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ABSTRACT

We study two-parameter coordinate-wise Cj-semigroups and their generators,
as well as two-parameter evolutions and differential equations up to the second
order for them. These results are applied to obtain the Hille-Yosida theorem for
homogeneous Markov fields of the Feller type and to establish forward, back-

ward, and mixed Kolmogorov equations for nonhomogeneous diffusion fields on
the plane.
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1. Introduction

Let Ttl,tz be a two-parameter coordinate-wise C\-semigroup. The paper is organized as
follows. In Section 2, we prove that Tt 'ty =T, tty = Tt1t2 1 and establish that its generator
coincides with the generator of the one-parameter semigroup Ty We also derive differential
equations up to the second order to Tt 'ty and its resolvent and establish Hille-Yosida theorem

for T, ty,t (Remark 2). In the third section we consider two-parameter evolution operators,

Tss; ¢t/ up to the second order. In the fourth section we study *-Markov fields on the plane with
transition functions and present the Hille-Yosida theorem for x-Markov fields of the Feller type.
In the fifth section the class of diffusion fields is introduced. The form of generators and relations
between them are established. Forward, backward, and mixed Kolmogorov equations of the
second order for the densities of diffusion fields are presented. A partial case of backward Kolmo-
gorov equations was considered in (3, 4].

2. Two-Parameter Semigroups, Their Generators, and Resolvents

Let X be a complex Banach space, £(X) be a space of linear continuous operators from X to
X, I be the identity operator on X, and D(A) be the domain of operator A.
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Denote IR2+ =[0, + 00)? with partial ordering § < (< )7, if § = (sq,8y), T = (t;,t5) and
s;< (<), i=1,2

Definition 1: The family {Ttl,tz’(tl’t2) € R2+} C (X)) is called a coordinate-wise two-para-

meter semigroup if it satisfies the following two conditions.
(4) a) TO,t2 = Ttl,O =1
b) For any ¢, >0, 5, >0, =1,2,
Ts1 Ftty = Tsl,tthl,t2 and T
Furthermore, we simply refer to the coordinate-wise two-parameter semigroup as semigroup.

=T T .
51189 +t2 81189 sl,t2

Definition 2: A semigroup Ttl,t2 is called a Cy-semigroup if for any z € X, 5 € R,
?liglg | T52z~T3z| =0.
Lemma 1: The following conditions are equivalent.
(By) ForanyzxeX,t;>0,t,>0,

llmT tz—llmT L=z
2 2 2
(By) Foranyxe€ X,

lim T, ,z=z
ty Vig—0 1t
The proof of Lemma 1 is similar to that of the classical theorem about continuity of separate-

ly continuous bilinear forms [8] when we replace functionals by operators, so it is omitted.

Lemma 2: The semigroup T i, s a Cy-semigroup if and only if it satisfies one of the condi-
tions (B;) or (By). ?

Proof: The necessity is obvious. Let us prove sufficiency. Suppose, for example (B,) is
satisfied. Then the one-parameter semigroups, T, t and T 'ty are continuous for any fixed ¢,

and 5. From known properties of one-parameter semigroups, for any t; > O 1 = 1,2, there exist
constants C; = C,(t;,) >0 and a; =a,(t;) €ER such that || T < C’le “1* and || T, ty | <

(12(3‘12u for any u > 0. Now let § be fixed with ¥ >35. Then, from Lemma 1, we find that

Jim || Tye—Tse|| =lm | T3 Ty — s, e —s) 0.t~ 5ty — 5,8~ T3l
< lim ([ T5 11Ty 0,0, T, —ap0,Tt) —prty— oy =2
< Jim N T5 TN T ey — 0, ey — sy 11Ty =y ey =5,z =2l
+l Tsl,t2—32 T, ‘31vsz$_w”
1T, 0 —ez—el)< Jim [|T5 || (G0 11~ Vel =52
12 2 t —s

x || T a:—~x||+Ceaz(t2—s2)||T s—z|| +||T c—2|)=0
ty = sty — 89 2 ty = 59,59 5oty = —0.

Other version of the arrangement of the point ¢ with respect to 5 are considered similarly. O
Thus, Definition 2 can be weakened to condition (By).

Lemma 3: Let T be a Cy-semigroup. Then, for any T =(t,t,) € R?

T3 =T, ity = Ttlt2,1- (1)
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Proof: Note that for any ¥ € [R2+ and n €N,

tl,nt2 (T ) ntl,tz'

Furthermore, for any t; > 0, there exists a sequence [u,,n > 1} C Q * such that u, = (pp/e,)—1
as n—oo. Then for any z € X,

Tze :nli—vnc}oT“n»tgm :nli—{goT(pn/q ), (tya,/a,)"

Y Py 1
=00 (T (10,0070, " " =BT 1005, fa, )% = Tyt 0%

Hence, we also have T', , =T, , ;. 0
12 1t

Remark 1: Lett,5 € IR2+ . Then,

T-T- =T T =T =T T =T -T.
t—s 1,t1t2 1,5132 1,t1t2+sls2 1,3132 1, ity T 73 7t

Definition 3: 1. The generator A of Cy-semigroup T, is defined by
Az: = 11m t (T3 ¢ — ),

whenever the limit exists.

2. The i-generators (i = 1,2) of Cy-semigroup T5 are defined by
A2;c —hml(T :c——a:)andAlx _hm—(T z—z),

whenever the limits exist.

Theorem 1: Let Ty be a Cy-semigroup. Then the following hold:
1) A=A} = AZandA{_tA t,>0,i=1,2, j=1,2, i # j. (2)

2) For any z € D(A),

3) For any T = (ty,t,) €R? and z € D(A),

M 1 A =T A}
oyt i E AT AT AT
For any = € D(A?),
O°T; AT AT
3t atzz z +tty z.
Proof: 1. Let © € D(A?). It follows from Lemma 3 that
-1 T -1
ty,t 1,t,t
lim —Y2 o —lim —12
-0 lilp t—0 bty
and
-1 T -1
ty,t 1,65t
lim—122 gz =¢, lim—-12 ¢
t,—0 by t, -0  lyly
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exist or do not exist simultaneously. Therefore, according to Definition 3, D(A%) = D(Af ),
D(A?) C D(A) and A? z = t, Az. From the same arguments applied to z € D(A?) and z € D(./}),
we have D(A!) c D(A) c D(A}) = D(4?), and, consequently, D(A}) = D(A%) = D(A). There-
fore, the equalities (2) hold.

