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We prove some common fixed point theorems for left reversible and near-commutative
semigroups in compact and complete metric spaces, respectively. As applications, we get
the existence and uniqueness of solutions for a class of nonlinear Volterra integral equa-
tions.

1. Introduction

Recently, Y.-Y. Huang and C.-C. Hong [15, 16], T.-J. Huang and Y.-Y. Huang [14], and
Y.-Y. Huang et al. [17] obtained a few fixed point theorems for left reversible and near-
commutative semigroups of contractive self-mappings in compact and complete metric
spaces, respectively. These results subsume some theorems in Boyd and Wong [1], Edel-
stein [3], and Liu [20].

In this paper, motivated by the results in [14, 15, 16, 17], we establish common fixed
point theorems for certain left reversible and near-commutative semigroups of self-
mappings in compact and complete metric spaces. As applications, we use our main re-
sults to show the existence and uniqueness of solutions of nonlinear Volterra integral
equations. Our results generalize, improve, and unify the corresponding results of Fisher
[4,5,6,7,8,9, 10, 11, 12], Hegedus and Szilagyi [13], Y.-Y. Huang and C.-C. Hong [16],
T.-]J. Huang and Y.-Y. Huang [14], Y.-Y. Huang et al. [17], Liu [18, 19, 20], Ohta and
Nikaido [21], Rosenholtz [22], Taskovic [23], and others.

Recall that a semigroup F is said to be left reversible if, for any s,t € F, there exist
u,v € F such that su = tv. It is easy to see that the notion of left reversibility is equivalent
to the statement that any two right ideals of F have nonempty intersection. A semigroup
F is called near commutative if, for any s, t € F, there exists u € F such that st = tu. Clearly,
every commutative semigroup is near commutative, and every near-commutative semi-
group is left reversible, but the converses are not true.

Throughout this paper, (X,d) denotes a metric space, N, R*, and R denote the sets
of positive integers, nonnegative real numbers, and real numbers, respectively. Let F be
a semigroup of self-mappings on X and let f be a self-mapping on X. For A,B < X,
x,y € X, define
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84(A,B) =sup{d(a,b):a € A, b€ B},
da(A) = 64(A,A), 8a(x,A) = 8a({x},A),
Fx={x}u{gx:g€F},
Of(x) = {f"x:ne€ {0} UNJ, O¢(x,y) = Of(x) U Of(y),
Cr=t{th:h: X — X, fh=hf}, (1.1)
Hi=1{h:h:X — X, h( Npen f"x) S Nuenf"X},
Hp=1{h:h:X — X, h(Nger gX) S NgergX},
® = {¢:¢$:R* — R*is upper semicontinuous from the right,
$#(0) =0, ¢(t) < tfor t > 0}.

A denotes the closure of A. Clearly, Hf 2 Cy 2 {f" : n € N} U {ix}, where ix is the
identity mapping on X. The mapping f is called a closed mapping if, y = fx when-
ever {x,}nen € X such that lim,_ o x, = x and lim,_. fx, = y for some x,y € X. It is
simple to check that the composition of two closed self-mappings in compact metric
spaces is closed. The mapping f is called a local contraction if, for each x € X, there is an
open set U containing x and a real number m < 1 such that d(fz, fy) < md(z, y) for all
z,y € U. The mapping f is said to have diminishing orbital diameters if, for every x € X
with §;(Of(x)) > 0, there exists n € N such that §(O¢(f"x)) < 84(Of(x)). Clearly, f has
diminishing orbital diameters if and only iflim,, .« §4(Of(f"x)) < 84(Of(x)) forall x € X
with 64(Of(x)) > 0. The semigroup F is said to have diminishing orbital diameters if, for
any x € X with §;(Fx) > 0, there exists ¢ € F such that §4(Fgx) < 84(Fx).

2. Common fixed points for left reversible semigroups in compact metric spaces

Let F be a left reversible semigroup. We define a relation > on F by a = b if and only if
a e bFu{b}.

It is easy to verify that (F,>) is a directed set. We need the following lemma for our
main theorems.

LEmMMA 2.1. Let F be a left reversible semigroup of closed self-mappings in a compact metric
space (X,d) and let A = Nycp fX. Then

(i) limfep 6a(fX) = 8a(A);

(ii) A is nonempty, compact and fA = A forall f € F.

