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For the linear delay difference system xn+1− xn = Axn−k, where A is a 2× 2 real constant
matrix and k is a nonnegative integer, we present an explicit necessary and sufficient
condition for the asymptotic stability of the zero solution of this system in terms of detA,
trA, and the delay k.

1. Introduction

In this paper, we are concerned with the asymptotic stability of the zero solution of the
linear delay difference system

xn+1− xn = Axn−k, n= 0,1,2, . . . , (1.1)

where A is a 2× 2 real constant matrix and k is a nonnegative integer.
In the scalar case, Levin and May [7] showed that the zero solution of the delay difference

equation xn+1− xn =−axn−k is asymptotically stable if and only if

0 < a < 2sin
π/2

2k+ 1

(
= 2cos

kπ

2k+ 1

)
. (1.2)

This nice result is proved by using the fact that the zero solution of the linear difference
equation is asymptotically stable if and only if all the roots of its associated characteristic
equation are inside the unit disk. Here, the Schur-Cohn criterion (see [2, 5]) and the Jury
criterion (see [3]) are known to be effective tools for determining the asymptotic sta-
bility of linear difference systems. However, several kinds of the necessary and sufficient
conditions established by the above criteria are too much complicated even to verify the
condition (1.2). In fact, we need some careful root analysis of the characteristic equation
in and on the unit circle to get the condition (1.2); see [6, 7, 8].

The purpose of this paper is to give an explicit necessary and sufficient condition for
the asymptotic stability of the zero solution of the system (1.1) in terms of detA, trA,
and the delay k. As an application, we investigate the local asymptotic stability of delay
difference systems of Lotka-Volterra type. For the general background of delay difference
systems, one can refer to recent books [1, 2, 4].
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2. Main result

Our main result is stated as follows.

Theorem 2.1. The zero solution of (1.1) is asymptotically stable if and only if

2
√

detAsin
(

(2k+ 1)sin−1
(√

detA
2

))
<− trA < 2sin

π/2
2k+ 1

+
detA

2sin
(
(π/2)/(2k+ 1)

) ,

0 < detA < 4sin2 π/2
2k+ 1

.

(2.1)

Remark 2.2. In case A = diag[−a,−a], one can easily verify that the condition (2.1) is
equivalent to the condition (1.2) because of 2

√
detA=− trA.

Remark 2.3. In case k = 1, it follows from Theorem 2.1 that the zero solution of (1.1) is
asymptotically stable if and only if

−(detA)2 + 3detA <− trA < 1 + detA,

0 < detA < 1.
(2.2)

Remark 2.4. Let k = 0 and let A= B− I , where B is a 2× 2 real constant matrix and I is
the 2× 2 indentity matrix. Then one can easily see that the system (1.1) becomes

xn+1 = Bxn (2.3)

and the condition (2.1) is reduced to

1−detB > 0,

1 + trB+ detB > 0,

1− trB+ detB > 0,

(2.4)

namely,

| trB| < 1 + detB < 2 (2.5)

because detA = detB− trB + 1 and trA = trB− 2. This coincides with the Schur-Cohn
necessary and sufficient condition for the asymptotic stability of the zero solution of (2.3);
see, for example, [2, Theorem 4.15].

In order to prove Theorem 2.1, we need the following lemmas which deal with the two
special cases

A=−ρ
(

cosθ −sinθ
sinθ cosθ

)
, ρ ∈R, 0 < |θ| ≤ π

2
, (2.6)

A=−
(
a1 b
0 a2

)
, a1,a2,b ∈R. (2.7)
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Lemma 2.5 (see [8]). Suppose that the matrix A is given by (2.6). Then the zero solution of
(1.1) is asymptotically stable if and only if

0 < ρ < 2sin
π/2−|θ|

2k+ 1
. (2.8)

Lemma 2.6 (see [8]). Suppose that the matrix A is given by (2.7). Then the zero solution of
(1.1) is asymptotically stable if and only if

0 < a1 < 2sin
π/2

2k+ 1
, 0 < a2 < 2sin

π/2
2k+ 1

. (2.9)

Proof of Theorem 2.1. Let λ be an eigenvalue of A. Then we have det(λI −A)= 0 or

λ2− (trA)λ+ detA= 0. (2.10)

There are two possible cases to consider.

Case 1. The matrix A has complex eigenvalues −ρ(cosθ± isinθ). We may assume that
ρ ∈R \ {0} and 0 < |θ| ≤ π/2 by choosing the values of ρ and θ again, if necessary.

