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Let H(B) denote the space of all holomorphic functions on the unit ball B ⊂ Cn. In this
paper, we investigate the integral operator Tg( f )(z) = ∫ 1

0 f (tz)�g(tz)(dt/t), f ∈ H(B),
z ∈ B, where g ∈H(B) and �g(z)=∑n

j=1 zj(∂g/∂zj)(z) is the radial derivative of g. The
operator can be considered as an extension of the Cesàro operator on the unit disk. The
boundedness of the operator on a-Bloch spaces is considered.

1. Introduction

Let U be the unit disc in the complex planeC and H(U) the space of all analytic functions
in U .

For each complex γ with Reγ >−1 and k nonnegative integer, let A
γ
k be defined as the

kth coefficient in the expression

1
(1− x)γ+1 =

∞∑
k=0

A
γ
kx

k, (1.1)

so that A
γ
k = (γ+ 1)···(γ+ k)/k!.

For an analytic function f (z) =∑∞
n=0 anz

n on U , the generalized Cesàro operator is
defined by

�γ( f )(z)=
∞∑
n=0

(
1

A
γ+1
n

n∑
k=0

A
γ
n−kak

)
zn. (1.2)

For γ = 0 we obtain the Cesàro operator on U . The boundedness of the operator on
some spaces of analytic functions was considered by a number of authors, see, for exam-
ple, [8, 10, 13], and the references therein.

The integral form of �0 =� is

�( f )(z)= 1
z

∫ z

0
f (ζ)

1
(1− ζ)

dζ = 1
z

∫ z

0
f (ζ)

(
ln

1
(1− ζ)

)′
dζ , (1.3)
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or, taking simply as a path the segment joining 0 and z,

�( f )(z)=
∫ 1

0
f (tz)

(
ln

1
(1− ζ)

)′∣∣∣∣∣
ζ=tz

dt. (1.4)

On most holomorphic function spaces the boundedness of the previous operator is equiv-
alent to the boundedness of the operator

z�( f )(z)=
∫ z

0

f (ζ)
1− ζ

dζ. (1.5)

Hence, Aleman and Siskakis [2] have introduced and investigated the following natural
generalization of operator (1.5):

Tg f (z)=
∫ z

0
f (ζ)g′(ζ)dζ. (1.6)

In [1, 2, 3] were investigated the boundedness and the compactness of the operator on
Hardy and Bergman spaces. A natural question is to define a similar integral operator
which acts on H(B) (the space of all holomorphic functions in the unit ball B).

Let z = (z1, . . . ,zn) and w = (w1, . . . ,wn) be points in complex vector space Cn and

〈z,w〉 = z1w̄1 + ···+ znw̄n. (1.7)

Let dVN stand for the normalized Lebesgue measure on Cn. For a holomorphic function
f we denote

∇ f =
(
∂ f

∂z1
, . . . ,

∂ f

∂zn

)
. (1.8)

Let � f (z)=∑n
j=1 zj(∂ f /∂zj)(z) stand for the radial derivative of f ∈H(B) (see [7]).

It is easy to see that if f ∈H(B), f (z)=∑α aαz
α, where α is a multi-index, then

� f (z)=
∑
α

|α|aαzα. (1.9)

Let a > 0. The a-Bloch space �a =�a(B) is the space of all f ∈H(B) such that

ba( f )= sup
z∈B

(
1−|z|2)a∣∣� f (z)

∣∣ <∞. (1.10)

The little a-Bloch space �a
0 =�a

0(B) consists of all f ∈H(B) such that

lim
|z|→1

(
1−|z|2)a∣∣� f (z)

∣∣= 0. (1.11)

On �a the norm is introduced by

‖ f ‖�a = ∣∣ f (0)
∣∣+ ba( f ). (1.12)
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With this norm �a is a Banach space and �a
0 is a closed subspace of �a. If a = 1, we

denote �a and �a
0 simply by � and �0.

The aim of this paper is to investigate the boundedness of the following operator:

Tg( f )(z)=
∫ 1

0
f (tz)�g(tz)

dt

t
, f ∈H(B), z ∈ B, (1.13)

where g ∈H(B), on the a-Bloch spaces. This operator can be considered as a natural ex-
tension of operator (1.6) on H(B) (when n= 1 we indeed obtain (1.6)). Operator (1.13)
has appeared, for the first time, in [6] where its boundedness and compactness are inves-
tigated.

