + (0,),u_ (- ,0).

Then there exists an integer g such that:
1. For (Lnx)(t) <_ O, n + e is an odd number.

3.2" FOrlt-(L’x)(t) > ,10’ n + is an even number.
(- 3(nj) >_O for

_
n-1, j g,...,n-1; >, T.

4. (Lix)(t) > O for > l, 1<_ <_ -1, >_ T.

Lemma 2 [11]" Let the following conditions hold"
1. Condition H1 is satisfied.
2. 0 < liminf ’i(t < limsuPvi(t < c,l < < n- 1.

cx cx

Then, if one of the following two conditions hold:
1. Lox is a bounded function in [T, cx) and/Lm(Lnx)(t -O.

2. Lnx is a bounded function in [T,c) and t--clim(n’x)(t)G R, then tcx)lim(Lix)(t)-O’
l<i<n-1.

For any function y C([T, cx);N) and for any integer l, 0 _< t _< n define the function
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1 / .. / 1 / 1 / y(s)dsdsn_l..ds2dSl’T0(t) 7"1 1) T2(S2)’’" Tn-i(Sn-i)
s sn 2 sn

for -0

Sl s_ 1 oo oo

1

T
j( 1 Tar 1 ../ 1 1 ../ y(s)ds..dsds, 1" "ds2dSlT0(t) 7"i(81) 7"2(82)’"

T
7"e(se) 7"eTl(Se+l )"

Sn_

for 0 < t<n-1

Sl 8n 2 8n

lTfl Tfl / 1)/y(s)dsdsn-l""ds2dSl fr-n7"0(t) 7"1 (81) 7"2(s2) 7"n (Sn -1
T T

3. Main Results

Theorem 1: Let the following conditions hold:
1. Conditions H1-H9 are met.
2. There exists a function w defined in [to, oo) such that w @n and (Lnw)(t) b(t).
3. The function Low is bounded below in the interval [to, oo).
4. There exists a positive solution y of the inequality

5(Lnx)(t + F(t, (Ax)(t)) <_ 5 b(t) (2)

such that lira inf(LoY)(t > O.

F(t, u) > 0 for (t, u) G [to, oo) [R5. +
respect to u G R +.

Then there exists a positive solution x of equation (1) with the following properties:
1. tim inf(Lox)(t > 0

o

2. x(t) < y(t) eventually. (3)
Proof: Let y(t)> 0 be a solution of inequality (2) in the interval [T0, oo (To >_ to) and

lim inf(LoY)(t > O. Then (Ay)(t) > 0 eventually.

Introduce the following notation:

and F,(t,u) is an increasing function with

1.1im inf(Low)(to(t)-(t)-o(t),_+
u(t)-y(t)-wo(t).

Then 0 < F(t, (Ay)(t)) <_ -6(Lnu)(t eventually, i.e. the function (Lnu)(t) is of constant sign
for >_ T0. Hence the function Lou is monotone in [T0, oo). This fact implies the existence of
lira (Lou)(t) G tO { c, + cxz}.



Asymptotic Propertis of the Solutions of a Class of Operator-Differential Equations 557

But lira (Lou)(t) -lira inf(LoY)(t > 0. Thus we obtained that u is an eventually positive
t---,oo t--c

function. Let [-, oc), v >_ TO be the largest interval in which the function u is positive.

From Lemma 1 it follows that there exists an integer t (0 _< g _< n) such that
1. n + t is an odd number for 6- 1.
2. n + t is an even number for 6 1.
3. (- 1) + J(Lju)(t) >_ 0 for

_
n- 1; j t,...,n- 1; _> v.

4. (Liu)(t)>Ofor t>l, l_i_-l, t_>v*>_v.

Introduce the following notation:

for g--0 or -- 1

v for g> 1

lira (Lou)(t) 0

(Lou)(T), > O.

From condition HI and the fact that the function u is eventually positive it follows that
0. From (2) we obtain that g < (Lowo)(t) eventually, i.e. :0(t) -F wo(t > 0 for >_ T.

After a repeated integration of inequality (2) we obtain that

(t) > ((r( t).0(t) + 0(t)+
, t))(

Let X be the set of all continuous functions x for t > T such that

o(t)+o(t) <_ (t) <_ u(t).

For any function x E X define the function (t):

x(t),
(t) (T)

() (t),

t>T

To <_t <_T.

