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We prove some common fixed point theorems for left reversible and near-commutative
semigroups in compact and complete metric spaces, respectively. As applications, we get
the existence and uniqueness of solutions for a class of nonlinear Volterra integral equa-
tions.

1. Introduction

Recently, Y.-Y. Huang and C.-C. Hong [15, 16], T.-J. Huang and Y.-Y. Huang [14], and
Y.-Y. Huang et al. [17] obtained a few fixed point theorems for left reversible and near-
commutative semigroups of contractive self-mappings in compact and complete metric
spaces, respectively. These results subsume some theorems in Boyd and Wong [1], Edel-
stein [3], and Liu [20].

In this paper, motivated by the results in [14, 15, 16, 17], we establish common fixed
point theorems for certain left reversible and near-commutative semigroups of self-
mappings in compact and complete metric spaces. As applications, we use our main re-
sults to show the existence and uniqueness of solutions of nonlinear Volterra integral
equations. Our results generalize, improve, and unify the corresponding results of Fisher
[4, 5, 6, 7, 8, 9, 10, 11, 12], Hegedus and Szilagyi [13], Y.-Y. Huang and C.-C. Hong [16],
T.-J. Huang and Y.-Y. Huang [14], Y.-Y. Huang et al. [17], Liu [18, 19, 20], Ohta and
Nikaido [21], Rosenholtz [22], Taskovic [23], and others.

Recall that a semigroup F is said to be left reversible if, for any s, t ∈ F, there exist
u,v ∈ F such that su= tv. It is easy to see that the notion of left reversibility is equivalent
to the statement that any two right ideals of F have nonempty intersection. A semigroup
F is called near commutative if, for any s, t ∈ F, there exists u∈ F such that st = tu. Clearly,
every commutative semigroup is near commutative, and every near-commutative semi-
group is left reversible, but the converses are not true.

Throughout this paper, (X ,d) denotes a metric space, N, R+, and R denote the sets
of positive integers, nonnegative real numbers, and real numbers, respectively. Let F be
a semigroup of self-mappings on X and let f be a self-mapping on X . For A,B ⊆ X ,
x, y ∈ X , define
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δd(A,B)= sup
{
d(a,b) : a∈A, b ∈ B},

δd(A)= δd(A,A), δd(x,A)= δd
({x},A),

Fx = {x}∪{gx : g ∈ F},
Of (x)= { f nx : n∈ {0}∪N}, Of (x, y)=Of (x)∪Of (y),

Cf = {h : h : X −→ X , f h= h f },
Hf =

{
h : h : X −→ X , h

(∩n∈N f nx
)⊆∩n∈N f nX

}
,

HF =
{
h : h : X −→ X , h

(∩g∈F gX
)⊆∩g∈FgX

}
,

Φ= {φ : φ :R+ −→R+is upper semicontinuous from the right,

φ(0)= 0, φ(t) < t for t > 0
}
.

(1.1)

A denotes the closure of A. Clearly, Hf ⊇ Cf ⊇ { f n : n ∈ N} ∪ {iX}, where iX is the
identity mapping on X . The mapping f is called a closed mapping if, y = f x when-
ever {xn}n∈N ⊆ X such that limn→∞ xn = x and limn→∞ f xn = y for some x, y ∈ X . It is
simple to check that the composition of two closed self-mappings in compact metric
spaces is closed. The mapping f is called a local contraction if, for each x ∈ X , there is an
open set U containing x and a real number m < 1 such that d( f z, f y)≤md(z, y) for all
z, y ∈ U . The mapping f is said to have diminishing orbital diameters if, for every x ∈ X
with δd(Of (x)) > 0, there exists n∈N such that δd(Of ( f nx)) < δd(Of (x)). Clearly, f has
diminishing orbital diameters if and only if limn→∞ δd(Of ( f nx)) < δd(Of (x)) for all x ∈ X
with δd(Of (x)) > 0. The semigroup F is said to have diminishing orbital diameters if, for
any x ∈ X with δd(Fx) > 0, there exists g ∈ F such that δd(Fgx) < δd(Fx).

2. Common fixed points for left reversible semigroups in compact metric spaces

Let F be a left reversible semigroup. We define a relation ≥ on F by a ≥ b if and only if
a∈ bF ∪{b}.

It is easy to verify that (F,≥) is a directed set. We need the following lemma for our
main theorems.