Proof. Note that fX < gX for all f,g € F with f > g. Thus {64(fX)} fer is a bounded
decreasing net in R. Obviously, limer §4(fX) exists in R and

04(A) = limdi(fX). (2.1)
fEF
We now prove that fX is a compact subset of X for each f € F. Let x be in X and
{%n}nen € X with lim,,—.« fx, = x. The compactness of X ensures that there exists a sub-
sequence {x,, Jken Of {x,},en such that it converges to some point ¢ € X. In view of
closedness of f, we conclude immediately that x = ft € fX. Therefore, fX is closed.
That is, fX is compact. This means that A is compact.
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We next prove that

da(A) = }}g}g@d(fX)- (2.2)

Given f € F, there exist x7, y € fX with d(xf,yr) = da(fX). Since X is compact, we
can choose two subnets {x7 } and {y} of {xs} and {y}, respectively, such that x5 — x
and yj; — y for some x,y € X. For every g € F and f; > g, we get that x5,y € gX.
By virtue of closedness of gX, we infer that x, y € gX. This means that x, y € A. Conse-
quently,

}[igl:@d(fX) = lfig;d(xf,yf) = liind(xfk,yfk) =d(x,y) < 8a(A). (2.3)

Thus (i) follows from (2.1) and (2.2).

Let n € N and fi, f5,..., fu € F. It follows from the left reversibility of F that there
exist g1,92,...,gn € F with fig1 = g = -+ = fugn = hfor some h € F. Hence, N\, fiX 2
hX # &. The compactness of X implies that A # &.

We last prove that fA = A forall f € F. Let f € F and x € A. For any g € F, there
exist a,b € F with fa = gb. Note that x € A < aX. Thus there is y € X with x = ay. It
follows that fx = fay = gby € gX. This implies that fA € NgepgX = A for f € F. For
the reverse inclusion, let f,g € F and y € A. It follows from y € fgX that there exists
xg € gX with fx; = y. The compactness X ensures that there exists a convergent subnet
{xg.} of {x;} such that x;, — x for some x € X. The closedness of f implies that y = fx.
For any h,g € F with g > h, we obtain that X is closed and that x, belongs to hX. Thus
the limit point x of {x,} lies in hX. That is, x € A. Note that y = fx € fA. Therefore,
A c fAfor f € F. This completes the proof. ]

Now, we are ready to prove our main theorems.

THEOREM 2.2. Let F and G be left reversible semigroups of closed self-mappings in a compact
metric space (X,d). Assume that there exist f € F, g € G satisfying

d(fx,gy) <84({su:u € Fx,s€ Hg},{tv:v e Gy, t € Hg}) (2.4)

forallx,y € X with fx # gy. Then F and G have a unique common fixed point w € X and
the point w is also a unique fixed point of F and G, respectively. Moreover, if F (resp., G) is
near commutative, then F (resp., G) has diminishing orbital diameters.

Proof. Let A = NyepsX and B = NyetX. If §4(A,B) > 0, then by Lemma 2.1 there exist
a,x € A and b,y € B with 64(A,B) = d(a,b), a = fx, and b = gy. It follows from (2.4)
that
04(A,B) =d(fx,gy)
<84({su:u € Fx, s€ Hp},{tv:v € Gy, t € Hg}) (2.5)
< 684(A,B),

which is a contradiction. Therefore, §;(A,B) = 0. That is, A = B = {w} for some w € X.
Note that fA =gA =A for all f € F and g € G. Thus F and G have a common fixed
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point w. If v is a fixed point of F or G, then v € Npep fX = {w} or v € NgeggX = {w}.
This means that v = w. Hence, F and G have a unique common fixed point w € X and
the point w is also a unique fixed point of F and G, respectively.

Assume that one of F or G, say F, is near commutative. Let x be in X with §4(Fx) > 0.
So, for any f,g € F, there exists h € F such that gf = fh. It follows that

S4(Ffx)=8a({fx}U{gfx:g€F}) <da(fX). (2.6)
It follows from (2.6) and Lemma 2.1 that

}(ig}éd(fo) = }(ig}@d(fX) =0<d4(Fx), (2.7)

which implies that F has diminishing orbital diameters. This completes the proof. O
Using the argument above, we can conclude the following two results.