Closely related operators to the above mentioned on the unit polydisc were investi-
gated in [4, 5, 9, 11, 12].

In this paper, we prove the following results.

Theorem 1.1. Let g ∈H(B) and a∈ (0,1). Then the following statements are equivalent:

(a) Tg is bounded on �a;
(b) supz∈B |�g(z)|(1−|z|2)a <∞.

Moreover ‖Tg‖ � supz∈B |�g(z)|(1−|z|2)a.

Theorem 1.2. Let g ∈H(B). Then the following statements are equivalent:

(a) Tg is bounded on �;
(b) Tg is bounded on �0;
(c) supz∈B |�g(z)|(1−|z|2) ln1/(1−|z|2) <∞;

and the relationship ‖Tg‖ � supz∈B |�g(z)|(1−|z|2) ln1/(1−|z|2) holds.

Theorem 1.3. Let g ∈H(B) and a > 1. Then the following statements are equivalent:

(a) Tg is bounded on �a;
(b) supz∈B |�g(z)|(1−|z|2) <∞.

Moreover ‖Tg‖ � supz∈B |�g(z)|(1−|z|2).

2. Auxiliary results

In order to prove our results, we need some auxiliary results which are incorporated in
the following lemmas.

Lemma 2.1. For every f ,g ∈H(B), it holds that

�[Tg( f )
]
(z)= f (z)�g(z). (2.1)

Proof. Assume that the holomorphic function f�g has the expansion
∑

α aαz
α. Then

�[Tg( f )
]
(z)=�

∫ 1

0

∑
α

aα(tz)α
dt

t
=�

(∑
α

aα
|α|z

α

)
=
∑
α

aαz
α, (2.2)

which is what we wanted to prove. �
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Lemma 2.2. Let f ∈�a(B), 0 < a <∞. Then

∣∣ f (z)
∣∣≤ C




∣∣ f (0)
∣∣+‖ f ‖�a , a∈ (0,1),∣∣ f (0)
∣∣+‖ f ‖�a ln

e

1−|z|2 , a= 1,

∣∣ f (0)
∣∣+

‖ f ‖�a(
1−|z|2)a−1 , a > 1,

(2.3)

for some C > 0 independent of f .

Proof. Let |z| > 1/2, z = rζ , and ζ ∈ ∂B. We have

∣∣∣∣ f (z)− f
(
rζ

2

)∣∣∣∣=
∣∣∣∣
∫ 1

1/2

〈∇ f (tz),z
〉
dt
∣∣∣∣≤

∫ 1

1/2

∣∣∣∣� f (tz)
t

∣∣∣∣dt
≤ 4‖ f ‖�a

∫ 1

0

|z|dt(
1− t2|z|2)a .

(2.4)

Let Ia =
∫ 1

0 (|z|dt/(1− t2|z|2)a). If a∈ (0,1), then

Ia ≤
∫ 1

0

|z|dt(
1− t|z|)a =

1− (1−|z|)1−a

1− a
≤ 1

1− a
. (2.5)

If a= 1, then

∫ 1

0

|z|dt(
1− t2|z|2)a =

1
2

ln
1 + |z|
1−|z| ≤

1
2

ln
4

1−|z|2 . (2.6)

Finally, if a > 1, then

Ia ≤
∫ 1

0

|z|dt(
1− t|z|)a =

1
a− 1

(
1(

1−|z|)a−1 − 1

)
≤ 2a−1

(a− 1)
(
1−|z|2)a−1 . (2.7)

From all of the above we have

∣∣ f (z)
∣∣≤




M
(

1
2

)
+

4‖ f ‖�a

1− a
, a∈ (0,1),

M
(

1
2

)
+ 2‖ f ‖�a ln

4
1−|z|2 , a= 1,

M
(

1
2

)
+

2a+1‖ f ‖�a

(a− 1)
(
1−|z|2)a−1 , a > 1,

(2.8)

where M(1/2)=max|z|≤1/2 | f (z)|.
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Let |z| ≤ 1/2, then, by the mean value property of the function f (z)− f (0) (see [7]),
and Jensen’s inequality, we obtain

max
|z|≤1/2

∣∣ f (z)− f (0)
∣∣2 ≤ 4n

∫
|z|≤3/4

∣∣ f (w)− f (0)
∣∣2
dVN (w)

≤ 4n
∫
|z|≤3/4

∣∣� f (w)
∣∣2
dVN (w)

≤ 3n max
|z|≤3/4

∣∣� f (z)
∣∣2
.