2. Operators A} and T, ; commute on D(A3) (this follows from the corresponding properties
of one-parameter semigroupsﬁ; therefore, A = A% and Ty = Tt1t2,1 commute on D(A) = D(Ai).

3. This statement can be obtained by direct calculations. O

Suppose the semigroup 75 is not continuous on the whole space X. In this case, let us con-
sider the linear manifold,

Xo={lzeX |}}H})Tu,t2m :zl;ig%)Tt]’”x =z for t,,t, > 0}.

Lemma 4: 1) X is a subspace in X.
2) Operators Ty act from X, to X.
The proof follows from equality (1) and similar results for one-parameter semigroups. O

Theorem 2: The linear operator A is a generator of a coordinate-wise C\y-semigroup if and
only if it is a generator of a one-parameter C\y-semigroup.

Proof: Let A be a generator of the coordinate-wise C'y-semigroup T;. Then from Lemma 3
and Theorem 1, A is a generator of the one-parameter Cj-semigroup U(t) = Ty 4 Conversely,
assume that A generates a one-parameter semigroup U(t). Set T; = U(tyty). Then Ty is
coordinate-wise Cj-semigroup, the limits
Ty 1x-2 U(tyty)z —x
1 —J%%~—mmnm-iig}——

t —0 12 t1t,—0 12
exist or do not exist simultaneously, and for z € D(A)

U(t,ty)e—z . T, ,t
Az =lim (1% =lim —%
tp im0ty t—0 tilo

r—T

Therefore, A is a generator of coordinate-wise semigroup. 8]

Remark 2: It follows from Theorem 2 that the conditions of the well-known Hille-Yosida

theorem are necessary and sufficient for the closed operator A with D(A) = X to generate coordin-
ate-wise semigroup.

Remark 3: The statement similar to Theorem 2 for an n-parameter coordinate-wise
semigroup is true and would have the same proof.

It is well known that in the one-parameter case, the Laplace transform of semigroup is a
resolvent of its generator, defined in the appropriate half-plane of C. Analogously, in the case of
the multiplicative semigroup Tt1vt2’ given by equations,

Ttl,t2 =T(t])Ty(ty) and T'1(t,)Ty(ty) = To(t))T(ty),
where T,(t;) for i = 1,2 is a one-parameter semigroup, the two-dimensional Laplace transform of
T(ty,t,) is decomposed into a product of one-dimensional transforms and is the product of resol-
vents of semigroup generators. There are no such simple relations for coordinate-wise semigroups.
In this vein, we can obtain only the following result.

Theorem 3: Let {TT,T € R2+} be a contractive coordinate-wise semigroup (this assumption
is made for the sake of simplicity), and let L, ,, =L, ,(f) and L, = L (g) be two- and one-dimen-



Two-Parameter Semigroups, Evolutions and Their Applications 285

sional Laplace transform of functions f and g, respectively. Then, the following hold.

1)  For any z,w > 0,

Lz,w(Ttl,t2) = Ll,zw = Ll(R(zw)/tz),

where R is a resolvent of the generator of the semigroup Tl,t'

2)  For any x € D(A?),
2
A? 3z821’vw z+ ALz’wx =zwl, & -z,
where L, @ = Lz,w(Tt],t2"L')'

3)  For any x € D(A?),

AX(L'(u)u)'z 4+ AL(u)z = uL(uv)z — z,

where L(u)z = Ly ,xz = Ll,u(ttl,tzx)'

Proof: 1) From equality (1) for z,w >0 and z € X,

— zt, — wt _ — 2(th [ 2) — wzt] 1
L, &= / e 2 1T1,t2t1;|3dt2dt1 = / e 2 1T1,(t’2/z)zt'lx7dtl2zdtll
R? R?
_ — 2(th [ z) — wzt]
= / e 2 lTl,tztlxdtzdtl
2
R
o0 [o.¢]
—-1-t — zwt
=L = / e 2 / e 1T1,t1t2xdt1 dt, = L1<sz/t2m>.
0 0
2) Let € D(A?). Then for any u,v > 0,
T —-IT -1
1 o — 2ty —wit tlrv u7t2
W(Tu,vﬁI)Lz,wx: Au,vx—Tu,v/ € ! 2 v U
R? I
u,U_I —zt, —wt t17U
xT, , xdtydty— = e 1 2 T T, , zdtdt,
172 172
R%,
T,,—1 maty —wty Lt o1
) 1,
- — g / e 1 Tr Ty e, 0t dty, (3)
2
where Ry

u (o]
Ay ot =gl (€= D(e = 1)L, 4o — (" ~ 1) / / e sztl,tz.rdtldtz
0o o0

v

o0 v u
— — -zt — wt
_ewv(ezu_l)/ /e ! wt?Ttl’tzxdtldt2+ez”+“’"/ /e 1 w2Tt1’t2:cdt1dt2>.
0 0 o 0
Obviously,

o0 o0

~

— wt —zt
2 1 — —
Auvw—wszyw:c w/ e diyzx z/ e di;z |+z _zsz’wx z.
0
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Note that

Tt v—ITut_I sv ut

|-t — e = 1} [ 1 {4 [ 1y ey g

0 0
v tyu
=13k [ [ 1T A | <ty A% |
0 0

in view of the contractive property of semigroups. Existence of the integrated majorant implies

that
T —ztl—wt2 tlyv_ITuvtz_IT
u,v A € T U ty,tordtydt,
RS
—tyt, / e P17 wt?Ttl’t2A2xdtldt2, u, v—0. (4)

2
Ry
Again, from the existence of the integrated majorant, the last integral equals

—zt, —wt . 1 1
t1t2/ e b2 lm (T = DTy, = DTy ¢ zdtydt,

R%
T =TTy =1 [ ot —wt 0L
— 13 ) ’ 1 2 A2 zZ,w
Z\l/l{}n_'0 T T / e t1t2Ttl't2xdt1dt2 =A 5290 % (5)
2
Furthermore, R
Tuv_I — 2ty —wt T“t -1
i %y 1 22
u\l}{;n—m |l—= / e ty tyu Ttltzxdhdtz |
R2
+
T,, -1 T, —1
N — 2ty —wt u, t2 u, v
:u\lxlf)n-ao l “/ e 1 2752—1;“— Ttltz—m———$dt1dt2 Il =0. (6)
2
Ry
Analogously,
TuU"I —zt, —wt Tt U_I
i Wy 1 2 1 —
u\l/lgn—@ |l—= /‘3 t 1,0 Ttl,t2xdt1dt2|| =0. (M)

R%
Equation from the statement 2) follows from (3) through (7).