THEOREM 2.3. Let F be a left reversible semigroup of closed self-mappings in a compact
metric space (X,d). Assume that there exist f,g € F satisfying

d(fx,gy) <84({su:uec FxUFy, s Hg}) (2.8)

forallx,y € X with fx # gy. Then F has a unique fixed point w € X. Moreover, if F is near
commutative, then it has diminishing orbital diameters.

THEOREM 2.4. Let F be a left reversible semigroup of closed self-mappings in a compact
metric space (X, d). Assume that there exists f € F satisfying

d(fx,fy)<8a({su:uecFxUFy,s<c Hr}) (2.9)

forallx,y € X with fx # fy. Then F has a unique fixed point w € X. Moreover, if F is near
commutative, then it has diminishing orbital diameters.

CoROLLARY 2.5. Let f be a closed self-mapping of a compact metric space (X,d). Assume
that there exist p,q € N such that

d(ffx, fly) <8a({su:ue O(x,y), s€ Hy}) (2.10)

forallx,y € X with fPx + f9y. Then f has both a unique fixed point w € X and diminish-
ing orbital diameters.

Proof. Take F = {f": n € N}. Then F is a commutative semigroup. Obviously, F has a
unique fixed point w € X if and only if f has a unique fixed point w € X. Note that
Fx = Of(x) for all x € X and that Hr = Hy. Thus Corollary 2.5 follows immediately from
Theorem 2.3. This completes the proof. O

Remark 2.6. Theorems 2.3 and 2.4 and Corollary 2.5 extend, improve, and unify [5, The-
orem 4], [6, Theorem 2], [7, Theorem 9], [8, Theorem 4], [10, Theorem 5], [11, Theorem
5], [12, Theorem 3], [9, Theorem 5], [14, Theorem 1.1], [17, Theorem 2.2], [18, Theorem
3], [20, Theorem 2], [21, Theorem 4], and so forth.
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THEOREM 2.7. Let (X,d) be a compact and connected metric space and let F be a left re-
versible semigroup of self-mappings in X such that each f in F is a local contraction. Then
F has both a unique fixed point w € X and diminishing orbital diameters. Moreover, for any
x € X and f € F, the sequence of iterates { f"x} ,en converges to w.

Proof. Let f bein F. We now show that f has a unique fixed point in X. The compactness
of X ensures that there exist ry >0 and my < 1 such that

d(fx,fy) <mysd(x,y) (2.11)

for all x,y € X with d(x, y) < ry. Condition (2.11) ensures that f is continuous. Assume
that V1, Vo,..., Vi, are a fixed finite open cover of X with sets of diameters less than rf.
For any x, y € X, the connectedness of X implies that there is a chain of open sets from x
to y, chosen from the sets V1, V5,..., Vs - This means that d(x, y) < nyry. It follows from
(2.11) that d(fx, fy) < mynsry. It is easy to check that

d(frx, fky) < (mf)knfrf (2.12)

for all k € N. By choosing k so large that (ms)*ny < 1, we infer that 8;(f*X) < rs. So the
mapping f restricted to the set XX, which maps f*X to itself, is a contraction. Note that
f*X is closed. By the Banach contraction theorem, the restricted mapping has a unique
fixed point wy € fKX. Obviously, w is a unique fixed point of f in X. In view of (2.12),
we have

Sd(ij,Wf)S(Sd(ij) S(mf)Jnfrf (2.13)
for all j € N. Therefore,
lim 84 (f7X,ws) =0, (2.14)
j—oo

which implies that both lim;_., f/x = ws and f has diminishing orbital diameters.
Let f and g be in F. Then there exist wy,w, € X such that wy = fwy, wy = gw,, and
(2.14) and the following equation hold:

lim 84 (g/ X, wg) = 0. (2.15)

j—oo

Given j € N, it follows from the left reversibility of F that there are a;,b; € F with f Ja i=
g/bj. From (2.14) and (2.15), we infer that
d(wp,wg) <d(wy, flajx) +d(g/bjx,wg)
S(Sd(Wf,ij)-l-(Sd(ng,Wg) (2.16)
— 0 asj— oo

This means that wy = w,. That is, F has a unique fixed point in X. This completes the
proof. O
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Remark 2.8. Theorem 2.7 is a generalization of [22, Theorem 1].
Now we like to give two concrete examples for Theorems 2.4 and 2.7.