Lemma 2.1. Let F be a left reversible semigroup of closed self-mappings in a compact metric
space (X ,d) and let A=∩ f∈F f X . Then

(i) lim f∈F δd( f X)= δd(A);
(ii) A is nonempty, compact and f A= A for all f ∈ F.

Proof. Note that f X ⊆ gX for all f ,g ∈ F with f ≥ g. Thus {δd( f X)} f∈F is a bounded
decreasing net in R. Obviously, lim f∈F δd( f X) exists in R and

δd(A)≤ lim
f∈F

δd( f X). (2.1)

We now prove that f X is a compact subset of X for each f ∈ F. Let x be in X and
{xn}n∈N ⊆ X with limn→∞ f xn = x. The compactness of X ensures that there exists a sub-
sequence {xnk}k∈N of {xn}n∈N such that it converges to some point t ∈ X . In view of
closedness of f , we conclude immediately that x = f t ∈ f X . Therefore, f X is closed.
That is, f X is compact. This means that A is compact.
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We next prove that

δd(A)≥ lim
f∈F

δd( f X). (2.2)

Given f ∈ F, there exist x f , y f ∈ f X with d(x f , y f )= δd( f X). Since X is compact, we
can choose two subnets {x fk} and {y fk} of {x f } and {y f }, respectively, such that x fk → x
and y fk → y for some x, y ∈ X . For every g ∈ F and fk ≥ g, we get that x fk , y fk ∈ gX .
By virtue of closedness of gX , we infer that x, y ∈ gX . This means that x, y ∈ A. Conse-
quently,

lim
f∈F

δd( f X)= lim
f∈F

d
(
x f , y f

)= lim
k
d
(
x fk , y fk

)= d(x, y)≤ δd(A). (2.3)

Thus (i) follows from (2.1) and (2.2).
Let n ∈ N and f1, f2, . . . , fn ∈ F. It follows from the left reversibility of F that there

exist g1,g2, . . . ,gn ∈ F with f1g1 = f2g2 = ··· = fngn = h for some h∈ F. Hence,∩n
i=1 fiX ⊇

hX 
= ∅. The compactness of X implies that A 
= ∅.
We last prove that f A = A for all f ∈ F. Let f ∈ F and x ∈ A. For any g ∈ F, there

exist a,b ∈ F with f a = gb. Note that x ∈ A ⊆ aX . Thus there is y ∈ X with x = ay. It
follows that f x = f ay = gby ∈ gX . This implies that f A ⊆ ∩g∈FgX = A for f ∈ F. For
the reverse inclusion, let f ,g ∈ F and y ∈ A. It follows from y ∈ f gX that there exists
xg ∈ gX with f xg = y. The compactness X ensures that there exists a convergent subnet
{xgk} of {xg} such that xgk → x for some x ∈ X . The closedness of f implies that y = f x.
For any h,g ∈ F with g ≥ h, we obtain that hX is closed and that xg belongs to hX . Thus
the limit point x of {xg} lies in hX . That is, x ∈ A. Note that y = f x ∈ f A. Therefore,
A⊆ f A for f ∈ F. This completes the proof. �

Now, we are ready to prove our main theorems.

Theorem 2.2. Let F andG be left reversible semigroups of closed self-mappings in a compact
metric space (X ,d). Assume that there exist f ∈ F, g ∈G satisfying

d( f x,g y) < δd
({
su : u∈ Fx, s∈HF

}
,
{
tv : v ∈Gy, t ∈HG

})
(2.4)

for all x, y ∈ X with f x 
= g y. Then F and G have a unique common fixed point w ∈ X and
the point w is also a unique fixed point of F and G, respectively. Moreover, if F (resp., G) is
near commutative, then F (resp., G) has diminishing orbital diameters.

Proof. Let A = ∩s∈FsX and B = ∩t∈GtX . If δd(A,B) > 0, then by Lemma 2.1 there exist
a,x ∈ A and b, y ∈ B with δd(A,B) = d(a,b), a = f x, and b = g y. It follows from (2.4)
that

δd(A,B)= d( f x,g y)

< δd
({
su : u∈ Fx, s∈HF

}
,
{
tv : v ∈Gy, t ∈HG

})
≤ δd(A,B),

(2.5)

which is a contradiction. Therefore, δd(A,B)= 0. That is, A= B = {w} for some w ∈ X .
Note that f A = gA = A for all f ∈ F and g ∈ G. Thus F and G have a common fixed
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point w. If v is a fixed point of F or G, then v ∈ ∩ f∈F f X = {w} or v ∈ ∩g∈GgX = {w}.
This means that v = w. Hence, F and G have a unique common fixed point w ∈ X and
the point w is also a unique fixed point of F and G, respectively.