3) Finally, from the equality L(u) = Ly, with u = 2w, we obtain that

asz w 0 ' " '
5290 :—8—Z(L (u)-2) = L"(u)-u+ L'(u).

Equation from the statement 3) follows.

3. Two-Parameter Evolution Operators and Their Generators

Let us consider the family of operators,
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{T,y W0<s<s,0<t<t}CLUX), s\1'€R,,

satisfying the following conditions.
(C) a)Forany0<s<s' <s"and0<t<?,

Tss’,tt'Tss t't! — Tss',tt".
b) Forany 0 <s<s'and 0<t<t' <t
Tss',tt'Tss/,tt' = Tss',t“ = Tss’,tt”'
c)Forany 0 <s<s' and 0 <t <t
Tss,tt' = Tss',tt =1

We call any operator, Tss;

ph 1D this family a two-parameter evolution operator (or simply an
evolution). ’

Definition 4: The family of evolutions is said to be continuous if, for any 0 < s < s’ and
0<t<t,
,lll_rf})Ts +hs' tt! = ,ILIE(’)Tss' +htt! = ,lllf})Tss’, t+ht' = }}B})Tss’, t+h = Lot ue
in the sense of strong convergence in X.

Further, we consider only continuous families of evolutions. Let us denote

(u,a)t = (w,u+a),(v,a) ™ = (u—a,u), a>0;

+ 4+ _ T 1t —1I:
DTS}tyhyk - T(s,h)i(t,k) + I’ A Th S,tvt (s,h)i ,tt! I,
_— 8 _a (o
AT st =T iyt =1 Be0i ™ =5 (&)

Definition 5: 1) The elements of the family of operators {4, * £} defined as

Asj,:tix = hm_, thTs t, h, kT
considered on the sets where corresponding limits exist, are called generators of evolutions.
sit! ,A2 i} defined as

AlE £, _llmlAlTi @ and A2 ix —hmlA2Ti

2) The elements of the family of operators {A1

s, bt s, t,t k k,s,s' tz
considered on the sets where correspondlng limits exist, are called i-generators (i =1,2) of
evolutions. If A" t=A"" or AT T =4t~ =41 =4~ ~, then we denote the common
value as A® or A respectively.
Definition 6: Right and left derivatives of evolutions are defined as
OtT iy o~T
ss,tt’ 4. 1 ss,tt’ .1 _

g = Amp(T gy g =Ty ) a0d —g=—== —limp(T =Ty )

respectively.

In similar ways, one can define right and left derivatives of other families of operators,
depending on s, s', t and t'.

Lemma 5: 1) IfT_, ,:l:ED(A 1 ) then

,tt

2) Ifz € D(AY), then
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+
9 Tss',tt' -7 L4,
Os' ss' tt' st
3) IfT,, & € D(A%T), then
9 Tss' tt A2
ot ss't ss ,tt'w
4) Ifz € D(A%]), then
a T.ss' tt! =T A2’ +
T — T ss 1t st z.
Proof: Let us prove 1). (The other equalities are proved similarly). If T, %€ D(A N
then a7
ss' tt’ _ 1
Os -7 hmﬁ(Ts — hs',tt’ Tss’ tt! )
— H 1 ,
= —hmp(T, _py g = DT gy = = A Tyt O

Lemma 6: 1) Letz € D(A:t: —)ﬂD(Al’ #) and v € [t — 6,t] for some § > 0. Let also

limthTs Gk ATE L T =0 (8)
Th 1,
e 0~ Astt — _A:l: -
et T st
2) Letzx e D(Ai )N D(Asw ) and v € [t',t' + 6] for some 6 > 0. Then
+ 41, £
a Astt — A%+
ot' - st

3) Letze D(A N D(Az’s,ﬂt:) and u € [s — 8,5] for some 6 > 0. Let also

1
limee OT ;5% - AT, e =0, 9)
Then 9~ A% E
N
4) LethD(A+i)ﬂD(Asut ) and u € [s',s' + 8] for some § > 0. Then
ot AL E
ss't :A+,:i:l,
0s' s't )

Proof: Let us prove the 1). (The other equalities are proved similarly.) If condition (8)
holds then there exists double limit:

T 1 T(s,h)i,t—kt’_l T(s,h):l:,tt'_I
1m—z A - A Z

— _lim-% — — Dz —lim-L Dy —
= —lim hk(T(s,h) e I)(T(s,h) - Iz —lim hk(T(s,h) £ k)" Nz = Ast z.
Moreover, there exist inner limits
+ a0 + 0
PR 1)) }i KO Al,’ti— oy and lim(s’h)+z = AL Fe
for 0 < k < 4. So, the repeated limit exists and equals the double limit:
lim— (Al E -l Eye= —aF O



Two-Parameter Semigroups, Evolutions and Their Applications 289

Remark 4: The following conditions are sufficient for (8).

(D) a) The function T,z is continuously differentiable in u € [s=6,5+ 6] for some

6 >0, and
1, 1, —
A tt’ Autt
b) For any u € [s — 6,5+ 8],
1 + -
Autt’Tusl,ttlx S D(Ast ).

¢) There exists ¢ > 0 such that

|Dl‘sthkA x| <e, 0<h<é, 0<k<6.

7|
hk
Indeed, if (D) a) holds, then

utt’ us',tt

s

_ 1
(T(s, h) ", tt' De = / Autt'Tus’, s du.

—h
Therefore, by (D) b) and (D) ¢) in view of the ex::stence of the integrated majorant and the equa-
lity,
1 o
llm——hk(T(s,h) T (t k)T I)Autt o tt’m — A A ,T

us', tt'x
we have

i (T, = - — NCNE 0%

- hm/ hk‘ T(s h) ™~ (t k I)Autt us',tt’xdu
s—h

8
. 1 1
= llm/ 1{6 — h S u S S}H(T(s,h)_ ,(t,k) - I)A‘uttlTuSI, ”,.’Edu = 0.
s—6

Sufficient conditions for (9) can be formulated in a similar way.

