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We consider a prototype of quasilinear elliptic variational-hemivariational inequalities
involving the indicator function of some closed convex set and a locally Lipschitz func-
tional. We provide a generalization of the fundamental notion of sub- and supersolutions
on the basis of which we then develop the sub-supersolution method for variational-
hemivariational inequalities. Furthermore, we give an example to illustrate the abstract
theory developed in this paper.

1. Introduction

Let Ω⊂RN be a bounded domain with Lipschitz boundary ∂Ω, and letV =W1,p(Ω) and

V0 =W1,p
0 (Ω), 1 < p <∞, denote the usual Sobolev spaces with their dual spaces V∗ and

V∗
0 , respectively. In this paper, we deal with the following variational-hemivariational

inequality:

u∈ K :
〈−∆pu− f ,v−u〉+

∫
Ω
jo(u;v−u)dx ≥ 0, ∀v ∈ K , (1.1)

where jo(s;r) denotes the generalized directional derivative of the locally Lipschitz func-
tion j :R→R at s in the direction r given by

jo(s;r)= limsup
y→s, t↓0

j(y + tr)− j(y)
t

, (1.2)

(cf., e.g., [3, Chapter 2]), and K ⊂ V0 is some closed and convex subset. The operator
∆pu= div(|∇u|p−2∇u) is the p-Laplacian, 1 < p <∞, and f ∈V∗

0 .
The main goal of this paper is to develop the sub-supersolution method for variational-

hemivariational inequalities of the form (1.1) which may be considered as a prototype of
more general problems of this kind. Problem (1.1) includes various special cases:
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(i) for K = V0 and j :R→R smooth, (1.1) is the weak formulation of the Dirichlet
problem

u∈V0 :−∆pu+ j′(u)= f in V∗
0 , (1.3)

for which the sub-supersolution method is well known,
(ii) if K = V0, and j : R→ R not necessarily smooth, then (1.1) is a hemivariational

inequality of the form

u∈V0 :
〈−∆pu− f ,v−u〉+

∫
Ω
jo(u;v−u)dx ≥ 0, ∀v ∈V0, (1.4)

for which an extension of the sub-supersolution method has been given recently
in [2],

(iii) if j = 0, then (1.1) becomes a variational inequality for which a sub-supersolution
method has been developed in [4, 5], and an extension of this method to systems
of variational inequalities has been proved recently in [1].

This paper provides a unified theory on the sub-supersolution method for variational-
hemivariational inequalities that includes all the above cited special cases.

2. Notation and hypotheses

For functions w, z : Ω→ R and sets W and Z of functions defined on Ω, we use the
notations: w ∧ z = min{w,z}, w ∨ z = max{w,z}, W ∧ Z = {w ∧ z | w ∈W , z ∈ Z},
W ∨Z = {w∨ z | w ∈W , z ∈ Z}, and w∧Z = {w}∧Z, w∨Z = {w}∨Z. Next we in-
troduce our basic notion of sub-supersolution.

Definition 2.1. A function u∈V is called a subsolution of (1.1) if the following holds:

(i) u≤ 0 on ∂Ω,
(ii) 〈−∆pu− f ,v−u〉+

∫
Ω j

o(u;v−u)dx ≥ 0,∀v ∈ u∧K .

Definition 2.2. ū∈V is a supersolution of (1.1) if the following holds:

(i) ū≥ 0 on ∂Ω,
(ii) 〈−∆pū− f ,v− ū〉+

∫
Ω j

o(ū;v− ū)dx ≥ 0,∀v ∈ ū∨K .

Let ∂ j :R→ 2R \ {∅} denote Clarke’s generalized gradient of j defined by

∂ j(s) := {ζ ∈R | jo(s;r)≥ ζr, ∀r ∈R}. (2.1)

We assume the following hypothesis for j.

(H) The function j : R→ R is locally Lipschitz and its Clarke’s generalized gradient
∂ j satisfies the following growth conditions:
(i) there exists a constant c1 ≥ 0 such that

ξ1 ≤ ξ2 + c1
(
s2− s1

)p−1
(2.2)

for all ξi ∈ ∂ j(si), i= 1,2, and for all s1,s2 with s1 < s2,
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(ii) there is a constant c2 ≥ 0 such that

ξ ∈ ∂ j(s) : |ξ| ≤ c2
(
1 + |s|p−1), ∀s∈R. (2.3)

Let Lp(Ω) be equipped with the natural partial ordering of functions defined by u ≤ w
if and only if w− u belongs to the positive cone L

p
+(Ω) of all nonnegative elements of

Lp(Ω). This induces a corresponding partial ordering also in the subspace V of Lp(Ω),
and if u,w ∈V with u≤w then

[u,w]= {z ∈V | u≤ z ≤w} (2.4)

denotes the order interval formed by u and w.
In the proofs of our main results we make use of the cut-off function b : Ω×R→ R

related with an ordered pair of functions u, ū, and given by

b(x,s)=




(
s− ū(x)

)p−1
if s > ū(x),

0 if u(x)≤ s≤ ū(x),

−(u(x)− s)p−1
if s < u(x).