From the definition of 5 (t) it follows that

.o(t) F wo(t)

_
(t)

_
y(t), > TO

Define the operator S: XE by the formula

((F )))(t)(Sx)(t) o(t) + o(t) + (. ,,t

where E is the set of all continuous functions in [To, oo).
The inclusion SX C X is valid since:

1. From the definition of the operator S it follows that

+o(t) <_ (sx)(t), >_ .
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From condition 3 of Theorem 1 and condition H6 we obtain that

() > (s.)().

Let xl,x2 E X and 0 < x(t) < x2(t ). From the definition of the operator S it follows that
0 < (Sx)(t)< (Sx2)(t) for t> To, i.e. S is a monotone increasing mapping of the set X into

itself. Let {xn(t)] n =o be a monotone decreasing sequence of elements of the set X for t > T
obtained by the following recurrent formula:

0() v(), > T

(t)- (s,_ )(t), _> T. (4)

Letnlmxn(t x(t) for > T. Thennlm(Axn)(t -(Ax)(t). From the Lebesgue dominated

theorem we obtain that lm(Sx,)(t)- (Sz)(t) for t> T. But from (4)it followsconvergence

that nlirn(Sxn)(t)- x(t). Then we obtain that (Sx)(t)- x(t), i.e. x(t)is the positive solution

sought of equation (1) such that lira inf(Lox)(t > O, x(t) < y(t) eventually. El
t--c

Theorem 2: Let the following conditions hold:
1. Conditions 1 and 2 of Theorem 1 are met.
2. The function Low is bounded above for t >_ o.
3. There exists a negative solution y of the inequality

5(Lnx)(t + F(t, (Ax)(t)) >_ 5b(t)

Then there exists a negative solution x of equation (1) with the properties:
1. lira sup(Lox)(t < 0. x( >_ ( tualy.

The proof of Theorem 2 is carried out along the scheme of the proof of Theorem 1.

Theorem 3: Let the following conditions hold:
1. Condition 1 of Theorem 2 is met.. i (Lo)(t) .

t

3. g(t, ) > 0 o (t, ) Ito,) x n +, (r(t, ) < 0 o (t, u) Ito, ) x n
Then each positive (negative) solution of equation (1) enjoys the properly

such that lirn sup(LoY)(t < O.
oo

F(t,) < 0, (t,u) ([to,) a_), F(t,u) is a icreain9 function ith sct to

(5)

_).

lira (Lox)(t) U { oo, + oc}. (6)
x

Proof: Let x be a positive solution of equation (1) in the interval [T, oo), T >_ 0.

Introduce the notation:

wo(t)- w(t)- 1
o( "L% )(
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u() ()- o(), >- T.

Then (Lnu)(t) -SF(t,(Ax)(t)), i.e. Lnu is of constant sign in the interval IT, oc).
implies that Lou is a monotone function for >_ T, i.e. there exists

This

tlm(Lou)(t) E U { c, +

But tclim (Lou)(t) -tli_.rn(Lox)(t), i.e. there also exists tlrn(Lox)(t) e t_J { oc, + oc}.

Theorem 4: Let the following conditions hold"
1. Conditions 1, 2 and 5 of Theorem 1 hold.
2. There exists a positive solution y of the equation

(Lnx)(t) + 5F(t, (Jx)(t)) 0

such that tlm(LoY)(t) > O.

Then there exists a positive solution x of equation (1) with the properties"
1. lira (Lox)(t) > O,

cx). x(t) < (t)
Proofi Let y be a positive solution of equation (7) in the interval [T0, oc), TO > o and

]L(o)(t) > o.
Introduce the notation"

1wo(t w(t) vo(t tli_,m(Low)(t)
u(t)-y(t)+wo(t).

Then lira (Lou)(t) lira (LoY)(t) > O.

Choose a constant C such that 0 < C < lira (Lou)(t). Let us choose T > TO so that for > T,
tx)

C(Lou)(t) > C, (ioWo)(t) <_ C. Then for. the function (t) u(t) r0(t
we obtain that

0 < () _< (), >_ .
Consequently, (t) > 0 is a solution of the inequality

5(Ln )(t) + F(t, (A )(t)) _< 6b(t).

Moreover lira (Ln )(t) lira (Lou)(t) > O.
t--oc t---cx

positive solution x of equation (1) such that tlrn(Lox)(t) > O, x(t) <_ (t) <_ y(t) eventually.

Theorem 5: Let the following conditions hold"
1. Conditions 1 and 2 of Theorem 3 and condition 4 of Theorem 2 are met.. yh t a uti ottio of quation (7) ch that ti. (Lo)(t) < O.