Remark 5: Let A» 1t = A% =, i =1,2 and let families of operators {A! s (Bt € R3 } and
{A (s,8,t) € R3 ", } be continuously differentiable in (,7') and (s, s’) respectlvely on the set

=) [D(4L,,)nD(A2,)ND(A,)].
s,s',t,t'
Then one can write equalities 1) through 4) of Lemma 6 in the form:

t! s
1 2 _
A tt/ = / Asvdv, Ass/t = / Autdu.
t s

Theorem 4: 1) Let the following conditions hold.

(Ey) a) T, o 1 € D(Altt, n D(Ai’s,; YN D(A,,) for any u € [s —6,s] and some 6 > 0.
b) The operator As;’t is closed.

¢) There exists the limit, limpA% = (AT T, .,

hstt) ss',t
2, 2, — 1 —
d)hm [( A hst+A )(A Thstt)Tss’ tt'x]_

ss't

Then

62 B __Tss' tt [ 1, 2,
0t0s =Ag Ts T +Astt’ AL

ss't

T

T
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2) Let the following conditions hold.

(Ey) )T, &€ D(Ag;,t_ n D(Al;}tT YND(AS 7)) for any v € [t —6,t] and some § > 0.
b) The operator Al’ p 18 closed.
¢) There exists the limit, limy: A1 _(AZT_’S’S t)Tss’,tt’x
Th d) llln-’;[( Ai t—-- k,t' + Alit’ )(A2Tk_s s, ths' tt/m)] =0.
en
82 - —Tss' tt PR 2 1,
0sdt = ASt Tss' w® T Ass 't Astt' Tss' 1'%

Remark 6: The following conditions are sufficient for (E,) d).

(E4) a) The function A 1, is continuous differentiable in u € [s — 6, 5] for some 6 > 0.
b) There exists ¢ >0 such that, for all u € [s — 4, s],

) lAg ™ (hA Tyogte )Tss’,tt/x I <e
Indeed, in that case,

lim || (= A2+ AL TAMT

hs't T ygr ]|l

hs,tt'” ss',tt

<11m/ | Ag ~ 1A1Th_s tt)Tss' w® || du = 0.

The conditions sufficient for (E,) can be formulated similarly.

Remark 7: Let us assume that there exists the derivative

2, — —
o™ Tss' tt’

0tds o

and that conditions (£,) a), (F,) b) and (F,) d) hold. Then, obviously, condition (E,) ¢) holds
and statement 1) of Theorem 4 is true.

Remark 8: Let B(t,s): R2 —X be a twice continuously differentiable function on some D C
[R2 . Then in the usual way, usmg corresponding results for the functions from R%_ to C and the
Hahn Banach theorem, we obtain for any z € D that (823/338t)x = (623/8t63)x A similar

2,
result is true for one-sided derivatives. Thus, if operators Aj; ~ T, ' AL Astt, Tss,’ . and
Ai“, As; i T Lty aTe continuous as functions of (s,s’,t,t') € IR4+ on the R* T then
9% - _Tx:('ﬂ’ T,
0s0t 0t0s
and
2 1 1, 2
Ass "t Astt' ,Iss',tt",‘c - Astt' Ass "t ss',tt'm'

Proof: We prove only the statement 1) of Theorem 4. Let condition (E,) a) be satisfied.
Then from Lemma 5,

n2, — — -
0 Tss', tt’ ¢ = llm-l— (8 Ts — hs, tt' _ 0~ Tss' tt ).’E
0s0t T h ot ot

T | 7 2 -
— llm'ﬁ [ — As _ hs’tfs _ hsl,ttlm + Asslt Tss',ttlx]
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2, 2, =\ Al — 2, ,
- hm[h( A hs t + Ass "t )(A Th,s, it - I)Tss', tt'x + h( A h s't + Ass "t )Tss’,tt'x

"Aﬁs W (alr h,s,t, t’Tss’,tt"”)] = lim(S’{‘x + Sg‘” + S:’;)‘”-
(E£,) a) implies that lim SZ:L‘ =A; " T gy and
1 - ’
hm_(A Th s, t, t')Tss',tt'm - Astt’ Tss' tt

(Ey) 2) and (E,) c) imply that th = Azs Altt' Tss, @ Condition (E) d) ensures the equality
hm Siz = 0. Hence, the proof follows 0

The following statements are proved analogously to the proof of Theorem 4.

Theorem 5: 1) Let the following conditions hold.

(E,) a) T,, =€ D(Az“,) n D(AsTt =) for u,v € [s,s + 6] for some § > 0; xz € D(Ai)t:; ).
b) The operator Ai;,’t’ is closed.
¢) There ezists the limit, lim—1—A2’,t_ T, ., 3 ,A T+

h,s',t, t
2, — 2, — 1 +
d) hm ( As s +h : Ass t ) s ,tt'A Th,s/,t,t/l. =0.
Then
9%+ —Tss, ”, + ) -
0s'0t = A Tss'tt'm Ass 't *ss ,tt'As}tt' z.

2) Let the following conditions hold.
(E5) a) Condition 1) of Lemma 6 holds.

b) Tss',tt'A “/ S D(A2 _)
¢) There exists C >0 such that I T,y ll < C while v e[t —86,t] for some 6 > 0.
Then
o» -t
88 tt 2 1, +
0t0s’ — Ty, wAS T ALY Ty 10Au ©

3) Let the following conditions hold.

(Eg) a) T € D(Ai;;; )ND(A ) with u,v € [t',t' + 8] for some 6 >0; z € D(Ai;/:? )-
b) The operator A;’t_’ is closed.
¢) There exists the limit, limlA1 o Lo AL TT

ss',tt k,s,s',t
1, 1, — 2, + —
d) llmk(A Stk — A, )T ss’,tt'A Tk,s,s',t’x =0.
Then
627 + - T , ,
e S U —ALTT AR
ot'Os - st! ss',tt tt' s tt! ss’t'

4) Let the following conditions hold.

(E;) a) Condition 3) of Lemma 6 hold.
DT, Ay € DAGT).