(2.5)

One readily verifies that b is a Carathéodory function satisfying the growth condition
∣∣b(x,s)

∣∣≤ k(x) + c3|s|p−1 (2.6)

for a.e. x ∈Ω, for all s∈R, with some function k ∈ Lq+(Ω), and q satisfying 1/p+ 1/q = 1.
Moreover, one has the following estimate

∫
Ω
b
(
x,u(x)

)
u(x)dx ≥ c4‖u‖pLp(Ω)− c5, ∀u∈ Lp(Ω), (2.7)

where c4 and c5 are some positive constants. In view of (2.6), the Nemytskij operator
B : Lp(Ω)→ Lq(Ω) defined by

Bu(x)= b(x,u(x)
)

(2.8)

is continuous and bounded, and thus due to the compact embedding V ⊂ Lp(Ω) it fol-
lows that B :V0 →V∗

0 is compact.

3. Preliminaries

In this section, we briefly recall a surjectivity result for multivalued mappings in reflexive
Banach spaces (cf., e.g., [6, Theorem 2.12]) which among others will be used in the proof
of our main result.

Theorem 3.1. Let X be a real reflexive Banach space with dual space X∗, Φ : X → 2X
∗

a maximal monotone operator, and u0 ∈ dom(Φ). Let A : X → 2X
∗

be a pseudomonotone
operator, and assume that either Au0 is quasi-bounded or Φu0 is strongly quasi-bounded.
Assume further that A : X → 2X

∗
is u0-coercive, that is, there exists a real-valued function

c : R+ → R with c(r)→ +∞ as r → +∞ such that for all (u,u∗) ∈ graph(A) one has 〈u∗,
u−u0〉 ≥ c(‖u‖X)‖u‖X . Then A+Φ is surjective, that is, range(A+Φ)= X∗.
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The operators Au0 and Φu0 that appear in the theorem above are defined by Au0 (v) :=
A(u0 + v) and similarly for Φu0 . As for the notion of quasi-bounded and strongly quasi-
bounded, we refer to [6, page 51]. In particular, one has that any bounded operator is
quasi-bounded and strongly quasi-bounded as well. The following proposition provides
sufficient conditions for an operator A : X → 2X

∗
to be pseudomonotone, which is suit-

able for our purpose.

Proposition 3.2. Let X be a real reflexive Banach space, and assume that A : X → 2X
∗

satisfies the following conditions:

(i) for each u∈ X we have that A(u) is a nonempty, closed and convex subset of X∗;
(ii) A : X → 2X

∗
is bounded;

(iii) if un⇀ u in X and u∗n ⇀ u∗ in X∗ with u∗n ∈ A(un) and if limsup〈u∗n ,un−u〉 ≤ 0,
then u∗ ∈A(u) and 〈u∗n ,un〉 → 〈u∗,u〉.

Then the operator A : X → 2X
∗

is pseudomonotone.

As for the proof of Proposition 3.2 we refer, for example, to [6, Chapter 2].

4. Main result

The main result of this paper is given by the following theorem which provides an exis-
tence and comparison result for the variational-hemivariational inequality (1.1).

Theorem 4.1. Let ū and u be super- and subsolutions of (1.1), respectively, satisfying u≤ ū,
and assume ū∧K ⊂ K and u∨K ⊂ K . Then under hypothesis (H) there exist solutions of
(1.1) within the order interval [u, ū].

Proof. Let IK :V0 →R∪{+∞} denote the indicator function related with the given closed
convex set K �= ∅ and defined by

IK (u)=



0 if u∈ K ,

+∞ if u /∈ K ,
(4.1)

which is proper, convex, and lower semicontinuous. By means of the indicator function
the variational-hemivariational inequality (1.1) can be rewritten in the following form.
Find u∈V0 such that

〈−∆pu− f ,v−u〉+ IK (v)− IK (u) +
∫
Ω
jo(u;v−u)dx ≥ 0, ∀v ∈V0. (4.2)

Since we are looking for solutions of (4.2) within [u, ū], we consider the following auxil-
iary problem. Find u∈V0 such that