Assume that one of F or G, say F, is near commutative. Let x be in X with δd(Fx) > 0.
So, for any f ,g ∈ F, there exists h∈ F such that g f = f h. It follows that

δd(F f x)= δd
({ f x}∪{g f x : g ∈ F})≤ δd( f X). (2.6)

It follows from (2.6) and Lemma 2.1 that

lim
f∈F

δd(F f x)= lim
f∈F

δd( f X)= 0 < δd(Fx), (2.7)

which implies that F has diminishing orbital diameters. This completes the proof. �

Using the argument above, we can conclude the following two results.

Theorem 2.3. Let F be a left reversible semigroup of closed self-mappings in a compact
metric space (X ,d). Assume that there exist f ,g ∈ F satisfying

d( f x,g y) < δd
({
su : u∈ Fx∪Fy, s∈HF

})
(2.8)

for all x, y ∈ X with f x 
= g y. Then F has a unique fixed point w ∈ X . Moreover, if F is near
commutative, then it has diminishing orbital diameters.

Theorem 2.4. Let F be a left reversible semigroup of closed self-mappings in a compact
metric space (X ,d). Assume that there exists f ∈ F satisfying

d( f x, f y) < δd
({
su : u∈ Fx∪Fy, s∈HF

})
(2.9)

for all x, y ∈ X with f x 
= f y. Then F has a unique fixed point w ∈ X . Moreover, if F is near
commutative, then it has diminishing orbital diameters.

Corollary 2.5. Let f be a closed self-mapping of a compact metric space (X ,d). Assume
that there exist p,q ∈N such that

d
(
f px, f q y

)
< δd

({
su : u∈Of (x, y), s∈Hf

})
(2.10)

for all x, y ∈ X with f px 
= f q y. Then f has both a unique fixed point w ∈ X and diminish-
ing orbital diameters.

Proof. Take F = { f n : n ∈ N}. Then F is a commutative semigroup. Obviously, F has a
unique fixed point w ∈ X if and only if f has a unique fixed point w ∈ X . Note that
Fx =Of (x) for all x ∈ X and thatHF =Hf . Thus Corollary 2.5 follows immediately from
Theorem 2.3. This completes the proof. �

Remark 2.6. Theorems 2.3 and 2.4 and Corollary 2.5 extend, improve, and unify [5, The-
orem 4], [6, Theorem 2], [7, Theorem 9], [8, Theorem 4], [10, Theorem 5], [11, Theorem
5], [12, Theorem 3], [9, Theorem 5], [14, Theorem 1.1], [17, Theorem 2.2], [18, Theorem
3], [20, Theorem 2], [21, Theorem 4], and so forth.
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Theorem 2.7. Let (X ,d) be a compact and connected metric space and let F be a left re-
versible semigroup of self-mappings in X such that each f in F is a local contraction. Then
F has both a unique fixed point w ∈ X and diminishing orbital diameters. Moreover, for any
x ∈ X and f ∈ F, the sequence of iterates { f nx}n∈N converges to w.

Proof. Let f be in F. We now show that f has a unique fixed point in X . The compactness
of X ensures that there exist r f > 0 and mf < 1 such that

d( f x, f y)≤mf d(x, y) (2.11)

for all x, y ∈ X with d(x, y) < r f . Condition (2.11) ensures that f is continuous. Assume
that V1,V2, . . . ,Vnf are a fixed finite open cover of X with sets of diameters less than r f .
For any x, y ∈ X , the connectedness of X implies that there is a chain of open sets from x
to y, chosen from the sets V1,V2, . . . ,Vnf . This means that d(x, y)≤ n f r f . It follows from
(2.11) that d( f x, f y)≤mf n f r f . It is easy to check that

d
(
f kx, f k y

)≤ (mf
)k
n f r f (2.12)

for all k ∈N. By choosing k so large that (mf )kn f < 1, we infer that δd( f kX) < r f . So the
mapping f restricted to the set f kX , which maps f kX to itself, is a contraction. Note that
f kX is closed. By the Banach contraction theorem, the restricted mapping has a unique
fixed point wf ∈ f kX . Obviously, wf is a unique fixed point of f in X . In view of (2.12),
we have

