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ABSTRACT

In this paper we show that the second-order differential solution is L2-almost
periodic, provided it is L2-bounded, and the growth of the components of a non-
linear function of a system of parabolic equation is bounded by any pair of con-
secutive eigenvalues of the associated Dirichlet boundary value problems.
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1. Introduction

Foais et al. [2] proved that if a solution of some system of parabolic equations in C%(Q) and
L%-bounded satisfying certain conditions then it is a L%-almost periodic solution.

Recall that a continuous function f:R—X is X-almost periodic if for every e there is a
relatively dense subset T', C R such that
sup | fE+7)—f(t)|l x<e VTET,,

where X is some Banach space.

Recently, Corduneanu [1] and Yang [4] extended the results of Foias to nonlinear parabolic
equations. In this paper we extend the results of Corduneanu [1] and Yang [4] to the following
system of nonlinear parabolic equations,

Ou = Au+ f(t,z,u)
ul g0 =0, (1)

u(0,z) = u,

where u, and f € R™ are m-vector valued functions, 9, = g, and © is some bounded domain in
t

R™ with sufficiently smooth boundary dQ. Moreover, we assume that f:RxQxR™—R™ satisfies
the following conditions (cf. [1, 4]):
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(CI) f(t,z,u) is continuous and L2-almost periodic in ¢, and uniformly continuous with
respect to u ..

(CII) The matrix D(f) = (f; ;) is diagonalizable, with eigenvalues y;, and for every
j=1,2,...,m, there exists some integer i(j) such that )‘i(j) _1<p;< )‘i(j)'

of.

%f—", and L2 = L%(Q) x---x L%(Q), m-times. We call matrix D(f) diagonalizable if
J

there exists a nonsingular matrix M such that MD(f)M ~ 1 =], at every triple (t,z,u), where I

is the identity matrix. Similarly, M is nonsingular if det M # 0 and p is an eigenvalue of matrix

D(f) if det(D(f)— p) =0. Notice that condition (CII) implies that p; >0, since A; is the

eigenvalues of Laplacian in the domain {2 corresponding to the eigenfunction ¢, which satisfies

Here f, ;=

¢;laq=0.

(2)

We arrange A j in the ascending order
0<A <A< A5 forj=1,2,....
To simplify the notation, we use A; to denote 0, and the function space C2((_2) =

C*Q) x---x C¥(Q), m-times.

2.  Main Result

Before we prove the main theorem of this paper we first derive a useful a priori estimate of
the following problem,

0w —(A+D)w =v, )

u | oN = Oa
where w, v are m-vector valued functions, D = (6, ;v;) is a diagonal matrix, and 6, ; is the

Kronecker delta, v. are positive real numbers satisfying A. . . < v.<A. .. Here 1(7]) is the
. J i(5) -1 VAN (6)
same as in the condition (CII).

Lemma 1: Let w,v € C}Q) be L%-bounded satisfying problem (3). If v; satisfies the
assumption above, then

stttp/wg-(t,a:)d;c < max{(l/j——)\i(j)_1)_2,(1/]-——/\2-(]-))_2}31;1)/v?(t,x)dz. (4)
Q Q

Proof: It is well known that {(Z)J-}‘]’-": , form an orthogonal basis of L?(2), thus we have
U)J(t,ﬂf) = Zka"’k(ﬁk,

The Parseval formula and the assumption of L2(Q)—b0undedness imply that

for j=1,2,...,m (5)
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D ika k= /“’2 <¢c

Q (6)
2 2
D kb k= /” <
Q
for some positive constant ¢ which is independent of ¢.
Substituting equation (5) into equation (3) yields

for j=1,...,m, k =1,2,.... Thus for any ¢, € R we have

t
= (v = Ap)(tg—1) —(v;=A)s—1)
a],k(t) =€ J k 0 a]’k(to) + /6 J k b],k(s) dS.
to
?mce /\z( 1 <V; < A iy e have v —)\k >0 for k <i(j)—1. Thus for t; > ¢, the following is
rue

— (v, = A)(ty —t) ==Xt - t)
- TR0 |aj,k(t0)|+1 = — 16; k(t) 1]

la; k(t)] <e v

Using (5), (6), and the fact that a; 4, b; ) are bounded functions of ¢, and letting ¢{,—oo, the
above inequality yields

sup|aj j(t)| < e AUTOIE
]

Similarly, the above inequality is true for k > i(j) which implies

sup [a; 1 (1) | <agsup|b; ()], (8)

1 1
o = mazr ) .
’ {”a‘ ~hiG) -1 M) T }

Thus the assertion of the lemma holds.