Example 2.9. Let X = {0,2/3} U {1/n: n € N} with the usual metric d. Define f,g: X —
X by

1 1 1 1
0, f--=

n n+l’ 8ur1  n+2

f0=f§=g0=g§=g1 (2.17)
for all n € N. Obviously, gf = f2, fg=¢% gf1=1/3#0= fgl, (X,d) is a compact
metric space, and f and g are closed. Let F be the semigroup generated by f and g.
Now for any a,b € F, there exist ay,...,ak, by,...,b, € {f, g} witha=a;---arand b =
by - - - b,. Hence, ab = (b,)"** = b(b,)¥. Thus F is near commutative, and therefore it is
left reversible also. But it is not commutative. Note that NscpsX = {0}. It is easy to verify
that

d(fx,fy) <

forall x,y € X with fx # fy. Hence, F satisfies the conditions of Theorem 2.4 and clearly
0 is the unique fixed point of F.

<1=084({su:ueFxUFy, s€ Hr}) (2.18)

8| —

Example 2.10. Let X = [0,1] with the usual metric d. Define f,g: X — X by

1 2
fx= 2% gx=3x (2.19)
for all x € X. Then (X, d) is a compact and connected metric space, fg = g f, and any one
of f and g is a local contraction. Let F be the semigroup generated by f and g. It is easy
to see that every element in F is a local contraction and that F is commutative. It follows

from Theorem 2.7 that F has a unique fixed point.

3. Common fixed points for near-commutative semigroups in complete metric spaces
LemMa 3.1 (see [15]). If ¢ is in @, then lim, .. ¢"(t) = 0.

LEmMa 3.2 (see [2]). If ¢ : RT — R is an upper semicontinuous function with ¢(0) = 0
and ¢(t) < t for t >0, then there exists a strictly increasing continuous function y : R* — R*
such that w(0) = 0 and ¢(t) < w(t) <t fort>0.

THEOREM 3.3. Let F and G be near-commutative semigroups of closed self-mappings in a
complete metric space (X,d). Assume that the following conditions are satisfied:

(i) for any x € X, Fx and Gx are bounded;

(i) there exists ¢ € @ such that, for any f € F, g € G, there are ng,mg € N satisfying

d(fPx,g1y) =< ¢(84(Fx,Gy)) (3.1)

forallx,y € X and p = ny, g = mg.
Then F and G have both a unique common fixed point w € X and diminishing orbital diam-
eters. Moreover, for each f € FU G and x € X, the sequence of iterates { f"x},en converges
to w.
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Proof. We assert that, forany f € F, g € G, x,y € X, and k > max{ny, mg},
84(F f*x,Gg*y) < ¢(84(Fx,Gy)). (3.2)

Take u € F ffx and v € GgFy. Then there are s € Fand t € G with u = sffxand v = tgky.
The near commutativity of F and G ensures that there exist a € F and b € G such that
sf¥ = fkaand tgk = gkb. It follows from (3.1) that

d(u,v) = d(ska,tgky) = d(fkax,gkby)

3.3
< ¢(84(Fax,Gby)) < ¢(84(Fx,Gy)), (3:3)

which implies that

84(F f*x,Gg*y) = sup {d(u,v) : u € Ff*x, v € Gg*y}

3.4
< ¢(8a(Fx,Gy)) B

foranyx,y € X and k > max{ny,mg}. Thatis, (3.2) holds. Forany x,y € X and k € {0} U
N, put ay = 84 (F frmaxingmg} x Ggkmaxing.mg) ) Tt follows from (3.2), (i), and Lemma 3.1
that

ar < ¢(8d(Ff(k71)max{nf,mg}x’ Gg(kfl)max{nf,mg}y))

=¢(ar1) < -+ < ¢*(ao) = ¢*(84(Fx,Gy)) (3.5)

— 0 ask— oo.