¢) There ezists C' > 0 such that T, I <C while u €[s—8,s] for some 6 > 0.
Then
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o>~ *T

58, tt -T , A_/ A1;T,

9sot’ ss’, tt" st stt' © ss tt’A ””

5) Let the following conditions hold.

(Eg) a) Condztzon 2) of Lemma 6 holds.

b) ALy e e D(ALT).

c) There exists C'> 0 such that 1T, 1, |l < C while v e[t t'+6] for some 6> 0.

Then
ort T

ss', tt! _ +
__87}77—— Tss' tt’A ' :L' + Tss' tt'Ass y! A } ,17

6) Let the following conditions hold.

(Eg) a) Condition 4) of Lemma 6 holds.
b) A2t we D(AL ).

¢) There caists "> 0 such that T, | <C while u € [s',s'+ 6] for some § > 0.

,ttfl
Then

AT
z=T , IAII -'L'+Ts/

1+ 2,
W ss’, tt .A. A Ilm

et/ st

4. Markov Fields and Semigroups

Let (Q,F,P) be a complete probability space; let (E,8) be a measurable space; let X =
{X;,t € R?} be a stochastic field with the values in E that is constant on the set (IRZ\R )U
{[o, oo) {03} U {{0} x[0,00)}. Put F; =o{z5,5 <T}VN, F = V F— and F} =F} VF
where N is the class of P-zero sets of F 2

Definition 7: The field X is called an x-Markov field if for any 5 <t and B € &

P{X; € B/F}} = P{X; € B/X,, X, , X, } 5,11].
Definition 8: The function P{3,7,z,y,z, B}, with 5 € R% |7 ¢ IR2+, z,y,2€ E and B€ 8 is
called transition function on (E,8) if
1) it is a probability measure on (F,8) when z,y,z € E are fixed;
2) it is an &>-measurable function when B € & is fixed;
3) for any z,y,2,6 € E, B€8,andt <7u

P{E,(ul,tZ),m,y,z,B} = /P{E,f,m,f,z,dn}P{(t1,32),(ul,tz),ﬁ,n,z,B}
and

P{ga(t1$u2))xay7Z7B} = /P{Evzax7€723d77}P{(51)t2)’(t1au2)’£7yan)B} [5’11]

Definition 9: X is called an *-Markov field with transition function P, if for any m > 1 and
n > 1, with B;; € 8 for 1 = 1,m and for j = 1,n, with (si,tj) € [R2+, we have

P{ﬂz-l ?:l(XsitjeBij)}: //ﬁ H IB

7=1
XP{(Si—lv‘j_l) (55 t), Ti1j—1Ti—15p% zy-—l’dxij}'
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It follows from [11] that any *x-Markov field with transition function is a Markov field.

Now we define the families of functions {P1{s,y, s;,B}, 0<s<s;,B€&,t>0,s; >0} and
{P2s{t,y,t1,B},0 <t<t,Begs>0,t >0} of the following kind:

P'%{s,y,s;, B} = P?{t,y,t;, B} = I g(y), (10)
P”{s,y,sl,B} = P{(s,0),(s,t),2,y,, B}, (11)
and P25 {t,y,t,, B} = P{(0,1),(5,1;),,,y, B] (12)

(under the assumption that the right-hand sides do not depend on z). In this case, the collection
(P, P20 plt p2s) is called an *-transition function on (E,8).

The following equalities are true for any *-Markov field with a transition function:
P{X,,u:€ B/F'} = Plt{s,Xs’t,s + u, B} a.s.
and P{X,,,,€B/F¥} =P¥{t,X, ,t+v,B}as.,
for any s,t,u,v >0 and B € 8. Let f: E—R be a bounded measurable function. Set
11, @ = [ 1P Hsz5,d)

and 73,1 f@) = [ 1P {12, t,dy)

Then it follows from (10) through (12) that, for 0 <s <s; <s,and 0 <t <ty < t,,

1 1
Tsl,SQ,tf(x) = Tssl,tTll,sz, tf(:c)’

2 2 2
Tt,t2,sf(x) = Tt,tl,sTtl,thf(x)'

Now, consider the case of the homogeneous *-Markov field z, for which

P{5,t,z,z,2,B} = P{0,(t; — 51,1, — 5),,2,2, B} = P (t; —sy,ty — 59,2, B)
while

P”{s,y,sl,B} = 1’5(51 —s,t,z, B) and P**{t,y, ty,B} = 1’3(5,t1 —t,z, B).
Then, T}, f(@)=T, _, f(z) and T}, f(x)=T%, _of(z), where T} f(e) =T} f().

We denote their common value as T, ,f(z). Then T ,f(z) is a coordinate-wise contractive semi-
group on the space B(E) of bounded measurable functions f: E—R. Further, we consider only
homogeneous fields.

Definition 10: Transition function T’(s,t,‘:c,B) is said to be continuous in probability (P-
continuous), if for any € > 0, \l/ut'n 0P (s,t,z,U (z)) =1, where U (z) € € is any e-neighborhood of
s —

z. *Markov field with a P-continuous transition function will be called a P-continuous field.
The index ~ will be omitted.

Let us denote C'g(E) C B(E) as the space of continuous bounded functions on E.
Lemma 7: The following conditions are equivalent.

(Fy) The field X is P-continuous.

(Fy) Lif_%P(u, vy, 2, U (2)) zil)iLI%)P(uO,v,m,UE(a:)) =1, for any ug,vy,¢ >0 and z € E.
(F3) y \l/i{)n_’OTuyvf(x) = f(z) for any f € Cg(E) and z € E.
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(Fy) }}L%T“’”of(x) :};%T“o»”f(x) = f(x) for any f € Cg(E) and x € E.
Proof: Let us show (F') implies (F). If\l/im o P(u,v,z,U (x)) =1, then
u v—

u \1/1{)n—>0 I Tuvf(dt) h f.’l:) | - u \l/lin—.o

[ @ - @),y

E

< lm (17| Pave, B\U()+ sup [f(2)-1(@)] = sup | f(z)-f(2)].

uv zeU (z z€eU (z)

Since € > 0 was arbitrary, we obtain (F'3). The implication, (F3)=(F,) follows from Lemma 1.
Let us show that (F,) implies (F,). Consider the function f, € Cg(E) such that f (y) > a >0
for y € E\U (z) and f () =0. Then from (F,), we have

lir%P(u, vy, 2, E\U (z)) < a™ 1lirr%)/ f(y)P(u, vy, z,dy)
u— u—
E\U (=)

a”imT,, f(z)=a"f(z)=0,
i.e., (F,) holds. umt o

The implication, (F';)=>(F,), has a proof similar to the proof that (F,)=(F3). The implica-
tion (F,)=(Fj) follows from Lemma 1. The implication, (F3)=(F;) has a proof similar to the
proof that (F )=(F,).