Then there exists a negative solution x of equation (1) with the properties:
1. lim(Lox)(t)<O

t----cx:

From Theorem 1, it follows that there exists a
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x(t) >_

The proof of Theorem 5 is carried out along the scheme of the proof of Theorem 4.

Consider the operator-differential equation

[ l(t)[- 2(t)[...[v;(t)x(t)]’...1’1’]’ + 5r(t, (Ax)(t)) 0

where r E C’- i([to, c); R + ), 0 _< _< n- 1.

Introduce the following notation:

(Lx)(t) r(t)x(t)

(Lx)(t)- v(t)[(L_lx)(t)]’ i- 1,2,...,n; v(t)- 1.

(8)

Theorem 6: Let the following conditions hold:

2. r(t)

_
ri(t for

_
to, 0

_
n- 1.

3. Conditions Hl-H9 and condition 5 of Theorem 1 are met.
4. There exists a positive solution y of equation (8) such that lira (Ly)(t) > O.

c)

Then there exists a positive solution x of equation (7) with the following properties:
1. lira (Lox)(t) > 0

2. x(t)

_
y(t) eventually. (9)

Proof: Let y be a solution of equation (8) in [To, c for TO _> to and tli_,m(Ly)(t)> O.
Consequently,

(Ly)(t)- -5F(t, (Ay)(t)) i.e. (Ly)(t)

_
0 for 5 1 and

(Ly)(t)

_
0 for 5- 1,

_
TO

From Lemma 1 it follows that there exists an integer l, 0 _< l _< n such that n + is an odd
number for 5 1, n + t is an even number for 5 1 and

(-1)6+j(Ly)(t)>_0, >_ To, <_ n-1, g <_ j <_ n-1

(Ly)(t)>O, t_T1, TI_T0, >1, 1_i_-1.

Introduce the following notation:

T To’ t 0

T, t> 1

or-I

(LS,)(T),
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Then for > T we obtain that

+(g.,(F(.,Ay)))(t).

But from condition 2 of Theorem 6 it follows that

(,) > + ((F(. )))(,).0()

Consider the set X of all continuous functions x in [T,c) such that .r.0(t)_ x(t)

_
y(t) and

define

x(t), >_ T
(t)- x(T) t), To <_t <_Ty(T)y(

for each function x G X.

Define the operator S" X-C([to, c);) by the formula

+(r(.,o))(t).(Sx)(t)-ro(t)
It is immediately verified that

<(Sx)(t)<y(t) t>to, i.e.S’X--,X
o(t)

Let Xl,X2 X and Xl(t

_
x2(t), >_ T. Then

(SXl)(t)

_
(Sx2)(t),

_
T.

Consider the convergent sequence {x(t)}= o, >_ T such that

;o(t)-(t)

x(t)- (Sxn_ 1)(t), g- 1,2,

Thus the sequence {x(t)}= 1 is decreasing for t>_ T. If x(t)=nlirnxn(t then from the

Lebesgue dominated convergence theorem it follows that x(t)- (Sx)(t), i.e. x is a positive
solution of equation (7) with the properties (9).

Theorem 7: Let the following conditions hold:
1. Conditions 1, 2 and 3 of Theorem 6 and condition 4 of Theorem 2 are met.
2. There exists a negative solution y of equation (8) with the properties

lira (L,y)(t) < O.
t---oO

Then there exists a negative solution x of equation (7) with the following properties:
1. lim(Lox)(t)<O. (t) (t) vntaa.

The proof of Theorem 7 is carried out along the scheme of the proof of Theorem 6.
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Theorem 8: Let the following conditions hold:
1. Conditions H1, H2, H4-H9 and condition 5 of Theorem 1 are met.
2. There exists a positive solution y of the inequality

+ _< 0

such that lira (Loy)(t) > O.

Then there exists a positive solution x of equation (7) with the following properties:

lim (Lo)(t) > 0

0 < (Lix)(t) <_ (LiY)(t) eventually, 0 _< _< g- 1, 1 >_ 1 (10)

0_<(-1) +i(Lix)(t < -1) +i(Liy)(t eventually, <_ < n-1, g < n-1, where is an

integer, 0 <_ <_ n, such that n + is odd for 6 1 and n + is even for 6 1.

Theorem 8 is a corollary of Theorem 1 and Lemma 1.

Theorem 9: Let the following conditions hold:
1. Conditions H1, H2, H4-H9 and condition 4 of Theorem 2 are met.
2. There exists a negative solution y of the inequality

5(Lnx)(t + F(t, (Ax)(t)) >_ 0

such that tli_,rn(LoY)(t) < O.