〈−∆pu− f + λB(u),v−u〉+ IK (v)− IK (u) +
∫
Ω
jo(u;v−u)dx ≥ 0, ∀v ∈V0, (4.3)

where B is the cut-off operator introduced in Section 2, and λ≥ 0 is some parameter to
be specified later. As will be seen in the course of the proof, the role of λB is twofold. First
it provides a coercivity generating term, and second, it allows for comparison. The proof
of the theorem will be done in two steps. In Step 1, we prove the existence of solutions of
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the auxiliary problem (4.3), and in Step 2, we are going to show that any solution of (4.3)
belongs to the interval [u, ū], which completes the proof, since then B(u) = 0 and (4.2)
holds.
Step 1 (existence for (4.3)). We introduce the functional J : Lp(Ω)→R defined by

J(v)=
∫
Ω
j
(
v(x)

)
dx, ∀v ∈ Lp(Ω), (4.4)

which by hypothesis (H) is locally Lipschitz, and moreover, by Aubin-Clarke theorem
(see [3, page 83]) for each u∈ Lp(Ω) we have

ξ ∈ ∂J(u)=⇒ ξ ∈ Lq(Ω) with ξ(x)∈ ∂ j(u(x)
)

for a.e. x ∈Ω. (4.5)

Consider now the multivalued operator

−∆p + λB+ ∂
(
J|V0

)
+ ∂IK :V0 −→ 2V

∗
0 , (4.6)

where J|V0 denotes the restriction of J toV0 and ∂IK is the subdifferential of IK in the sense
of convex analysis. It is well known thatΦ := ∂IK :V0 → 2V

∗
0 is a maximal monotone oper-

ator, (cf., e.g., [7]). Since−∆p :V0 →V∗
0 is strictly monotone, bounded, and continuous,

and λB : V0 → V∗
0 is bounded, continuous and compact, it follows that −∆p + λB : V0 →

V∗
0 is a (singlevalued) pseudomonotone, continuous, and bounded operator. In [2], it has

been shown that ∂(J|V0 ) :V0 → 2V
∗
0 is a (multivalued) pseudomonotone operator, which,

due to (H), is bounded. Thus A := −∆p + λB + ∂(J|V0 ) : V0 → 2V
∗
0 is a pseudomonotone

and bounded operator. Hence, it follows by Theorem 3.1 that range(A+Φ) = V∗
0 pro-

vided A is u0-coercive for some u0 ∈ K , which can readily be seen as follows: for any
v ∈V0 and any w ∈ ∂(J|V0 )(v), we obtain by applying (H)(ii) and (2.7) the estimate

〈−∆pv+ λB(v) +w,v−u0
〉

=
∫
Ω
|∇v|p dx+ λ

〈
B(v),v

〉
+
∫
Ω
wvdx− 〈−∆pv+ λB(v) +w,u0

〉

≥
∫
Ω
|∇v|p dx+ c4λ‖v‖pLp(Ω)− c5λ− c2

∫
Ω

(
1 + |v|p−1)|v|dx

−∣∣〈−∆pv+ λB(v) +w,u0
〉∣∣≥ ‖v‖pV0

−C
(

1 +‖v‖p−1
V0

)
,

(4.7)

for some constant C > 0, by choosing the constant λ in such a way that c4λ > c2. Since
p > 1, the coercivity of A follows from (4.7). In view of the surjectivity of the operator
A+Φ there exists a u ∈ dom(A)∩ dom(Φ) such that f ∈ A(u) +Φ(u), that is, there is
an ξ ∈ ∂(J|V0 )(u) with ξ ∈ Lq(Ω) and ξ(x) ∈ ∂ j(u(x)) for a.e. x ∈ Ω, and an η ∈ Φ(u)
such that

−∆pu− f + λB(u) + ξ +η= 0 in V∗
0 , (4.8)

where

〈ξ,ϕ〉 =
∫
Ω
ξ(x)ϕ(x)dx, ∀ϕ∈V0, (4.9)

IK (v)≥ IK (u) + 〈η,v−u〉, ∀v ∈V0. (4.10)
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By the definition of Clarke’s generalized gradient ∂ j from (4.9) we get

〈ξ,ϕ〉 =
∫
Ω
ξ(x)ϕ(x)dx ≤

∫
Ω
jo
(
u(x);ϕ(x)

)
dx, ∀ϕ∈V0. (4.11)

Thus from (4.8), (4.9), (4.10), and (4.11) with ϕ replaced by v−u, we obtain (4.3), which
proves the existence of solutions of problem (4.3).
Step 2 (u ≤ u ≤ ū for any solution u of (4.3)). We first show u ≤ ū. By definition, the
supersolution ū satisfies: ū≥ 0 on ∂Ω, and

〈−∆pū− f ,v− ū〉+
∫
Ω
jo(ū;v− ū)dx ≥ 0, ∀v ∈ ū∨K. (4.12)

Let u be any solution of (4.3) which is equivalent with the following variational-
hemivariational inequality:

u∈ K :
〈−∆pu− f ,v−u〉+

〈
λB(u),v−u〉+

∫
Ω
jo(u;v−u)dx ≥ 0, ∀v ∈ K. (4.13)