Definition 11: Transition function P(s,t,z,B) is said to be Feller, if for any t € IR2+,
T;(Cp) CCpg. The corresponding *-Markov field will be called a Feller field. (Note that if E is
a compact set, then C'g(F) = C(E), where C(E) is the space of continuous functions.)

Theorem 6: 1) Let X be a P-continuous field. Then Ty =T, Sty = Tt1t2,1 on C'g(E).

2) Let E be a compact set and X be a P-continuous Feller field. Then T is a Cy-semi-
group on C(E).

Proof: 1) According to Lemma 7, for any z € E and f € Cg(F), with uy, vy > 0,
liﬁ)lTu,vOf(x) =lLmT, ,f(z)= f(x).

ulo Yo
Therefore from the boundedness of f and Lebesgue convergence theorem,
. — limT-
tlllfslthl’szf(x) J?ST u, s ( ) ( )
. T T_f
B T, (@) = BT T, f(e) = T f(2).

Now, let u_ = Pn eqQt, —p"ls as n—oo. Then for any z € £ and f € C(F),
n 9, q9,v°1
Ts f(z) =lim T, s f(2) =lim T F(z) =Ty, 555 f (2).

n—00 lus

Therefore, Ty = T'; 5,8, 01 Cpg(E). Similarly, Ty = T3152’1 on C'g(E).

2) Taking into account statement 1), we obtain that X't: = X, ; is a homogeneous Markov
P-continuous, Feller process. According to famous results for Feller processes, the semigroup
T, = let, t >0, is continuous on C(E). Therefore,

Jim || gl = I Ty F=T =0, for f € O(E),

tl’t2 1 18189

le., Ttl,t2 is a C-semigroup. O

The Hille-Yosida theorem for Feller fields on compact sets is similar to the one-parameter
case.
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Theorem 7: An operator A with domain D(A) that is dense in C(E) generates a P-contin-
uous Feller field on the compact set E if and only if the following conditions are satisfied.

(G) a) There ezists A > 0 such that (AI — A)(D(A)) = C(E).
b) If f € D(A) and f(xy) > f(z), then Af(xz) <0.

Proof: If A generates a P-continuous Feller field, then from Theorem 1, A is a generator of a
Feller one-parameter semigroup, T = T1 4 and neceSSIty follows. If assumption (G) is satisfied,
then from Theorem 1, there ex1sts a semigroup Tt, t >0, such that T,(C(E))C C(E) and

tf——»f as t—0 for any f € C(F) [2, p. 167]. Let T, , = Tst Then T, ,(C(E)) C C(E). Since

T, f(x), for any s,t and z fixed, is a linear functlonal on C(FE), then there exists a measure
P(s,t,z,B) on & such that T', tf(:L') J f(y)P(s,t,z, B). Moreover, P(s,t,z,E)=1 and P is a
transition function by the semigroup property of Tst Now, as with the proof of Lemma 7,
choose f (y) > o >0 with y € E\U (z), f(x) =0 and } € C(E). Then

P(s,t,z,U (z))<a~” 1Ts’tf(:lc) =a” 1Tl’stf(:c)—n;\r ~1f(z) =0 as s v 1]0,
i.e., the transition function is P-continuous. The construction of an *x-Markov field with transi-

tion function P, under the assumptions of its Feller property and P-continuity, is realized in [6].
O

5. Diffusion Fields and Evolutions
Let (E,8) = (R",B(R™)), B = R™\B, As = 5, — sy, and At = t, —t,.
Definition 12: An *-Markov field with transition function,
P(s,t,s',t',z, B): = P{(s,t),(s,t"),z, 2,2, B}
with (s,1),(s',t") €R?_, (5,) < (s',t"), « €R™, and B € B(R™),

is called a diffusion field, if the following conditions are true for any e > 0 uniformly in z € K
where K is any compact set, K C R™.

(H) a) P(sy,ty,89,t9,2,U (z)) = o(AsAt),

P(sy,t,55,1,2,U (z)) = o(As)
and P(s,ty,5',ty,2,U (z)) = o(At).

b) / (yi — mi)P(sl,tl,sz, ty, x,dy) = bf)(sl,tl,:c)AsAt + o(AsAt),
U (=)
(yi - wi)P(sl, t,59,t' 2, dy) = bi(sl, t,t',z)As + o(As),
U (=)

and / (v - zi)P(tl,s, ty, 8"z, dy) = bg(s, s',t, 1y, 2)At + o(At).
U (=)

€

c) / (yi — :ci)(yj — :zj)P(sl, tyySorty, @, dy) = aéj(sl, ty,z)AsAt + o(AsAt),
U (=)
€
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(yi — xi)(yj - xj)P(sl, t,59,t,,dy) = aij(sl, t,t',z)As + o(As),

U (=)

and / (yi — :ci)(yj — :cj)P(tl, 8,19, 8", x,dy) = agj(s, s'yty, x)At + o(At),
U (=)

as As—0 and At—0.

Here,
{b}, aff,i,j = T,n} C C(R* x R™) and {b},a/,i,j =T,n] C C(R3_x R") for k = 1,2.

Remark 9: Different classes of diffusion fields on the plane were considered in [1, 3, 4, 7],
similar class of diffusion processes were considered in [9, 10].

Let us introduce the notations,

b,V f) = Zb and (¥, Vf)_i: b3 F

=1 ,]:1 a:E’a:L'J

Consider the families of differential operators
Lo(s,,8)f =3(aqV, V )+ (b, V ),
Ly(s,t,t,8)f = Hay V, V )+ (b, V )

and L,(s,8',t,2)f = (a2V V f)+ (by, V f), where f € C*([R™).