Then there exists a negative solution x of equation (7) with the properties

(Liy)(t) <_ (Lix)(t) eventually, > O, 0 <_ <_ - 1

tli_,rn(Lox)(t) < O (11)

1) + i(Liy)(t <_ 1) t + i(Lix)(t <_ 0 eventually, <__ n- 1, <_ <_ n- 1 where is an integer
(O <_ <_ n) such that n + is odd lotS-1 and n + g is even for6- -1.

Theorem 9 is a corollary of Theorem 2 and Lemma 1.

Theorem 10: Let the following condition hold:
1. Conditions 1, 2 and 3 of Theorem 1 are met.
2. There exists a positive solution y of equation (1) such that lira inf(LoY)(t > O.

Then there exists a positive solution x of equation (7) with the following properties:
1. tl i_,rn Lox > 0

2. x(t) < y(t) eventually. (12)
Proof: Let y be a positive solution of equation (1) in [T0, oc), To> o such that lira

inf(LoY)(t > O.

Introduce the following notation:

wo(t w(t) 1 lira inf(LoY)(t o(t)
v(t)-
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Then lira (Lov)(t) -liminf(LoY)(t)> 0. From the fact that lira (Lov)(t) > 0 it follows that
t---,x t---c

we can choose a constant C such that 0 < C < ]i_,m(Lov)(t ). Choose T _> TO so that for

t >_ T the following inequalities are valid

(Lov)(t) > C > O and (Low)(t) > -C.

c for t > T, then we obtain thatIf we denote (v) v(t)-r-
0 < (t) < (t), > T.

Then 5(Ln)(t) + F(t (AV)(t)) < O. Since lira (LoT)(t) lira (Lov)(t) C > O, then from
t---*cx t---,cx

Theorem 8, it follows that there exists a positive solution x of equation (7) for which
lira (Lox)(t) > 0 and x(t) < - (t) < y(t).

Threm 11: Let the following conditions hold:
1. Conditions 1, 2, 3 and 4 of Theorem 2 are valid.. voo of qao () a (o)() < O.

Then there exists a negative 8olution x of equation (7) with the following properties:. }(o)() < 0,. () ()
The proof of Theorem 11 is carrie out along the scheme of the proof of Theorem 10.

4. Some Particular Realizations of the Operator

1. Let (Ax)(t)- max x(s), where tt(t)- [p(t),q(t)] is a compact subset of the interval
s e att,(t)

[to, cX), ttO and lirnp(t)-cx p(t)q(t)for tto, p,q
t

We shall prove that for the so defined operator condition H5-H8 are satisfied.

In fact, if 0 < x(t)<_ y(t) for t_> to, then it is immediately verified that 0 < (Ax)(t)-
max x(s) max y(s)- (Ay)(t) and x(t)(Ax)(t) > 0 for >_ t0.

Let.x,x G C([to, cx)), g O, 1,...; x(t) <_ x(t) or x(t) >_ x(t) and lirnx(t) x(t).

We n rov tt . [ .a ()]--a ().
-.oo[ s e (t) ] s e (t)

To this end, we shall use the inequality

max x(s)- max. y(s) < max )Ix(s)- y(s)] (cf. [9]).
S e .2(t) S e fl(t) S e fl(t

From the fact that x,c(t) ,-cx(t) for >_ o it follows that for each > 0 there exists go > 0

such that ifg>_go, then x(t)-x(t)l <e for t_>to

Then

max x s max x(s
tt(t) tt(t)
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(t)

(t)

If x e n, then Ax E C([TAx, OC);) (cf. [1]).
Example 1" Consider the differential equation

(t-lx’(t))’+1/2t-3 max x(s) 2

sE[t-l,t]

and the differential inequality

_> 1 (13)

(t- lx’(t))’ - 1/2t 3 max x(s) < t- 2, t > 1. (14)
s_[t-l,t]

Here (Ax)(t) -s max[t- a,t]x(s)" The functions v0(t 1, v.i(t -t -a, F(t, u)- 1/2ut -3 satisfy the

conditions of Theorem 1 and y(t)- 4t > 0 is a solution of (14). Then there exists a positive
solution x of equation (13) with the properties of (3).

For instance, x(t) 2t is such a solution.