δd
(
f jX ,wf

)≤ δd( f jX)≤ (mf
) j
n f r f (2.13)

for all j ∈N. Therefore,

lim
j→∞

δd
(
f jX ,wf

)= 0, (2.14)

which implies that both lim j→∞ f jx =wf and f has diminishing orbital diameters.
Let f and g be in F. Then there exist wf ,wg ∈ X such that wf = f w f , wg = gwg , and

(2.14) and the following equation hold:

lim
j→∞

δd
(
g jX ,wg

)= 0. (2.15)

Given j ∈N, it follows from the left reversibility of F that there are aj ,bj ∈ F with f ja j =
g jbj . From (2.14) and (2.15), we infer that

d
(
wf ,wg

)≤ d(wf , f ja jx
)

+d
(
g jbjx,wg

)
≤ δd

(
wf , f jX

)
+ δd

(
g jX ,wg

)
−→ 0 as j −→∞.

(2.16)

This means that wf = wg . That is, F has a unique fixed point in X . This completes the
proof. �
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Remark 2.8. Theorem 2.7 is a generalization of [22, Theorem 1].

Now we like to give two concrete examples for Theorems 2.4 and 2.7.

Example 2.9. Let X = {0,2/3}∪{1/n : n∈N} with the usual metric d. Define f ,g : X →
X by

f 0= f
2
3
= g0= g 2

3
= g1= 0, f

1
n
= 1
n+ 1

, g
1

n+ 1
= 1
n+ 2

(2.17)

for all n ∈ N. Obviously, g f = f 2, f g = g2, g f 1 = 1/3 
= 0 = f g1, (X ,d) is a compact
metric space, and f and g are closed. Let F be the semigroup generated by f and g.
Now for any a,b ∈ F, there exist a1, . . . ,ak, b1, . . . ,bn ∈ { f , g} with a = a1 ···ak and b =
b1 ···bn. Hence, ab = (bn)n+k = b(bn)k. Thus F is near commutative, and therefore it is
left reversible also. But it is not commutative. Note that ∩s∈FsX = {0}. It is easy to verify
that

d( f x, f y)≤ 1
2
< 1= δd

({
su : u∈ Fx∪Fy, s∈HF

})
(2.18)

for all x, y ∈ X with f x 
= f y. Hence, F satisfies the conditions of Theorem 2.4 and clearly
0 is the unique fixed point of F.

Example 2.10. Let X = [0,1] with the usual metric d. Define f ,g : X → X by

f x = 1
2
x, gx = 2

3
x (2.19)

for all x ∈ X . Then (X ,d) is a compact and connected metric space, f g = g f , and any one
of f and g is a local contraction. Let F be the semigroup generated by f and g. It is easy
to see that every element in F is a local contraction and that F is commutative. It follows
from Theorem 2.7 that F has a unique fixed point.

3. Common fixed points for near-commutative semigroups in complete metric spaces

Lemma 3.1 (see [15]). If φ is in Φ, then limn→∞φn(t)= 0.

Lemma 3.2 (see [2]). If φ : R+ → R+ is an upper semicontinuous function with φ(0) = 0
and φ(t) < t for t > 0, then there exists a strictly increasing continuous function ψ :R+ →R+

such that ψ(0)= 0 and φ(t)≤ ψ(t) < t for t > 0.

Theorem 3.3. Let F and G be near-commutative semigroups of closed self-mappings in a
complete metric space (X ,d). Assume that the following conditions are satisfied:

(i) for any x ∈ X , Fx and Gx are bounded;
(ii) there exists φ∈Φ such that, for any f ∈ F, g ∈G, there are n f ,mg ∈N satisfying

d
(
f px,gq y

)≤ φ(δd(Fx,Gy)
)

(3.1)

for all x, y ∈ X and p ≥ n f , q ≥mg .
Then F andG have both a unique common fixed pointw ∈ X and diminishing orbital diam-
eters. Moreover, for each f ∈ F ∪G and x ∈ X , the sequence of iterates { f nx}n∈N converges
to w.