Let n be in N. Then there exist k,r € {0} UN and r < max{ns,me} such that n =
kmax{ng,mg} +r. In view of (3.5), we have

6d(anx>ng)/) < 6d(kamax{nf,mg}x’ngmax{nf,mg}y)

3.6
<¢(ak-1) <a-1 — 0 asn— . (3.6)

This implies that

max {84(F f"x),04(Gg"y) }
<max{8s(Ff"x,g""y) +8a(g" v, Ff"x),04(Gg"y, f™'x) + 84(f"'x,Gg"y)}

<284(Ff"x,Gg"y) — 0 asn— co.
(3.7)

Therefore, F and G have diminishing orbital diameters. Note that { f mtiylien € F fx
and {g””y},-eN € Gg"y.So { f"x}nen and {g"y} nen are Cauchy sequences. Since (X, d) is
complete, { f"x},en and {g"y},en converge to some points w,b € X, respectively. Con-
sequently, w € NyenF fx and b € N,enGg'y. It follows from (3.6) that

d(w,b) <84(Ff"x,Gg"y) — 0 asn— oo. (3.8)
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That is, w = b. The closedness of f and g implies that w = fw and b = gb. Hence, f and
¢ have a common fixed point w. By arbitrariness of f and g, we conclude that F and G
have a common fixed point w.

Suppose that F and G have also a common fixed point v € X. By virtue of (3.1), for
any f € Fand g € G, we have

dw,v) =d(f"w,g"v) < ¢(84(Fw,Gv)) = (d(w,v)), (3.9)

which implies that w = v. This completes the proof. O

THEOREM 3.4. Let F be near-commutative semigroup of closed self-mappings in a complete
metric space (X,d). Assume that the following conditions are satisfied:

(iii) for any x € X, Fx is bounded;

(iv) there exists ¢ € O such that, for any f € F, thereis ny € N satisfying

d(fPx, fix) < ¢(8a(Fx)) (3.10)

forallx € X and p,q > ny.
Then F has both a fixed point in X and diminishing orbital diameters. Moreover, for each
f € Fand x € X, the sequence of iterates { f"x},en converges to some fixed point of F.

Proof. Tt follows from (3.10) that (3.1) is satisfied for F = G, x = y, f = g, and ny = m,.
Thus Theorem 3.4 follows from Theorem 3.3. This completes the proof. O

THEOREM 3.5. Let F be near-commutative semigroup of closed self-mappings in a complete
metric space (X,d). Assume that condition (iii) and the following condition (v) hold:
(v) there exists ¢ € @ such that, for any f € F, there is ny € N satisfying

d(fPx,fly) < ¢(8a(Fx U Fy)) (3.11)

forallx,y € X and p,q = ny.
Then F has both a unique common fixed point w € X and diminishing orbital diameters.
Moreover, for each f € F and x € X, the sequence of iterates { f"x} nen converges to w.

Proof. Note that (3.11) implies that both (3.10) is satisfied and F has at most one fixed
point in X. Thus Theorem 3.5 follows from Theorem 3.4. This completes the proof. [

Remark 3.6. It follows from Lemma 3.2 that Theorem 3.5 extends [16, Theorem 2.1].

THEOREM 3.7. Let F and G be near-commutative semigroups of self-mappings in a complete
metric space (X, d). Assume that condition (i) and the following condition hold:
(vi) there exists ¢ € O such that, forany f € F, g€ Gand x,y € X,

d(fx,gy) < ¢(84(Fx,Gy)). (3.12)

Then F and G have both a unique common fixed point w € X and diminishing orbital diam-
eters. Moreover, for each f € F U G and x € X, the sequence of iterates { f"x},en converges
to w.
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Proof. Let f and g be in F and G, respectively. As in the proof of Theorem 3.3, we infer
easily that there exists a unique point w € X such that

lim f"x = limg"y = w, lim 84 (F f"x) = lim 84(Gg"y) =0 (3.13)

n—oo n—oo

for all x, y € X. Thus, F and G have diminishing orbital diameters and

lim f"x = lim g"w = w, lim 84(Ff"w) = lim 84(Gg"w) =0. (3.14)