Example 2: Consider the differential equation

(t-ax’(t))’+21-t-3 max x(s) 2 t> 1
s[t,t+l]

and the differential inequality

(t lx’(t))’ -- 1/2t 3 max x(s) > 2 t > 1. (16)
s_[t,t+l]

_1 -3u and b(t)max x(s). The functions v0(t 1 va(t -t F(;t,t) tHere (Ax)(t) --s [t, + 1]
2, w(t) for _> 1 satisfy the conditions of Theorem 2 and y(t) 4t < 0 is a solution of

(16). Then there exists a negative solution x of equation (15) with the properties (5). For
instance, x(t)- -2t is such a solution.

Example 3: Consider the differential equation

[e t[e 2t[e t[etx(t)]’]’]’]’ 4e 3t max x(s) O, >_ 1
sE[t-l,t]

and the differential inequality

(17)

[e- tie- 2tie- t[etx(t)]’]’]’]’ 4e- 3t max x(s) 7_ O, 7_ 1.
sG[t-l,t]

(18)

Here (tx)(t) max x(s).
s[t-l,t]

The functions r0(t e’, 7"l(t 7"3(t e- ’, "r2(t - e- 2,,

F(t,u)- 4c-3tu and dtt(t)- It-1,t] satisfy the conditions of Theorem 8 and y(t)- e4t is a

solution of (18) such that lira (c .e4t) --oo. Then there exists a positive solution x of equation
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(17) with the properties (10). For instance, x(t)- e is such a solution.

Example 4: Consider the differential equation

[e-t[e-2t[e-t[etx(t)]’]’]’]’-4e-at max x(s)--O, t>_l (19)
sE[t,t+l]

and the differential inequality

[e tie 2tie t[etx(t)]’]’]’]’- 4e 3t max x(s) <_ 0, >_ 1. (20)
sE[t,t+l]

Here (.Ax)(t) max x(s). The functions r0(t et, rl(t e-t, r2(t e-2t, r3(t e-t,
s[t,t+l]

F(t,u)- 4e-3u satisfy the conditions of Theorem 9. Moreover, y(t)- -e4t is a solution of
inequality (20) such that lirn (Loy)(t) < 0. Then there exists a negative solution x of equation

(19) with the properties (11). For instance, x(t)- -e is a solution of equation (19) for which
lim(Lox)(t

(x)

For n 4 and 5- 1 we obtain that t- 2. Then it is immediately verified that

(Liy)(t) <_ (Lix)(t) < O, i- O, 1

(--1)2+i(Liy)(t)<_(-1)2+i(Lix)(t)<0, i-2,3; t_>.l.

Example 5: Consider the differential equations

[t-l[t-lx’(t)]’]’--3t-5 max x(s) --3t-3,
_

2
s[t-l,t]

(21)

[t-l[t-lx’(t)]’]’-3t -5 max x(s O,

_
2.

s[t-l,t]
(22)

Here (4x)(t)- max x(s). The functions v0(t 1, vl(t r2(t -1, r(t,t)--3t-5t,
s[t-l,t]

b(t)- 3t- , w(t) [t2ln t-@] satisfy the conditions of Theorem 10. Moreover, y(t)- 2 > 0 is
a solution of equation (21) such that inf y(t) 4 > 0. Then there exists a solution x of equation

t>2

(22) with the properties (12). For instance, x(t)-t is a solution of equation (22) for which

lim. oc and x(t). < t2 y(t) for > 2.
t--.oc

2. Let (Ax)(t)- x(g(t)), where g G C([t0, oc);), tli_rng(t)- oc.

It is immediately verified that for the operator considered conditions H5-H8 are met.

Example 6: Consider the differential equation

[e-t[e-tx’(t)]’]’+2e-4tx(2t)--2e-2t, >_2 (23)

and the differential inequality

[e-t[e-tx’(t)]’]’--2e-4tx(2t) <5 2e- 2t,
_

2. (24)

Here (.Ax)(t) x(2t). The functions ro(t 1, 71(t v2(t e-t, w(t) t, F(t,u)- 2e-4tu
and b(t)- 2e -2t satisfy the conditions of Theorem 1. Moreover, y(t)- te is a solution of

inequality (24) such that lira infy(t)> 0. Then there exists a positive solution x of equation

(23) with the properties (3).
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For instance, x(t)- e is a solution of equation (23), for which lira inf(Lox (t)> 0 and
x(t) e

_
te y(t) for

_
2. -Example 7: Consider the differential equation

[e t[e- tx’(t)]’]’ + 2e-4tx(2t) 2e- 2t,
_

2 (25)

and the differential inequality

[e- t[e- tx’(t)]’]’ + 2c-4tx(2t) >_ 2e- 2t, t >_ 2. (26)

Here (.Ax)(t) x(2t). The functions r0(t 1, rl(t v2(t e -t, w(t) t F(t, u) 2e -4tu,
b(t)- -2e -2t satisfy the conditions of Theorem 2. Moreover, y(t)- -te is a solution of
inequality (26). Then there exists a negative solution x of equation (25) with the properties (5).