Z. Liu and S. M. Kang 181

Proof. We assert that, for any f ∈ F, g ∈G, x, y ∈ X , and k ≥max{n f ,mg},

δd
(
F f kx,Ggk y

)≤ φ(δd(Fx,Gy)
)
. (3.2)

Take u∈ F f kx and v ∈Ggk y. Then there are s∈ F and t ∈G with u= s f kx and v = tgk y.
The near commutativity of F and G ensures that there exist a ∈ F and b ∈ G such that
s f k = f ka and tgk = gkb. It follows from (3.1) that

d(u,v)= d(s f kx, tgk y
)= d( f kax,gkby

)
≤ φ(δd(Fax,Gby)

)≤ φ(δd(Fx,Gy)
)
,

(3.3)

which implies that

δd
(
F f kx,Ggk y

)= sup
{
d(u,v) : u∈ F f kx, v ∈Ggk y}

≤ φ(δd(Fx,Gy)
) (3.4)

for any x, y ∈ X and k ≥max{n f ,mg}. That is, (3.2) holds. For any x, y ∈ X and k ∈ {0}∪
N, put ak = δd(F f kmax{n f ,mg}x,Ggkmax{n f ,mg}y). It follows from (3.2), (i), and Lemma 3.1
that

ak ≤ φ
(
δd
(
F f (k−1)max{n f ,mg}x,Gg(k−1)max{n f ,mg}y

))
= φ(ak−1

)≤ ··· ≤ φk(a0
)= φk(δd(Fx,Gy)

)
−→ 0 as k −→∞.

(3.5)

Let n be in N. Then there exist k,r ∈ {0} ∪ N and r < max{n f ,mg} such that n =
kmax{n f ,mg}+ r. In view of (3.5), we have

δd
(
F f nx,Ggny

)≤ δd(F f kmax{n f ,mg}x,Ggkmax{n f ,mg}y
)

≤ φ(ak−1
)≤ ak−1 −→ 0 as n−→∞. (3.6)

This implies that

max
{
δd
(
F f nx

)
,δd
(
Ggny

)}
≤max

{
δd
(
F f nx,gn+1y

)
+ δd

(
gn+1y,F f nx

)
,δd
(
Ggny, f n+1x

)
+ δd

(
f n+1x,Ggny

)}
≤ 2δd

(
F f nx,Ggny

)−→ 0 as n−→∞.
(3.7)

Therefore, F and G have diminishing orbital diameters. Note that { f n+ix}i∈N ⊆ F f nx
and {gn+i y}i∈N ⊆Ggny. So { f nx}n∈N and {gny}n∈N are Cauchy sequences. Since (X ,d) is
complete, { f nx}n∈N and {gny}n∈N converge to some points w,b ∈ X , respectively. Con-
sequently, w ∈∩n∈NF f nx and b ∈∩n∈NGgny. It follows from (3.6) that

d(w,b)≤ δd
(
F f nx,Ggny

)−→ 0 as n−→∞. (3.8)
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That is, w = b. The closedness of f and g implies that w = f w and b = gb. Hence, f and
g have a common fixed point w. By arbitrariness of f and g, we conclude that F and G
have a common fixed point w.

Suppose that F and G have also a common fixed point v ∈ X . By virtue of (3.1), for
any f ∈ F and g ∈G, we have

d(w,v)= d( f n f w,gmg v
)≤ φ(δd(Fw,Gv)

)= φ(d(w,v)
)
, (3.9)

which implies that w = v. This completes the proof. �

Theorem 3.4. Let F be near-commutative semigroup of closed self-mappings in a complete
metric space (X ,d). Assume that the following conditions are satisfied:

(iii) for any x ∈ X , Fx is bounded;
(iv) there exists φ∈Φ such that, for any f ∈ F, there is n f ∈N satisfying

d
(
f px, f qx

)≤ φ(δd(Fx)
)

(3.10)

for all x ∈ X and p,q ≥ n f .
Then F has both a fixed point in X and diminishing orbital diameters. Moreover, for each
f ∈ F and x ∈ X , the sequence of iterates { f nx}n∈N converges to some fixed point of F.

Proof. It follows from (3.10) that (3.1) is satisfied for F = G, x = y, f = g, and n f =mg .
Thus Theorem 3.4 follows from Theorem 3.3. This completes the proof. �

Theorem 3.5. Let F be near-commutative semigroup of closed self-mappings in a complete
metric space (X ,d). Assume that condition (iii) and the following condition (v) hold:

(v) there exists φ∈Φ such that, for any f ∈ F, there is n f ∈N satisfying

d
(
f px, f q y

)≤ φ(δd(Fx∪Fy)
)

(3.11)

for all x, y ∈ X and p,q ≥ n f .
Then F has both a unique common fixed point w ∈ X and diminishing orbital diameters.
Moreover, for each f ∈ F and x ∈ X , the sequence of iterates { f nx}n∈N converges to w.