In this case, it follows that

(trA)2− 4detA < 0. (2.11)

Then there exists a nonsingular matrix P such that

P−1AP =−ρ
(

cosθ −sinθ
sinθ cosθ

)
, (2.12)

and hence, by the transformation xn = Pyn, the system (1.1) can be written as

yn+1− yn = P−1APyn−k. (2.13)

Note that the asymptotic stability of the zero solution of (1.1) is equivalent to that of
(2.13). Therefore, by virtue of Lemma 2.5, we will show that the zero solution of (1.1) is
asymptotically stable if and only if

2
√

detAsin
(

(2k+ 1)sin−1
(√

detA
2

))
<− trA < 2

√
detA,

0 < detA < 4sin2 π/2
2k+ 1

.

(2.14)

To this end, it is sufficient to verify that the condition (2.8) is equivalent to the condition
(2.14). Under the relation (2.12), we have

detA= ρ2, trA=−2ρcosθ. (2.15)

Since detA > 0 and | trA/(2
√

detA)| < 1 by (2.11), we get

ρ =±
√

detA, |θ| = cos−1
(
− trA

2ρ

)
. (2.16)
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Thus, the condition (2.8) can be written as

0 <

√
detA
2

< sin
π/2− cos−1

(− trA/(2
√

detA)
)

2k+ 1
, (2.17)

or equivalently,

(2k+ 1)sin−1
(√

detA
2

)
<
π

2
− cos−1

(
− trA

2
√

detA

)

⇐⇒ cos
(
π

2
− (2k+ 1)sin−1

(√
detA
2

))
<− trA

2
√

detA

⇐⇒ 2
√

detAsin
(

(2k+ 1)sin−1
(√

detA
2

))
<− trA.

(2.18)

Also, it follows from (2.17) that

0 < detA < 4sin2 π/2− cos−1
(− trA/(2

√
detA)

)
2k+ 1

< 4sin2 π/2
2k+ 1

, (2.19)

which, together with the conditions (2.11) and (2.17), is equivalent to the condition
(2.14). Consequently, we obtain that the condition (2.8) is equivalent to the condition
(2.14).

Case 2. The matrix A has real eigenvalues −a1, −a2.

In this case, it follows that

(trA)2− 4detA≥ 0. (2.20)

Then there exists a nonsingular matrix Q such that

Q−1AQ =−
(
a1 b
0 a2

)
, for some b ∈R, (2.21)

and hence, by the transformation xn =Qyn, the system (1.1) can be written as

yn+1− yn =Q−1AQyn−k. (2.22)

Note that the asymptotic stability of the zero solution of (1.1) is equivalent to that of
(2.22). Therefore, by virtue of Lemma 2.6, we will show that the zero solution of (1.1) is
asymptotically stable if and only if

2
√

detA≤− trA < 2sin
π/2

2k+ 1
+

detA
2sin

(
(π/2)/(2k+ 1)

) ,

0 < detA < 4sin2 π/2
2k+ 1

.

(2.23)

To this end, it is sufficient to verify that the condition (2.9) is equivalent to the condition
(2.23). Under the relation (2.21), we have

detA= a1a2, trA=−(a1 + a2
)
. (2.24)
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Without loss of generality, we may assume that a1 ≤ a2. Then we get

a1 = − trA−√(trA)2− 4detA
2

, a2 = − trA+
√

(trA)2− 4detA
2

. (2.25)

Thus, the condition (2.9) can be written as

0 <
− trA−√(trA)2− 4detA

2
,

− trA+
√

(trA)2− 4detA
2

< 2sin
π/2

2k+ 1
.

(2.26)

It follows from the first inequality of (2.26) that

√
(trA)2− 4detA <− trA

⇐⇒− trA > 0, detA > 0.
(2.27)

Also, it follows from the second inequality of (2.26) that

√
(trA)2− 4detA < 4sin

π/2
2k+ 1

+ trA

⇐⇒ 4sin
π/2

2k+ 1
+ trA > 0, −4detA < 16sin2 π/2

2k+ 1
+ 8sin

π/2
2k+ 1

trA

⇐⇒− trA < 4sin
π/2

2k+ 1
, − trA < 2sin

π/2
2k+ 1

+
detA

2sin
(
(π/2)/(2k+ 1)

) .
(2.28)