Theorem 2: If u s a C2((_2), L2-bounded solution of problem (1), and < f a
continuous function satisfying conditions (CI) and (CII), then u is L2-almost periodic.

where

Proof: Let u be a solution of equation (1) , then for a given 7 € R we define the vector
valued function w = u(t + 7,z) — u(t,z). Then w satisfies the following equation,

—Aw = f(t+r,w,z,u(t + 7,2)) — f(t,2,u(t,x)),

Applying the mean value theorem to f. with respect to the component u; and letting o be a
constant in the interval (0,1), we have that

b= a4 re)+ (1—a; Ju(te),
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satisfies
fj(t, zyu (8 x), .. yu; (G ), u(t+7,2),..,u,(t+71,2))
— fj(t, z,uy (L, x),.. ., u(t, @), u, + (472, e, (t+7,1))
=fj it zug (), du (BT 2) L (t+ T T))w(t 2).
Let the vector valued functions ¥ jri be
V= (u(a)uy g (G2) %) w4 1 (B4 T,2), s u,(E+ 7, 2)),

then w; satisfies

+ [t +7,2,u(t,2)) — f (12, u(t, x)),

and boundary condition

Since w; are L?(Q)-bounded, we have

J

for j =1,...,m. The condition (CIT) implies that for every j there exist two constants Ej and 5]»,
and some integer i(j) > 1 such that

Recall that Aj is 0.
Equation (9) can be rewritten as
i#5
+ fi(t+7,2,u(t,z)) - f;(t 2, u(t, x)),
where éj <v,;<@. Observe that the v, are real; and they will be determined later. By inequal-

J
ity (8), we immediately obtain

1

S?P((l"kjﬂwﬂ —.Z,Bj,”wil)fﬂ/]‘b‘?l)”j]»

AN
<

where

15—l d I 1
k'J:'—E;_———ﬁ ﬂ],z: « ”sza_J,a]:mam{l/——-A YA -)“Vj}’

for j=1,...,m. Let ¢; >0, satisfy

Sitlp{(l”kj)lwﬂ = 'Zﬂj,ilwiH:'Y]‘S‘t‘plvjl +€;

1=1
¥

Yl
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Let £ = (¢q,...€,,), and rewrite the above equation as
M-w=¢(+G-v, (10)
where
w= (sntzp|w1 | ,...,srtzp|wm|), v:(stttp|v1|,...,s1t1p|vm|),
M =(m; ;), G=(8; jv,) are mxm matrices, where m; ;= g, ;, for j#i, and m; . =1-k,

Since 6 < v, <0, , and using condition (CII), we may choose suitable v; such that 1 —k > 0,
and M is diagonalizable. By linear algebra we have

w=E¢+G-w.

Since £ = (€4,...,¢,,) and ¢; > 0, we have

stttp/wr;(t,x)dx < cjsttzp/v?(t,x)dx, for j=1,...,m
Q0 Q

and some constant ¢ ;> 0. This completes the proof of the theorem.

We can easily generalize Theorem 2 to the following system of nonlinear parabolic equations

atuj—Ljuj:fj(t,m,u), (1)

u;lon =0,
where L j and B ; are elliptic operators and boundary operators respectively satisfying

Li=) A, (x)D%
a<?2

— Ju
B]'u = bjyla_n+b]10u

We denote by D% = 83;...83”, a=(ag,..,0,)and |a| =0y +.. Fa,.
n

Furthermore, we assume that the principal parts of Lj be

P;=Y" A (z)D°

|la| =2

such that A; ,€C ] (Q) and b; i€ CY(Q) are real, and L are self-adjoint operators such that
ker(L;—c )_ {0} for some real cJ Denote by o(L;) the spectrum of L;, for j=1,...,m and
replace the assumption (CII) by the following,
(CII)" The matrix D(f)=(f; ;) is diagonalizable with eigenvalue u; and for every
j=1,2,...,m, there exists some integer i(j) such that X 1< K5 <Ay
where {)\J k}k _, are the eigenvalues of the operators L .
Then by the same argument as used for Theorem 2, we have the following results.

Theorem 3: If u is a CXQ), L -bounded solution of equatzon (11), and if f is a
continuous function satisfies conditions (CI), (CII), then u is L2-almost periodic.

Consider the solution u of equation (11) in the sense that u € C(R,%?), where 162 = H3(Q)
S H2(Q), and

3,4(3) =

H?- = {u|ue WH%Q) is real, and Bu | oo = 0}-
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Here W22(Q) is the Sobolev space (cf. Ladyzenskaja [3]). Let the operator £ = (Lyy--0Lyy,),
£:1.2-1% with domain D(2) = 32, Then we have a similar result as Theorem 2 (cf. Yang [4]).

Theorem 4: If u is a C’l(IR,fJ-B2), and L2-bounded solution of equation, and if f satisfies
conditions (CI), (CII)', then u is L2-almost periodic.

Remark: The condition (CII) implies the uniqueness of L2-bounded solution to problem (1).

To prove the uniqueness, we assume that u,v are the solution to problem (1), and let
w; =u;—v; then w = (wy,...,w,,) satisfies

1

Applying Lemma 1, we see that
M-w<0

where M is defined as in equation (10). By linear algebra, we obtain w = 0.
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