Proof. Note that (3.11) implies that both (3.10) is satisfied and F has at most one fixed
point in X . Thus Theorem 3.5 follows from Theorem 3.4. This completes the proof. �

Remark 3.6. It follows from Lemma 3.2 that Theorem 3.5 extends [16, Theorem 2.1].

Theorem 3.7. Let F andG be near-commutative semigroups of self-mappings in a complete
metric space (X ,d). Assume that condition (i) and the following condition hold:

(vi) there exists φ ∈Φ such that, for any f ∈ F, g ∈G and x, y ∈ X ,

d( f x,g y)≤ φ(δd(Fx,Gy)
)
. (3.12)

Then F andG have both a unique common fixed pointw ∈ X and diminishing orbital diam-
eters. Moreover, for each f ∈ F ∪G and x ∈ X , the sequence of iterates { f nx}n∈N converges
to w.
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Proof. Let f and g be in F and G, respectively. As in the proof of Theorem 3.3, we infer
easily that there exists a unique point w ∈ X such that

lim
n→∞ f

nx = lim
n→∞g

ny =w, lim
n→∞δd

(
F f nx

)= lim
n→∞δd

(
Ggny

)= 0 (3.13)

for all x, y ∈ X . Thus, F and G have diminishing orbital diameters and

lim
n→∞ f

nx = lim
n→∞g

nw =w, lim
n→∞δd

(
F f nw

)= lim
n→∞δd

(
Ggnw

)= 0. (3.14)

Since w ∈ (∩n∈NF f nw)∩ (∩n∈NGgnw), it follows that

max
{
δd
(
F f nw,w

)
,δd
(
Ggnw,w

)}≤max
{
δd
(
F f nw

)
,δd
(
Ggnw

)}
(3.15)

for all n∈N. Using (3.14) and (3.15), we have

lim
n→∞δd

(
F f nw,w

)= lim
n→∞δd

(
Ggnw,w

)= 0. (3.16)

Let ε > 0 be arbitrary. By virtue of (3.14) and (3.16), there exists k ∈N such that, for all
n≥ k,

max
{
d
(
w, f n+1w

)
,d
(
w,gn+1w

)
,δd
(
F f nw,w

)
,δd
(
Ggnw,w

)}
< ε. (3.17)

For any h∈G, from (3.12) and (3.17), we immediately conclude that

d(w,hw)≤ d(w, f n+1w
)

+d
(
f n+1w,hw

)≤ ε+φ
(
δd
(
F f nw,Gw

))
≤ ε+φ

(
δd
(
F f nw,w

)
+ δd(w,Gw)

)≤ ε+φ
(
ε+ δd(w,Gw)

)
,

(3.18)

which implies that

δd(w,Gw)≤ ε+φ
(
ε+ δd(w,Gw)

)
. (3.19)

Letting ε → 0 in the above inequality, we obtain that δd(w,Gw) ≤ φ(δd(w,Gw)). This
means that δd(w,Gw) = 0. That is, Gw = {w}. Similarly, Fw = {w}. Therefore, F and G
have a common fixed point w. The uniqueness of common fixed point of F and G follows
immediately from (3.12). This completes the proof. �

From Theorems 3.5 and 3.7, we have the following.

Theorem 3.8. Let F be a near-commutative semigroup of self-mappings in a complete met-
ric space (X ,d). Assume that condition (iii) and the following condition (vii) hold:

(vii) there exists φ∈Φ such that, for any f ∈ F and x, y ∈ X ,

d( f x, f y)≤ φ(δd(Fx∪Fy)
)
. (3.20)

Then F has both a unique common fixed point w ∈ X and diminishing orbital diameters.
Moreover, for each f ∈ F and x ∈ X , the sequence of iterates { f nx}n∈N converges to w.



184 Common fixed point theorems

Corollary 3.9. Let f be a self-mapping of a complete metric space (X ,d) and satisfy the
following:

(viii) for each x ∈ X , Of (x) is bounded;
(ix) there exists φ∈Φ such that, for any x, y ∈ X ,

d( f x, f y)≤ φ(δd(Of (x, y)
))
. (3.21)

Then f has both a unique fixed point w ∈ X and diminishing orbital diameters. Moreover,
the sequence of iterates { f nx}n∈N converges to w for each x ∈ X .