Note that the following family of evolutions, T'_,,,i, is connected in a natural way with the

diffusion field
T, ,p0f(2)= /f(y)P(s t,s', ¢z, dy),

where f is a bounded measurable function.
Denote C2, = C2, (R™) C C%(R™) as the space of functions with compact support.
Theorem 8: Let the diffusion field X satisfy the condition
(I) for any compact set K C R™ there exists a compact set K' O K such that

P(sy,ty,89,ty,2,K) = o(AsAt), P(sq,t,55,t,2,K)=0(As),
and P(s,ty,8',ty,z,K) = o(At) as As—0 and At—0

uniformly in z € R™\K'. Then C%, C (Aﬁt: i)ﬂD(Al’ i)ﬂD(AZ’ j:) for any (s,s',t,t") C
R4 and the following equalities hold on C'2 Asjt: + = Lo(s,t), A tt' = 2Y(s,t,t") and A2 i
.?.2(3 s’ t).

Proof: Consider one of the generators, As"t' *, for example. Let f € C}m,f =0ifz€K. It
follows from (I) that

sup (T b+ 1@ = F@) = Lo(s,ta)f

z € K'
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= up (hk) ! /f(y)P(s tys + h, L+ kyz, dy)
z €K
< || fllsup (hk)~1P(s,t,s +h,t 4 k,z, K)—0, as h V k|0. (13)
z €K'
Furthermore, the functions f, af an d are bounded and uniformly continuous on the

set Kg={J U6(:c) For any € > 0 the value 6 > 0 can be chosen in such a way that
z €K'

d? 92 _ )
3.7:0];' (z) ~ aw.afx.(y) <ecifz,ye Kg, |z—y| <6.
? J

Now choose A > 0 in such a way that all o( ) in (H) be less then eAsAt for AsV At < X and
for any z € K'. Put the Taylor expansion,

JW) = @)+ y-2)+3y—o) 'y —2) +aly—2*],
where |a| = | a(z,y)| <in%cfor |y—xz| <6, into the following estimations
sup | (hk)~ I(T(s,h) tnt f(z) = f(z)) = Ly(s,t,2)f |

z €K

<sup |(hk)~1! / F(y)P(s,t,s + h,t + k,x,dy) — f(x) \— Lo(s,t,2)f
seK Ug(x)

+sup (hk)~ / | Fy) — F(z)|P(s,t,5 + h,t + k,2,dy)

z €K'

€ Us(z)
< sup (hlc) / | oz, y) | |y—1‘|2P(s,t,s+h,t+k,x,dy)+C’e
z e K'

Ug(x)
—2—n esup .Zao(s t,x) |+ Ce
€K' |;=1
where
_ of n? o*f
0 =271 + nangcl) G 1+ G 1 55 (14)

The proof follows from (13) and (14).

Corollary 1: Let the functions b' and a1 , be continuously differentiable in t and t' and let b

and ay’ be continuous differentiable in s and s'. Then from Remark 5, we obtain that, on the
space szn’

t s
Ll(s,t,t',x)f:/ Lo(s,v,2) fdvy and £2(s,s’,t,:c)f:/ Lo(u, t,z) fdu.
t s
Furthermore, we consider the condition

(J) the transition function P has a density

P(s,t,s',t',z,B) = /p(s,t,s',t’,m,y)dy, for B € B(R™).
B
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Suppose that the conditions (I) and (J) are satisfied. Consider each operator £} that is form-
ally adjoint of £;:

Ly =1V V(apf) = V (bef), for k=0,1,2

where
V V(af)= (a"f)
j}:— 1ayzaya
and Z E_(bl
i=1

Let C >0, ¢ >0, C =C(s,t,8,t,y) € C'([R4+ xR™) and ¢ = ¢(z)—0 while |z|-—oo. We say
that the function g satisfies the (C,¢) condition, if |g| < Cy. We say that the set E of
functions satisfies (C, ¢)-condition if every element of it satisfies this condition. Let also,

2
0Ty < p(e)).

T ={f € C*(R™):max(| f | |5~ e (%

. pdp 9%p 4 2 op _ op _
Theorem 9: 1) Let {p, 35" 91 3y 0y, 375 CC(RY xR*™).  Then 3 = Lr(y)p and FTid L;(y)p,

where index y means that the operator L7 is applied to p as a function of y under fized .

2) Let AY* =2, i=1,2 on the set T; let

Op 0 9% n

P850t e, 0z,
d let p,22 and 2P satisfy the (C,p)-condition. Then 2= —2  pand22= _ 2
and let p, g, an 520z, satisfy the (C,p)-condition. en 5o = 1(z)P nd 57 = 2(z)P-
Proof: The scheme of the proof is the same in both cases, so we prove only 2). Let f € C(fzizl,
with
Ty ed@ = [ 05,88,0,2,) )y, (15)
Rn

The (C, p)-condition permits us to differentiate (15) under the integral sign:

or _ [op oT _ -
G= | gerwan, 5= [ Ghin 520 = [Tk s
R™ R"™ R"™
The (C, ¢)-condition also ensures that T' f €T, whence
A1 oL f (@) = .P, 1(st,t' z)p(s,t, 8", 2, y) f(y)dy
Rn

Since f € C?m is arbitrary, we obtain that %—i’ = —L,(s,t,t",z)p. (The second equality in 2) is
proved the same way.)

Denote D’;g as the family of partial derivatives of g in z of order k.
Theorem 10: 1) Suppose the following conditions are satisfied.
(K,) a) {a}’,p} c C(RYL, xR™),
{aif,b}} c CBIRY. xR") and b € CD(RY, xR™) for 1 =1,2 and i,j = T,n.

b) The set
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op op 0°p 021)} 4 p2n
{gs‘a“tmm C O xR™)

and satisfies (C,p)-condition.
Then o2p
5o = Lo()(8H )P+ L1y (s 1) L5(y)(5,8",1)p- (16)

2) Suppose the following conditions are satisfied.

(Ky) a) Al = L% on the setTforz._O 1,2.
b) {%’%’%’% gun = al abl’u = a12]7b1 } C C(R4 X R2n)
Op Op 0O o . g .
¢) The set p,—gg,-é—f,-as—ai,at—zi} C C(R4+ x R*") and satisfies (C,p)-condition.
d) The set Dxp, k= (),_4} C C'([R4+ x R2™) and satisfies (C,p)-condition.
e) The set

{Dk( '3‘868” ) <b03”) DX(ai), DE(BY), k—0,1,2}cC(R4 < R27)

and satisfies (C,p)-condition.
Then 0%p

S = Lo()(8, 0P + Ly (8,4, 1) g (5,8, D)p

- Lo(x)(s, Hp+ L2(x)(5, s, t)Ll(I)(s, t,t")p. (17)

3) Suppose the following conditions are satisfied.
(K3) a) A' = L% on the set T fori=0,1.

b) The set p, g’z gﬁ,aat,gs 86581;’ C C(R4+ x R®™) and satisfies (C,p)-condition.