Since w € (NpenF fw) N (NpenGg"w), it follows that
max {84 (F f"w,w),84(Gg"w,w)} < max {84(Ff"w),04(Gg"w)} (3.15)
for all n € N. Using (3.14) and (3.15), we have

lim 84 (F f"w,w) = ,IILIIOIQ 34(Gg"w,w) = 0. (3.16)

n—oo

Let € > 0 be arbitrary. By virtue of (3.14) and (3.16), there exists k € N such that, for all
n=>k,

max {d(w, f"w),d(w,g""'w),84(F f"w,w),84(Gg"w,w)} < €. (3.17)
For any h € G, from (3.12) and (3.17), we immediately conclude that

dw,hw) < d(w, f"™'w) +d(f"'w,hw) < e+ ¢(8a(F f"w,Gw))

< e+¢(84(Ffw,w) +84(w,Gw)) < € +d(€ +84(w,Gw)), (3.18)

which implies that
84(w,Gw) < €+ d(€+64(w,Gw)). (3.19)

Letting € — 0 in the above inequality, we obtain that §;(w,Gw) < ¢(84(w,Gw)). This
means that §;(w,Gw) = 0. That is, Gw = {w}. Similarly, Fw = {w}. Therefore, F and G
have a common fixed point w. The uniqueness of common fixed point of F and G follows
immediately from (3.12). This completes the proof. O

From Theorems 3.5 and 3.7, we have the following.

THEOREM 3.8. Let F be a near-commutative semigroup of self-mappings in a complete met-
ric space (X, d). Assume that condition (iii) and the following condition (vii) hold:
(vii) there exists ¢ € O such that, forany f € Fand x,y € X,

d(fx, fy) < ¢(3a(Fx U Fy)). (3.20)

Then F has both a unique common fixed point w € X and diminishing orbital diameters.
Moreover, for each f € F and x € X, the sequence of iterates { f"x},cn converges to w.
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CoROLLARY 3.9. Let f be a self-mapping of a complete metric space (X,d) and satisfy the
following:
(viii) for each x € X, Of(x) is bounded;
(ix) there exists ¢ € O such that, for any x,y € X,

d(fx, fy) < ¢(8a(0s(x, ). (3.21)

Then f has both a unique fixed point w € X and diminishing orbital diameters. Moreover,
the sequence of iterates { f"x} nen converges to w for each x € X.

Proof. Put F = {f":n e N}. Condition (3.21) ensures that

d(f"x f"y) < ¢(8a(Of (f" %, f"1y)))

< ¢(84(04(x,))) = ¢(8a(Fx U Fy)) (3.22)

for all n € N and x,y € X. So Corollary 3.9 follows from Theorem 3.8. This completes
the proof. O

Remark 3.10. Theorem 3.8 extends, improves, and unifies [4, Theorem 2], [13, Theorem
5], and [19, Theorem 1].

4. Applications

Throughout this section, let (X, || - [x) be a real Banach space and I = [a,b] < R. Define

C(I,X)={f:f:1 — X is continuous},
CUXIxX,X)=1{f:f:IxIxX — Xiscontinuous}, (4.1)

I fllc= st161§>||f<t>||x

forall f € C(I,X). It is easy to verify that (C(I,X), |l - l¢) is a real Banach space also.
Now we investigate the existence problem of common solutions for nonlinear Volterra
integral equations of the from

X (1) = v(t) +AJtKa(t,s,xa(s))d5, acA tel,
y (4.2)

Y5(8) = v(t) +)LLtMﬁ(t,s,y;;(s))ds, BeB tel,

where v(t) € C(I,X) is a given function, A € R is an arbitrary parameter, K, and Mg are
in C(I XxIxX,X), A and B are index sets.

THEOREM 4.1. Let F = {fo :a € A} and G = {gs : € B} be near-commutative semigroups
and satisfy the following:

(1) for any x € C(I,X), max{dy.| (Fx),0). |4 (Gx)} < oo;

(ii) there exists L > 0 such that, forany a € A, € B, x,y € C(I,X), and t,s € I,

[|Ka(t,5,x(s)) — Mp(t,s,y(s)) ||y <Ly (Fx,Gy), (4.3)
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where
t
Fox(t) = (1) +/\J Ko(t,5x(s))ds, acA, xeCULX), tel,

t (4.4)
gy (1) = (1) +AL My (t5,9(5))ds, BB, yeCLX), tel

Then (4.2) have a unique common solution w € C(I,X). Moreover, for each & € A, B € B,
and x € C(I,X), the sequences defined by

(fa) (t) = v(t) +AJK t,s, f“) x(s))ds, tel,neN,
(4.5)

(g8)"x(t) = v(t) +)LL Mp(t,s, (g;;)ni x(s))ds, tel,neN,

converge to the unique solution w in the norm || - || c.