(2.9)

The second inequality can be easily proved by using the homogeneous expansion of f .
Hence,

M
(

1
2

)
≤ ∣∣ f (0)

∣∣+
(√

3
)n

max
|z|≤3/4

∣∣� f (z)
∣∣≤ ∣∣ f (0)

∣∣+
24a
(√

3
)n

7a
‖ f ‖�a . (2.10)

From (2.8) and (2.10), the result follows easily when a �= 1. If a= 1, then we have

∣∣ f (z)
∣∣≤ ∣∣ f (0)

∣∣+
16
(√

3
)n

7
‖ f ‖� + 2‖ f ‖� ln

4
1−|z|2

≤
(

16
(√

3
)n

7
+ ln16

)(∣∣ f (0)
∣∣+‖ f ‖� ln

e

1−|z|2
)

,

(2.11)

thus finishing the proof. �

3. Proofs of the main results

Proof of Theorem 1.1. Assume that Tg is bounded on �a. Choose f0(z)≡ 1. It is clear that
f0 ∈�a

0 and that ‖ f0‖�a = 1. The boundedness of Tg implies

(
1−|z|2)a∣∣�[Tg

(
f0
)]

(z)
∣∣= (1−|z|2)a∣∣�g(z)

∣∣≤ ∥∥Tg

∥∥∥∥ f0∥∥�a =
∥∥Tg

∥∥ <∞. (3.1)

Hence g ∈�a, as desired.
Assume now that g ∈�a. Then, by Lemma 2.2 we have

(
1−|z|2)a∣∣�[Tg( f )

]
(z)
∣∣= (1−|z|2)a∣∣ f (z)

∣∣∣∣�g(z)
∣∣

≤ ‖g‖�aC
(∣∣ f (0)

∣∣+‖ f ‖�a

)
≤ 2C‖g‖�a‖ f ‖�a .

(3.2)

Taking supremum z ∈ B in (3.2), we obtain

∥∥Tg( f )
∥∥

�a ≤ 2C‖g‖�a‖ f ‖�a . (3.3)

Hence

∥∥Tg

∥∥≤ 2C‖g‖�a , (3.4)

as desired. �
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Proof of Theorem 1.2. First, assume that Tg is bounded on �. From the proof which fol-
lows we will see that we also consider the case when Tg is bounded on �0. For w ∈ B, put
fw(z)= ln1/(1−〈z,w〉). Since

(
1−|z|2)∣∣� fw(z)

∣∣≤ (1−|z|2)∣∣∇ fw(z)
∣∣= (1−|z|2)

∣∣∣∣ w

1−〈z,w〉
∣∣∣∣

≤
(
1−|z|2)∣∣1−〈z,w〉∣∣ ≤ 2,

(3.5)

we have ‖ fw‖� ≤ 2, for each w ∈ B. On the other hand, we have

(
1−|z|2)∣∣� fw(z)

∣∣≤
(
1−|z|2)∣∣1−〈z,w〉∣∣ ≤

(
1−|z|2)
1−|w| −→ 0, (3.6)

as |z| → 1. Hence fw ∈�0, for each w ∈ B.
By Lemma 2.1 we have

(
1−|w|2)∣∣�g(w)

∣∣ ln
1

1−|w|2 =
∣∣ fw(w)�g(w)

∣∣(1−|w|2)
= ∣∣�(Tg fw

)
(w)

∣∣(1−|w|2)
≤ ∥∥Tg fw

∥∥
� ≤ 2

∥∥Tg

∥∥.
(3.7)