Proof. Put F = { f n : n∈N}. Condition (3.21) ensures that

d
(
f nx, f n y

)≤ φ(δd(Of
(
f n−1x, f n−1y

)))
≤ φ(δd(Of (x, y)

))= φ(δd(Fx∪Fy)
) (3.22)

for all n ∈ N and x, y ∈ X . So Corollary 3.9 follows from Theorem 3.8. This completes
the proof. �

Remark 3.10. Theorem 3.8 extends, improves, and unifies [4, Theorem 2], [13, Theorem
5], and [19, Theorem 1].

4. Applications

Throughout this section, let (X ,‖ · ‖X) be a real Banach space and I = [a,b]⊆R. Define

C(I ,X)= { f : f : I −→ X is continuous},
C(I × I ×X ,X)= { f : f : I × I ×X −→ X is continuous},

‖ f ‖C = sup
t∈I

∥∥ f (t)
∥∥
X

(4.1)

for all f ∈ C(I ,X). It is easy to verify that (C(I ,X),‖ · ‖C) is a real Banach space also.
Now we investigate the existence problem of common solutions for nonlinear Volterra

integral equations of the from

xα(t)= v(t) + λ
∫ t
a
Kα
(
t,s,xα(s)

)
ds, α∈A, t ∈ I ,

yβ(t)= v(t) + λ
∫ t
a
Mβ
(
t,s, yβ(s)

)
ds, β ∈ B, t ∈ I ,

(4.2)

where v(t)∈ C(I ,X) is a given function, λ∈R is an arbitrary parameter, Kα and Mβ are
in C(I × I ×X ,X), A and B are index sets.

Theorem 4.1. Let F = { fα : α∈A} and G= {gβ : β ∈ B} be near-commutative semigroups
and satisfy the following:

(i) for any x ∈ C(I ,X), max{δ‖·‖X (Fx),δ‖·‖X (Gx)} <∞;
(ii) there exists L > 0 such that, for any α∈ A, β ∈ B, x, y ∈ C(I ,X), and t,s∈ I ,

∥∥Kα(t,s,x(s)
)−Mβ

(
t,s, y(s)

)∥∥
X ≤ Lδ‖·‖X (Fx,Gy), (4.3)
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where

fαx(t)= v(t) + λ
∫ t
a
Kα
(
t,s,x(s)

)
ds, α∈ A, x ∈ C(I ,X), t ∈ I ,

gβ y(t)= v(t) + λ
∫ t
a
Mβ
(
t,s, y(s)

)
ds, β ∈ B, y ∈ C(I ,X), t ∈ I.

(4.4)

Then (4.2) have a unique common solution w ∈ C(I ,X). Moreover, for each α∈ A, β ∈ B,
and x ∈ C(I ,X), the sequences defined by

(
fα
)n
x(t)= v(t) + λ

∫ t
a
Kα
(
t,s,
(
fα
)n−1

x(s)
)
ds, t ∈ I , n∈N,

(
gβ
)n
x(t)= v(t) + λ

∫ t
a
Mβ
(
t,s,
(
gβ
)n−1

x(s)
)
ds, t ∈ I , n∈N,

(4.5)

converge to the unique solution w in the norm ‖ · ‖C.

Proof. For any x ∈ C(I ,X), define ‖x‖∗ = supt∈I e
−(1+|λ|)Lt‖x(t)‖X . It is easy to show that

e−(1+|λ|)Lb‖x‖C ≤ ‖x‖∗ ≤ e−(1+|λ|)La‖x‖C. (4.6)

Therefore, the norm ‖ · ‖∗ and the sup-norm ‖ · ‖C are equivalent to each other. Obvi-
ously, (C(I ,X),‖ · ‖∗) is also a real Banach space. Note that all fα and gβ are self-mappings
of (C(I ,X),‖ · ‖∗). In view of (4.3) and (4.5), we infer that, for all α ∈ A, β ∈ B, and
x, y ∈ C(I ,X),

∥∥ fαx(t)− gβ y(t)
∥∥∗

= sup
t∈I

{
e−(1+|λ|)Lt|λ|

∥∥∥∥
∫ t
a

(
Kα
(
t,s,x(s)

)−Mβ
(
t,s, y(s)