Proof. For any x € C(I,X), define |lx||« = sup,; e~ (DL e (£) || . Tt is easy to show that
e” WD | x o < flxll s < e HADLa ||, (4.6)

Therefore, the norm || - ||« and the sup-norm || - |[¢ are equivalent to each other. Obvi-
ously, (C(I,X), | - I|x) is also a real Banach space. Note that all f, and gg are self-mappings
of (C(I,X), Il - llx). In view of (4.3) and (4.5), we infer that, for all « € A, € B, and
x,y € C(I,X),

|| fax(t) — goy (D]l
=sup et

< |A| supe” (DLt L ||Ka (t,5,%(5)) — Mp(t,s,y(5))||xds

tel

Ko(t,5,x(s)) = Mp (8,5, (s)) ) ds

J

t
< |l sup e(”w)L(S_‘)e_(”‘)“)“||Ka(t,s,x(s)) — Mp(t,s,y(s))||xds

tel
< I/llsup eWHADLE=0) gyp e~ (HIADIS s, (Fx,Gy)ds (4.7)
tel sel
t
< |AMLsup | eMMDLDS, | (Fx,Gy)ds
tel Ja
Al ol
<—=94 Fx,Gy)su +IADL(a-1)
T Ix(Fx,Gy) tE?[ ]
_ M (1+1ADL(a-b)
= Tr il [1-e 18114 (Fx, Gy)

= ¢(9)., (Fx,Gy)),
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where ¢(t) = (JAI/(1+ [A]))(1 — eM+IDLa=b)t for + € R*. Tt follows from Theorem 3.7
that F and G have a unique common fixed point w € C(I,X) and the sequences
{(fa)"x}nen and {(gg)"x},en converge to w in the norm || - ||«. Therefore, (4.2) have
a unique common solution w € C(I,X) and by (4.6) the sequences {(fy)"x},en and
{(gp)"x} nen converge to w in the norm || - ||c. This completes the proof. O

From Theorems 3.8 and 4.1, we have the following.

THEOREM 4.2. Let F = {f,: a € A} be a near-commutative semigroup and satisfy the fol-
lowing:
(iii) for any x € C(I1,X), 8}, (Fx) < co;
(iv) there exists L > 0 such that, for any « € A, x,y € C(I,X) and t,s € I,
||Ka(t,5,x(5)) — Ka(£,5,y(5))||x < L3y.jx(Fx UFy), (4.8)
where
t
Fux(t) = v(D) +AJ Ka(t,5x(s)ds, a€A, xe CULX), tel. (4.9)
Then the following equations

xq(t) = v(t) +/1JtK,x(t,s,x(s))ds, acA tel, (4.10)

have a unique common solution w € C(I,X). Moreover, for each a € A and x € C(I,X), the
sequence defined by

(f)"x(t) = v(t)+)LLtKa(t,5, (fa)n_lx(s))ds, tel,neN, (4.11)

converges to the unique solution w in the norm || - || c.
By Theorem 4.2 and Corollary 3.9, we have the following.

CoroLLARY 4.3. Let K be in C(I X I X X, X) and satisfy the following:
(v) there exists L > 0 such that, for any x,y € C(I,X) and t,s € I,

||K(t)5’x(5)) - K(l‘>5,)/(5))||x = L(SH'HX (Of(x))’)), (4.12)

where
Fx(t) = w(t) +AJtK(t,s,x(s))ds, xeCLX), tel; (4.13)

(vi) for every x € C(1,X), §)j.,(Of(x)) < oo.
Then the following equation

x(t) = v(t)+/1JtK(t,s,x(t))ds, rel, (4.14)
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has a unique solution w € C(I,X). Moreover, for each x € C(I,X), the sequence defined by
t
Frx(t) = w(t) +Af K(ts f"'x(s))ds, tel, neN, (4.15)

converges to the unique solution w in the norm || - || c.

Remark 4.4. [23, Theorem 6] is a special case of Corollary 4.3.
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