C) {Dxp$ p) Dle (a p) D m(b P), —m; l= 27 m = 1)
Dk(alf), DE(bi} C C(RY, xR?™)

and satisfies (C,p)-condition.
Then

32 % ! ! ! !

i = = L3 (8,8)p = Ly (5,1, 1) L3 (1) (5,8, )p- (18)
If, in addition, (K,) b), d) and e) hold, then

62 ! !’ ! * ) !

625'88 Lo(z)(s,t )p— Ll(x)(s A )L2(y)(s»3 ) )p- (18 )

4) Under conditions (K3) where we change i=0,11%01:=0,2in (K3) a), f we change 2 55 0N

% and gt in (K3) b) and if we change a3’ and b to a1 ' and bl, then we have that

Pp g (s',)p — L, (5,8, 1)L%, (s, 1,1 (19)

9195 ~ ~ o)\ TP T Sae) S S () B B TP
If, in addition, (K,) b), d) and e) hold, then

d%*p

5105 = — Lo()(8 P = Ly(z)(5,8", L1 (Y) (5,1, ). (19')
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Proof: We prove only 1) and 2) (the other parts are proved in the same way).
1) Let f€C?%,,. Then assumption (Kq)b) imp]ies that

i = / v ! W)

Assumption (I) ensures that
Agpf(z) =2o(s 8 2)f =(agV, V )+ (by, V ),
Ai,“,f(:c) =2,(st,t,z)f =(a; V, V )+ (by, V f),
and the last expression belongs to C%in‘ Therefore,
A2 AL () = Ly(s, 8,1, @)y (s, 1 @) f
=(ayV, VL )+ (by, VL,f).

Fulfillment of the conditions (Eg) and (Eg) is obvious. Furthermore, from statements 5) and 6)
of Theorem 5 and from the assumptions (K,) a),

9
3s ’Bt’f (v)dy = / P(s,t,s',t’,w,y)[z (s, t',y)a ay )y >ty gg(/y)} dy

Rn Rn %, J

O (s, 4, 9) f (9)]
Oy, 8y3

+ /p(s t,s',t' z,y)| Za%’(s s\t y)
R" %]

: O[Ly(s',t, 1,
+ D by(s,8,1,y) Ly (s i y)f(y)]]dy

1

/[Zayl (aif(s',t',y)p) — Zaay,-( (s, y)p))f (v)dy

R" L)

2 ..
* /[Z‘j8y(;)~6y,<(al2](s’S"t/’y)p)Ll(s"‘»t',y)f

Z (bl2(s s ,t',y)p)Ll(s t’t,7 y)f]

= [ Uy + [ (25008 0PI ) . (20)

R" R"™
The second integral in (20) can also be transformed by integration by parts, and we obtain that
[t iy = [185, 0Ly + [ 125,803,600 )i
R" R" R"™
By virtue of an arbitrary choice of f € C%;, and by (K,) b) and Remark 8, we obtain (16).
2) Note that conditions (K9) a) and b), Remark 5 and Corollary 1 imply that Li(s,t,t") =
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ff/LO(s,v)dv and £%(s,s',1) = fj’.&o(u,t)du on T'. Condition (K,) 3) implies that
0*T _
L= [ ety
Rn

for any C%,, . Also from (K,)c), T g wfeT. Condition (K,) d) gives us that

Ty (@) = Lol t,2)T (o f = f (s, t,2)p)f (y)dy;
and also,
| | | S LS 2 2ol Dpdulf(n)dy,i =2,
ATf(z)=LTf = / [Py =
" S Eto(svpdelf (y)dy, =1

Under conditions (K,) d) and e), A'Tf € T therefore,
A 'Ass ths' tt'f(x) = /[‘2’1(5’ t, t’)LZ(S’ s, t)p]f(y)dy-
Rn

We must verify conditions (F,) and (E,). (F) a) and b) are evident. Since the derivatives g gt
52T

and 2 ata exist, it follows from Remark 7 that we must verify only (£,) d). From Remark 6, it is

sufﬁc1ent to verlfy (E3). (E3) a) follows from (K,) b). To show (Ej) b), let g(z) =T, tt/f(x)

91(x) =T s ,,f(z). Then from (K,) d) and e) and Lemma 5, part 1), we get that

Il A, ( AlThs,tt’g>” = ”Aut( / Avtt us,tt'gdv)”

< sup A,,Al g1 || -
ve[s-—h,s]” ut ytt’ 1”

From (K,) a), b) and e), Remarks 5 and Corollary 1,

t,

A, Autt’gl /AutA ,gldv

/(Za J(u,t,z) $i5j+ Xi:bg(u,t,x)gaa)

(Za (v,0' :L' + Zbk agl(:)) (21)

Since f € C?«m and because condition (K,) d) is satisfied, each derivative Dkgl(a:) for k=1,4 is
bounded in the following sense:

l Dkgl(x) t = /kaf(y)dy < <p(x)/C(u,t,s',t',y)f(y)dy < Cl(tasl’t/)a (22)
K
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where u € [s — 6,5], s >0 and K D supp f.
Any term in (21) has the form,

c(u, t,2)DPdE (v,v',2) D" g, (),

where p = 1,2, r = 1,4, and cy,dy = ag or b,. Then from (K,) €) and (22), each of them is uni-
formly bounded in z. Hence (Ej) b) follows. Condition (F,) is verified in the same way. From
Theorem 4, our proof follows.

Remark 10: As in the one-parameter case [10], under the assumption that A*¥ = £* on C'Zin
and

a};jgo(x)—>0, b;.cgo(:c)—>0, as |z|—o0, for k =0,1,2,

2
it follows that AF = L, for such f that each of the functions f, %, 8:?-6{1:. is majorized by Cy(x)
for sufficiently large x. vl

Remark 11: A particular case of equation (16) was considered in [3, 4].
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