We apply the special test function v = ū∨ u = ū + (u− ū)+ in (4.12) and v = ū∧ u =
u− (u− ū)+ in (4.13), and get by adding the resulting inequalities the following one:

〈−∆pū−
(−∆pu

)
, (u− ū)+〉+ λ

〈
B(u),−(u− ū)+〉

+
∫
Ω

(
jo
(
ū; (u− ū)+)+ jo

(
u;−(u− ū)+))dx ≥ 0,

(4.14)

which yields, due to

〈−∆pu−
(−∆pū

)
, (u− ū)+〉≥ 0, (4.15)

the inequality

λ
〈
B(u),(u− ū)+〉≤

∫
Ω

(
jo
(
ū; (u− ū)+)+ jo

(
u;−(u− ū)+))dx. (4.16)

By using (H) and the properties on jo and ∂ j, we get for certain ξ̄(x) ∈ ∂ j(ū(x)) and
ξ(x)∈ ∂ j(u(x)) the following estimate of the right-hand side of (4.16):

∫
Ω

(
jo
(
ū; (u− ū)+)+ jo

(
u;−(u− ū)+))dx

=
∫
{u>ū}

(
jo(ū;u− ū) + jo

(
u;−(u− ū)

))
dx

=
∫
{u>ū}

(
ξ̄(x)

(
u(x)− ū(x)

)
+ ξ(x)

(− (u(x)− ū(x)
)))

dx

=
∫
{u>ū}

(
ξ̄(x)− ξ(x)

)(
u(x)− ū(x)

)
dx

≤
∫
{u>ū}

c1
(
u(x)− ū(x)

)p
dx.

(4.17)
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Since

〈
B(u),(u− ū)+〉=

∫
{u>ū}

(u− ū)p dx, (4.18)

we get from (4.16) and (4.17) the estimate

(
λ− c1

)∫
{u>ū}

(u− ū)p dx ≤ 0. (4.19)

Selecting the parameter λ, in addition, such that λ− c1 > 0 then (4.19) yields

∫
Ω

(
(u− ū)+)p dx ≤ 0, (4.20)

which implies (u− ū)+ = 0 and thus u ≤ ū. The proof for the inequality u ≤ u can be
carried out in a similar way which completes the proof of the theorem. �

4.1. Example. We consider (1.1) with f ∈ L∞(Ω) and K representing the following ob-
stacle problem

K = {v ∈V0 | v(x)≤ ψ(x) for a.e. x ∈Ω
}

, (4.21)

and assume ψ ∈ L∞(Ω). We are going to provide sufficient conditions for the existence of
an ordered pair of constant sub- and supersolutions α and β, respectively.

Proposition 4.2. Let K be given by (4.21) and assume f , ψ ∈ L∞(Ω). Then the following
hold.

(a) the constant function u(x)≡ α≤ 0 is a subsolution of (1.1) if

f (x)≥− jo(α;−1) for a.e. x ∈Ω; (4.22)

(b) the constant function ū(x)≡ β ≥ 0 is a supersolution of (1.1) if

f (x)≤ jo(β;1) for a.e. x ∈Ω. (4.23)

Proof. Let α≤ 0 satisfy (4.22). According to Definition 2.1, we only need to verify that α
satisfies (ii) in Definition 2.1. To this end let v ∈ α∧K be given. Then v−α≤ 0 in Ω and
in view of (4.22) we get

〈−∆pα− f ,v−α〉+
∫
Ω
jo
(
α;v(x)−α)dx

=
∫
Ω

(
jo
(
α;v(x)−α)− f (x)

(
v(x)−α))dx

=
∫
Ω

(
jo(α;−1) + f (x)

)(
α− v(x)

)
dx ≥ 0 ∀v ∈ α∧K ,

(4.24)

which proves that α is a subsolution. In a similar way one can show that under (4.23) the
constant β ≥ 0 is a supersolution. �
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In order to apply Theorem 4.1 to our example, we only need to make sure that, in
addition, β∧K ⊂ K and α∨K ⊂ K is satisfied. For the obstacle problem β∧K ⊂ K is
trivially satisfied and α∨K ⊂ K holds provided α≤ ψ(x) for a.e. x ∈Ω.

4.2. Remarks. (i) As already mentioned problem (1.1) can be treated also with the p-
Laplacian replaced by a more general quasilinear elliptic operator of Leray-Lions type
involving lower order terms.

(ii) It can be shown that the set � of all solutions of (1.1) lying within the interval
[u, ū] is a compact set in V0.

(iii) Under additional lattice conditions such as K ∧K ⊂ K and K ∨K ⊂ K one can
prove that the solution set � possesses extremal elements, that is, there exist the greatest
and smallest solution with respect to the underlying partial ordering.
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