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We will prove the Hyers-Ulam stability of the Butler-Rassias functional equation follow-
ing an idea by M. T. Rassias.

1. Introduction

In 1940, Ulam [9] gave a wide ranging talk before the Mathematics Club of the University
of Wisconsin in which he discussed a number of important unsolved problems. Among
those was the following question concerning the stability of homomorphisms.

Let G; be a group and let G, be a metric group with a metric d(-,-).
Given ¢ > 0, does there exist a § > 0 such that if a function h: G, — G,
satisfies the inequality d(h(xy),h(x)h(y)) < & for all x,y € Gy, then a
homomorphism H : G; — G, exists with d(h(x),H(x)) < ¢ for all x €
Gl?

The case of approximately additive functions was solved by Hyers [5] under the as-
sumption that G, and G, are Banach spaces.

Taking this fact into account, the additive Cauchy functional equation f(x+y) =
f(x)+ f(y) is said to have the Hyers-Ulam stability. This terminology is also applied
to the case of other functional equations. For a more detailed definition of such termi-
nology, one can refer to [4, 6, 7].

In 2003, Butler [3] posed the following problem.

Problem 1.1 (Butler [3]). Show that for d < —1, there are exactly two solutions f : R — R
of the functional equation f(x+ y) — f(x)f(y) = dsinxsiny.

Recently, Rassias excellently answered this problem by proving the following theorem
(see [8]).

THeoOREM 1.2 (Rassias [8]). Let d < —1 be a constant. The functional equation

fx+y)— f(x)f(y) =dsinxsiny (1.1)
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has exactly two solutions in the class of functions f : R — R. More precisely, if a function
f: R — R satisfies the Butler-Rassias functional equation for all x,y € R, then f has one of
the forms

f(x) =csinx+cosx, f(x)=—csinx+cosx, (1.2)

where ¢ = /—d — 1 is set.

In this paper, we will prove the Hyers-Ulam stability of the Butler-Rassias functional
equation (1.1).
2. Preliminaries

We follow an idea of Rassias [8] to prove the following lemma. In Section 3, we apply this
lemma to the proof of the Hyers-Ulam stability of the Butler-Rassias functional equation
(L1.1).

LEmMa 2.1. Let d be a nonzero real number and 0 < e < |d|. If a function f : R — R satisfies
the functional inequality

| f(x+y)— f(x)f(y) —dsinxsiny| <e (2.1)
forallx,y € R, then My := sup,p | f(x)| is finite and

_2(1+My)
= TE (22)

‘f(x) - f(g) sinx — cosx

forall x € R.

Proof. If we replace x by x + z in (2.1), then we have

| f(x+y+2)— f(x+2)f(y) —dsin(x+z)siny| <e (2.3)
for any x, y,z € R. Similarly, if we replace y by y +zin (2.1), then we get

| f(x+y+2)— f(x)f(y+2z) —dsinxsin(y+z)| <e (2.4)

for x,y,z € R.
Using (2.3) and (2.4), we obtain

| f(xX)f(y+2)— f(x+2)f(y)+dsinxsin(y+z) — dsin(x+z)sin y |
= |[f(x+y+2z)— f(x+2)f(y) —dsin(x+z)sin y] (2.5)
—[fx+y+2)— f(x)f(y+2z) —dsinxsin(y +2)] | <2¢
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for all x, y,z € R. It follows from (2.5) that

| fOLf(y+2) = f(y)f(2) —dsinysinz] + f(x) f(y) f (2) + df (x)sin ysinz
—[f(x+2) = f(x)f(z) — dsinxsinz] f (y) — f(x) f(y) f(z) — df (y)sinxsinz

(2.6)
+dsinxsin(y +z) — dsin(x+z)sin y |

=|f(x)f(y+2)— f(x+2)f(y)+dsinxsin(y +z) — dsin(x +z)siny | <2¢

forall x,y,z € R.
It is easy to check that

| df (x)sin ysinz +dsinxsin(y +z) — df (y)sinxsinz — dsin(x +z) sin y |
= | f(x)|[f(y+2)— f(y)f(z) — dsin ysinz]
+f(x)f(y)f(z) +df (x)sin ysinz
—[f(x+2)— f(x)f(2) —dsinxsinz] f (y) 07
— f(x)f(y)f(z) —df (y)sinxsinz
+dsinxsin(y +z) — dsin(x+z)sin y
—f)[f(y+2)— f(y)f(z) —dsinysinz]
+[f(x+2) = f(x)f(z) — dsinxsinz] f ().