))
ds
∥∥∥∥
X

}

≤ |λ|sup
t∈I

e−(1+|λ|)Lt
∫ t
a

∥∥Kα(t,s,x(s)
)−Mβ

(
t,s, y(s)

)∥∥
Xds

≤ |λ|sup
t∈I

∫ t
a
e(1+|λ|)L(s−t)e−(1+|λ|)Ls∥∥Kα(t,s,x(s)

)−Mβ
(
t,s, y(s)

)∥∥
Xds

≤ |λ|sup
t∈I

∫ t
a
e(1+|λ|)L(s−t) sup

s∈I
e−(1+|λ|)LsLδ‖·‖X (Fx,Gy)ds

≤ |λ|Lsup
t∈I

∫ t
a
e(1+|λ|)L(s−t)δ‖·‖∗(Fx,Gy)ds

≤ |λ|
1 + |λ|δ‖·‖X (Fx,Gy)sup

t∈I

[
1− e(1+|λ|)L(a−t)]

= |λ|
1 + |λ|

[
1− e(1+|λ|)L(a−b)]δ‖·‖X (Fx,Gy)

= φ(δ‖·‖∗(Fx,Gy)
)
,

(4.7)
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where φ(t) = (|λ|/(1 + |λ|))(1− e(1+|λ|)L(a−b))t for t ∈ R+. It follows from Theorem 3.7
that F and G have a unique common fixed point w ∈ C(I ,X) and the sequences
{( fα)nx}n∈N and {(gβ)nx}n∈N converge to w in the norm ‖ · ‖∗. Therefore, (4.2) have
a unique common solution w ∈ C(I ,X) and by (4.6) the sequences {( fα)nx}n∈N and
{(gβ)nx}n∈N converge to w in the norm ‖ · ‖C. This completes the proof. �

From Theorems 3.8 and 4.1, we have the following.

Theorem 4.2. Let F = { fα : α ∈ A} be a near-commutative semigroup and satisfy the fol-
lowing:

(iii) for any x ∈ C(I ,X), δ‖·‖X (Fx) <∞;
(iv) there exists L > 0 such that, for any α∈ A, x, y ∈ C(I ,X) and t,s∈ I ,

∥∥Kα(t,s,x(s)
)−Kα(t,s, y(s)

)∥∥
X ≤ Lδ‖·‖X (Fx∪Fy), (4.8)

where

fαx(t)= v(t) + λ
∫ t
a
Kα
(
t,s,x(s)

)
ds, α∈ A, x ∈ C(I ,X), t ∈ I. (4.9)

Then the following equations

xα(t)= v(t) + λ
∫ t
a
Kα
(
t,s,x(s)

)
ds, α∈A, t ∈ I , (4.10)

have a unique common solution w ∈ C(I ,X). Moreover, for each α∈ A and x ∈ C(I ,X), the
sequence defined by

(
fα
)n
x(t)= v(t) + λ

∫ t
a
Kα
(
t,s,
(
fα
)n−1

x(s)
)
ds, t ∈ I , n∈N, (4.11)

converges to the unique solution w in the norm ‖ · ‖C.

By Theorem 4.2 and Corollary 3.9, we have the following.

Corollary 4.3. Let K be in C(I × I ×X ,X) and satisfy the following:
(v) there exists L > 0 such that, for any x, y ∈ C(I ,X) and t,s∈ I ,

∥∥K(t,s,x(s)
)−K(t,s, y(s)

)∥∥
X ≤ Lδ‖·‖X

(
Of (x, y)

)
, (4.12)

where

f x(t)= v(t) + λ
∫ t
a
K
(
t,s,x(s)

)
ds, x ∈ C(I ,X), t ∈ I ; (4.13)

(vi) for every x ∈ C(I ,X), δ‖·‖X (Of (x)) <∞.
Then the following equation

x(t)= v(t) + λ
∫ t
a
K
(
t,s,x(t)

)
ds, t ∈ I , (4.14)
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has a unique solution w ∈ C(I ,X). Moreover, for each x ∈ C(I ,X), the sequence defined by

f nx(t)= v(t) + λ
∫ t
a
K
(
t,s, f n−1x(s)

)
ds, t ∈ I , n∈N, (4.15)

converges to the unique solution w in the norm ‖ · ‖C.

Remark 4.4. [23, Theorem 6] is a special case of Corollary 4.3.
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