For instance, x(t)- -e is such a solution.

Example 8: Consider the differential equation

[t-l[t-2x(t)]’]’+t-6x(3t2)-6t-4, >_ l. (27)

Here (Ax)(t)-x(3t2). The functions w(t)-2t, b(t)-6t-4, F(t,u)-t-6u>O for uER+,
ro(t t-z, and vl(t t- satisfy the conditions of Theorem 3. Then each positive solution of
equation (27) enjoys the property (6). For instance, x(t)-t is such a solution for which

x(t)
irn-----O.

t--x)

Example 9: Consider the differential equation

[e-t[etx(t)]’]’- 2e-tx(2t) O, t _> 2 (28)

and the differential inequality

--[e-t[etx(t)]’]’ + 2e-tx(2t)
_

0,

_
2. (29)

Here (.4x)(t) x(2t). The functions vo(t e t, 71(t e-t, F(t,u) 2e-tu satisfy the
conditions of Theorem 9. Moreover, y(t)--e2t is a solution of inequality (29) such that
lirn (LoY)(t) -c. Then there exists a negative solution x of equation (28) with the properties
t--

(11).
For instance, x(t)- -e is such a solution.

Example 10: Consider the differential equations

It 2It lx’(t)]’]’ 4t 7x(t2) 4t 3, >_ 1 (30)

[t- 2It- lx’(t)]’]’-4t- 7x(t2) 0, _> 1. (31)

Here (Ax)(t)-x(t2). The functions vl(t -1, T2(t -2, F(t,u)-4t-Tu, b(t)- -4t -3,
and w(t) 5t2 3 satisfy the conditions of Theorem 10. Moreover, y(t) 2 is a solution of equation

(30) such that lira inf y(t) > 0. Then there exists a positive solution x of equation (31) with the

properties (12). For instance, x(t)-t>O is a solution of equation (31) for which
lira (Lox)(t) x, x(t) < 2 y(t) > 1
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3. Let (Ax)(t)- f n(t,s)x(s)ds where a is a positive constant, n E C([to + a, cx)2; (O, cx))
t--a

and there exists a constant c > 0 such that (t, u) _< c eventually.

We shall prove that for the operator consider conditions//15-//8 are met.

If 0 < x(t) _< y(t), then

/ _> o.
t-a

It is immediately verified that conditions H5 and//9 hold. Let

x,,x n, n O, 1,...,lLrnx,(t x(t), i.e. for any > 0

and each fixed number t_>to there exists to>0 such that for g_>to we have
x(t) < .

Then

Jirn(Ax,,)(t) (Ax)(t).

x(t)-

Example 11: Consider the differential equation

[e -t[e -tx’(t)]’]’ + / es- tx(s)ds e22e let, t _> 1

t-1

(32)

and the differential inequality

J e2 let[e t[e tx’(t)]’]’ + es- tx(s)ds < > 1
Oe2

t-1

(33)

Here (.Ax)t) f es-tx(s)ds. The functions ro(t 1, vl(t v2(t e-t, F(t,u) u,
t-1

n(t, s) es- t, and w(t) e2- le3t satisfy the conditions of Theorem 1. Moreover y(t)- te is a
12e2

solution of inequality (33) such that lira inf(LoY)(t > 0. Then there exists a positive solution x

of equation (.32) with the properties (3).
For instance, x(t) e is such a solution.

Example 12: Consider the differential equation

[e -t[e -tx’(t)]’]’ + / es -tx(s)ds 1 e2

2
et t>l

t-1
and the differential inequality

[c -t[e -tx’(t)]’]’ + / es- tx(s)ds > 1..- e2e > 1
9e2

t-1

Here f

(34)

(35)

The functions -0(t)-l, ’l(t)-T2(t)-c -t, F(t,u)-u,

c(t, s) e -t < 1, b(g) - W(t)2e22C and e2

12e2
e3t satisfy the conditions of Theorem 2.
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Moreover, y(t)= -te is a solution of inequality (35).
Then there exists a negative solution x of equation (34) with the properties (5).
For instance, x(t) -e is such a solution.
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