Therefore, under (2.20), the condition (2.26) is equivalent to

detA > 0,

0 <− trA < 4sin
π/2

2k+ 1
,

0 <− trA < 2sin
π/2

2k+ 1
+

detA
2sin

(
(π/2)/(2k+ 1)

) .
(2.29)

We here claim that

4sin
π/2

2k+ 1
> 2sin

π/2
2k+ 1

+
detA

2sin
(
(π/2)/(2k+ 1)

) , (2.30)

namely,

detA < 4sin2 π/2
2k+ 1

. (2.31)

Indeed, if not, then we have

detA≥ 4sin2 π/2
2k+ 1

>
1
4

(trA)2 (2.32)
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by using the second inequality of (2.29). This contradicts the condition (2.20), and hence,
the conditions (2.20) and (2.29) are equivalent to the condition (2.23). Consequently, we
obtain that the condition (2.9) is equivalent to the condition (2.23).

From the argument above, we therefore conclude that the zero solution of (1.1) is
asymptotically stable if and only if the condition (2.14) or (2.23) holds, that is, the con-
dition (2.1) holds. This completes the proof. �

Now, we investigate the local asymptotic stability of the positive equilibrium of the
Lotka-Volterra difference system

xn+1 = xn exp
[
r1
(
1− xn−k −µ1yn−k

)]
,

yn+1 = yn exp
[
r2
(
1−µ2xn−k − yn−k

)]
,

(2.33)

with initial conditions

x−s ≥ 0, s= 0,1, . . . ,k, x0 > 0,

y−s ≥ 0, s= 0,1, . . . ,k, y0 > 0,
(2.34)

where r1, r2, µ1, and µ2 are positive constants and k is a nonnegative integer. We assume
that the system (2.33) has the (unique) positive equilibrium

(x∗, y∗)=
(

1−µ1

1−µ1µ2
,

1−µ2

1−µ1µ2

)
. (2.35)

Then, linearizing the system (2.33) around (x∗, y∗), one can easily get

xn+1− xn =−r1x
∗(xn−k +µ1yn−k

)
,

yn+1− yn =−r2y
∗(µ2xn−k + yn−k

)
.

(2.36)

It is known that if the zero solution of the linearized system (2.36) is asymptotically stable,
then the positive equilibrium (x∗, y∗) of the nonlinear system (2.33) is locally asymptot-
ically stable, and thus, we have the following result by Theorem 2.1.

Corollary 2.7. Assume that the system (2.33) has the positive equilibrium (x∗, y∗). If the
matrix A given by

A=
(
−r1x∗ −r1x∗µ1

−r2y∗µ2 −r2y∗

)
=− 1

1−µ1µ2

(
r1
(
1−µ1

)
r1µ1

(
1−µ1

)
r2µ2

(
1−µ2

)
r2
(
1−µ2

)
)

(2.37)

satisfies the condition (2.1), then the positive equilibrium (x∗, y∗) of (2.33) is locally asymp-
totically stable.

Remark 2.8. We are unable to directly apply Lemma 2.5 or 2.6 to the linearized system
(2.36) because the eigenvalues of A given by (2.37) are much complicated.

Recently, Tang et al. [9] have shown that under µ1 < 1 and µ2 < 1, the positive equilib-
rium (x∗, y∗) of (2.33) with (2.34) is globally attractive, provided that

r j(k+ 1)≤ 3(1−µ)
2(1 +µ)

, j = 1,2, (2.38)
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where µ=max{µ1,µ2}. In the case where k = 1, r1 = r2 = r, and µ1 = µ2 = µ < 1, we claim
that the condition (2.38) is also a sufficient condition for the local asymptotic stability
of the positive equilibrium (x∗, y∗) of (2.33) with (2.34). In fact, the condition (2.38)
is reduced to r < 3(1− µ)/4(1 + µ), while, by Remark 2.3, one can easily verify that the
zero solution of the linearized system (2.36) is asymptotically stable if and only if r <
1; and so our claim is valid. Consequently, in this case, these above facts show that the
condition (2.38) is a sufficient condition for the global asymptotic stability of the positive
equilibrium (x∗, y∗) of (2.33) with (2.34).

Remark 2.9. By virtue of Corollary 2.7, we believe that under µ1 < 1 and µ2 < 1, the con-
dition (2.38) is a sufficient condition for the global asymptotic stability of the positive
equilibrium (x∗, y∗) of (2.33) with (2.34).
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