Taking supremum in (3.7) over w ∈ B, we obtain that conditions (a) and (b) imply (c).
Assume that (c) holds. Since | f (0)| ≤ ‖ f ‖�, and by Lemma 2.2, we have

∣∣ f (z)
∣∣≤ C‖ f ‖�

(
1 + ln

1
1−|z|2

)
, (3.8)

for some C > 0.
Hence∣∣�[Tg( f )

]
(z)
∣∣(1−|z|2)= ∣∣ f (z)

∣∣∣∣�g(z)
∣∣(1−|z|2)

≤ C‖ f ‖�

(
1 + ln

1
1−|z|2

)∣∣�g(z)
∣∣(1−|z|2)

≤ C‖ f ‖� sup
|z|≤1/2

(
1 + ln

1
1−|z|2

)∣∣�g(z)
∣∣(1−|z|2)

+C‖ f ‖� sup
1/2<|z|<1

(
1 + ln

1
1−|z|2

)∣∣�g(z)
∣∣(1−|z|2)

≤ C1‖ f ‖� sup
z∈B

ln
1

1−|z|2
∣∣�g(z)

∣∣(1−|z|2),

(3.9)

since (c) implies

sup
z∈B

∣∣�g(z)
∣∣(1−|z|2) <∞. (3.10)

From (3.9) and since Tg( f )(0)= 0, (a) follows.
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We now prove that (c) implies (b). Since ln1/(1−|z|)→∞ as |z| → 1, we have that
g ∈�0. Hence, by Lemma 2.1, we have that for each polynomial p(z),

(
1−|z|2)∣∣�[Tg(p)

]
(z)
∣∣= (1−|z|2)∣∣p(z)

∣∣∣∣�g(z)
∣∣≤Mp

(
1−|z|2)∣∣�g(z)

∣∣, (3.11)

where Mp = supz∈B |p(z)|. Since Mp <∞ and g ∈�0, we obtain that for each polynomial
p,Tg(p) ∈�0. The set of polynomials is dense in �0, thus for every f ∈�0 there is a
sequence of polynomials (pn) such that ‖pn− f ‖� → 0. Hence

∥∥Tg pn−Tg f
∥∥

� ≤
∥∥Tg

∥∥∥∥pn− f
∥∥

� −→ 0, as n−→∞, (3.12)

since the operator Tg is bounded. Hence Tg(�0)⊂�0, since �0 is closed subset of �.
Finally, from (3.7) and (3.9) it follows that

∥∥Tg

∥∥� sup
z∈B

∣∣�g(z)
∣∣(1−|z|2) ln

1
1−|z|2 . (3.13)

�

Proof of Theorem 1.3. LetTg be bounded on �a. Letw ∈ B, and fw(z)= 1/(1−〈z,w〉)a−1.
It is clear that fw ∈�a and that ‖ fw‖�a ≤ (a− 1)2a. The boundedness of Tg implies

(
1−|w|2)a∣∣�[Tg

(
fw
)]

(w)
∣∣= (1−|w|2)a∣∣�g(w)

∣∣∣∣ fw(w)
∣∣

= (1−|w|2)∣∣�g(w)
∣∣

≤ ∥∥Tg

∥∥∥∥ fw∥∥�a

= (a− 1)2a
∥∥Tg

∥∥ <∞.

(3.14)

Hence supw∈B(1−|w|2)|�g(w)| <∞, as desired.
Assume now that g ∈�. Then, by Lemma 2.2 we have

(
1−|z|2)a∣∣�[Tg( f )

]
(z)
∣∣= (1−|z|2)a∣∣ f (z)

∣∣∣∣�g(z)
∣∣

≤ b1(g)
(
1−|z|2)a−1

C

(∣∣ f (0)
∣∣+

‖ f ‖�a(
1−|z|2)a−1

)

≤ 2Cb1(g)‖ f ‖�a .

(3.15)

Hence

∥∥Tg( f )
∥∥

�a ≤ 2Cb1(g)‖ f ‖�a , (3.16)

and consequently ‖Tg‖ ≤ 2Cb1(g), as desired.
Form (3.14) and (3.16) it follows that ‖Tg‖ � supz∈B |�g(z)|(1−|z|2). �
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