Hence, in view of (2.6) and (2.1), we can now get

| df (x)sin ysinz + dsinxsin(y +z) — df (y) sinxsinz — dsin(x +z) sin y |
< |fx)[f(y+2)= f(y)f(z) —dsin ysinz]
+ f(x) f(y) f(2) +df (x)sin ysinz
—[f(x+2) - f(x)f(z) — dsinxsinz] f (y)
— Ff () f (@) - df (y)sinxsinz 28)
+dsinxsin(y +z) — dsin(x+z)sin y |
+1f) || f(y+2)= f(y)f(z) —dsin ysinz]
+ 1 f] ] flx+2)— f(x)f(z) —dsinxsinz]|
s@+[f@l+1fO])e

for all x, y,z € R. If we set y = z = 71/2 in the above inequality, then

‘df(x) —df(%) sinx — dcosx

< (2+1f@1+|£(2)

)s (2.9)

for each x € R.

If we assume that f were unbounded, there should exist a sequence {x,} C R such
that f(x,) # 0 foreveryn € Nand | f(x,)| — o0 asn — . Set x = x,, in (2.9), divide both
sides of the resulting inequality by | f(x,)|, and then let n diverge to infinity. Then, we
have |d| < ¢ which is contrary to our hypothesis, say € < |d]|.
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Therefore, f must be bounded, and hence My := sup, . | f (x)| has to be finite. There-
fore, it follows from (2.9) that (2.2) holds for each x € R. O

3. Hyers-Ulam stability

In this section, using Lemma 2.1, we prove the Hyers-Ulam stability of the Butler-Rassias
functional equation.

THEOREM 3.1. Let d < —1 be a constant. Then there exists a constant K = K(d) = 0 such
that if 0 < e < |d| and if a function f : R — R satisfies the functional inequality (2.1) for all
X,y € R, then

| f(0) = folx)| < K(e+Ve) (3.1)
holds for all x € R and for some solution function fy of the Butler-Rassias functional equa-

tion.

Proof. Let0 < e < |d| and f areal-valued function on R which satisfies inequality (2.1). It
follows from Lemma 2.1 that My := sup, . | f (x)| < o0 and that (2.2) holds for all x € R.
Putx = 7 in (2.2) to get

2(1+M
| fm)+1] < (|+d|f)e. (3.2)

Furthermore, set x = y = 77/2 in (2.1) to obtain

2
‘f(n)—f(g) —d' <& (3.3)
By combining (3.2) and (3.3), we get
2 2(1+M d
‘f(g) +d+1‘s(+|dfl)+||e. (3.4)
If we set
e=vamy, = MO (35)

then it follows from (3.4) that | f(7/2)? — ¢?| < Le. Therefore, we can easily check that
‘f@) —c| =L <f0r6>x/ﬂ,f<§) zo),
'f(%)ﬂ <+Le (forc>\/L—,f<g><0>’ (3:6)
‘f@)‘ <VLete (forc=<Le).
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Since +/Le + ¢2 < +/2Le when ¢ < +/Le, we have

13)-

Hence, it follows that

<\2Le++Le = (1++2)VLe (for c < Le). (3.7)

'f(%)— < (1+v2)VLe (forf(%)zo) (3.8)
and that
‘f(g)+c < (1++2)VLe (forf(%)<0>. (3.9)

Due to (2.2), we now get

| f(x) = csinx — cosx| < ’f(x) —f(z>sinx—cosx

| (#(5) e)sime

3.10
2(1 +Mf ' ( )
< e |r(5) -
for all x € R and
) T\ . A .
| f(x)+csinx — cosx| < ’f(x) —f(—)smx—cosx + ' (f(§> +c) smx'
3.11
2(1 +Mf ( )
<= e 1(3) e
for all x € R. Therefore, if f(7/2) > 0, then (3.10) and (3.8) imply
2(1+M
| f(x) — csinx — cosx| s% +(1++2)VLe (3.12)
for all x € R. Similarly, if f(7/2) <0, it then follows from (3.11) and (3.9) that
2(1+M
| f(x)+csinx — cosx| g% +(1+2)VLe (3.13)
for all x € R.
By (2.1) and our hypothesis 0 < € < |d|, we have
L ffD] =< [flx+y)|+2ldl (3.14)
for all x, y € R, which implies that MJZ( <2|d|+ My, and hence
M, < LTS 1

2
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Subsequently, it follows from (3.15) that

- 3++/1+8|d|+1d|

L , 3.16
|d| ( )
and hence
200+ M
), o
(3.17)
S3+«/|1d+8|d|£+(1+\/§)\/3+\/1+|2||d|+|d|\/z.

Note that if d < —1, then the Butler-Rassias functional equation (1.1) has exactly two
solutions *csinx + cosx (see Theorem 1.2.) Thus, it follows from (3.12), (3.13), and
(3.17) that

| f(x) = folx)] <

DI (g P

d| |d]|

for any x € R and for some solution function f, of the Butler-Rassias functional equation.
Putting

K:max<l—3+ 1;'_8|d|,(1+\/5)\/3+ 1+|Z||d|+|d|} (3.19)
in the last inequality, we conclude that our assertion is true. O

Remark 3.2. If we set d = 0 in the Butler-Rassias functional equation (1.1), then the equa-
tion is called the exponential functional equation. Baker, Lawrence, and Zorzitto [2] have
investigated the stability problem for the exponential equation (see also [1]).
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