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We consider a natural correspondence between a family of inequalities and a closed con-
vex set. As an application, we give new types of power mean inequalities and the Holder-
type inequalities.

1. Concept and fundamental result

Given a natural correspondence between a family of inequalities and a closed convex set in
a topological linear space, one might expect that an inequality corresponding to a special
point (e.g., an extreme point) would be of special interest in view of the convex analysis
theory. In this paper, we realize this concept.

Let X be an arbitrary set and {¢¢,¢1,¢} a triple of nonnegative real-valued functions
on X. Set

m= <pul(£cl)#0 ;i)(();)) , M= %s(;l)#o (Z)l((xx)). (1.1)
Suppose that 0 < m, M < . Then we have
meo(x) < p(x) < Me(x) VxeX. (1.2)
For each x € X, put
Dy (x) = {(e: ) € R? : 9(x) < a1 (x) + Bpo (x) }. (1.3)

We consider the intersection Dy, = Nyxex Dy (x) of all such sets. Note that D, is a nonempty
closed convex domain in R? and that each point (a,8) € D,, corresponds to the inequality
¢ < a1 + gy on X. We want to investigate the closed convex domain D,. To do this, we
define the constant «,, by

M —mM
oy = sup plx) —m (pO(x). (1.4)
Mo (x)#meo(x) M¢1 (x) = m¢o(x)
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Clearly, 0 < ay, < M. Also, we have the following three fundamental facts:
(A) if (o, ) € Dy and a/M + /m = 1, then a > «y,
(B) {(a,p) e R*:a/M+f/m =1, a = ay} C Dy,
(C) Dy C {(a,) € R* : /M + f(m)) = 1} for some 1 <A < oo. In particular, if a, <
M, then D, C {(a,8) € R*: a/M + f5/m = 1}.
These facts will be used in the later sections to realize our concept.

Proof of (A). Suppose (&, ) € D, and «/M + f3/m = 1. Then

o(x) < ag1 (x) +m(1 - %)goo(x), (1.5)
and hence
Mo(x) — mMgeo(x) -
< 1.6
M1 (x) — mgo(x) = ° (1.6)
for all x € X with Mg, (x) # mgo(x). This implies that a, < . O

Proof of (B). If t = ay/M, then ¢(x) — mg@o(x) <t (Mg(x) — mgo(x)) and so ¢(x) <
tM@;(x) +m(1 — t)o(x) for all x € X. Hence, we have

o
Dq,D{(a,ﬁ)ERZ:aZtM,[}Zm(I—t), tZMq]forsometEIR}

g (1.7)
o
={(a,/3)eﬂ%2:]\—/[+;zl,aza¢}. -
Proof of (C). By the definition of M, we find a sequence {x,} in X such that
o1(xn) £0, (n=1,2,...), M= lim 9xn) (1.8)
n—oo gpl (xn)

Of course, we can assume that ¢(x,) # 0 for all n = 1,2,.... Since {@o(x,)/@(x,)} is a
bounded sequence with bound 1/m, we can take a subsequence {@o(x, )/@(x,)} converg-
ing to some real number t with 0 < ¢ < 1/m. Set A = 1/(tm) so that 1 <A < co. We have

2. @1 (%) 9o (%) -
D(PCO{((x,ﬁ)e[R{ ol g _1} .

c{(oc,ﬁ)eﬂ%z:l\%+%zl}.

In particular, if a, < M, then A must be 1 by an easy geometrical consideration on the
af-plane R2. O
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2. Application: Djokovic’s inequality

Let H be a Hlawka space, that is, a Banach space in which the Hlawka inequality holds. If
n and k are natural numbers with 2 < k < n — 1, then

n—2\ < n—2
S reenl= (3 75) S+ (173)

1<ij<---<ix<n

(2.1)

n
2 %
i=1

for all xy,...,x, € H. This is well known as Djokovic’s inequality (cf. [1, 2]).
Let X be the linear space H® - - - @ H = {(x1,...,%n) : X1,...,X, € H}. For 1 <k <n,
set

Sk (X1,..sn) = Z [, + - - - + x| (2.2)

1<i)<---<ix<n

for all (x1,...,x,) € X. Then {Jk : 1 < k < n} constitutes a system of seminorms on X and
satisfies

n—1 n—1
(k—l)a”S‘skS(k—l)al (1 <k=<n). (2.3)

Fix k and set ¢y = 8,,, 91 = 81, ¢ = 0. Then the above Djokovic inequality can be rewrit-
ten as

n—2 n—2
@< (k—1>¢1+(k—2>¢0 on X. (2.4)

(Z:f) + (Zj) Then

Also, we can see that m = M = (Z:}) and a, = (Z:f) because (Z:})
we have

{(cx,/j’)e[Rz:oH,Bz <Z:1>, a= (::f)} CD¢C{(a,/§’)eR2:a+ﬂz <Z:1)}
(2

.5)
by the fundamental facts (B), (C). However, we have from [3, Theorem 1 (vi)] that

D¢C{(a,/3)eu§2:a+ﬁ>(Z:i),ow(Z:f)}. (2.6)

It follows that D,, coincides with the minimum domain
{(a,/s)eugzzﬁ+£21,a2a } 2.7)
M m ?

Hence (aty, M — ) is the only extreme point of D, and the corresponding inequality, that
is Djokovic’s inequality, is of special interest. The above argument is nearly a restatement
of [3, Theorem 1].
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3. Application: the power mean inequality

Let X = {(x1,...,%,) € R" : x1,...,X, >0} and take t € R. We define ¢, ¢1, ¢ by

@o(x15...,%,) = min {x1,...,%,},

@1(xX15...,%,) = max{x,...,xn},

X4 Xy, (3.1)

£y 1/t
‘P(xl,-..,xn): ( n ) lfl’géo)

X1+ X ift=0,

for all (x1,...,x,) € X. Then m = M = 1. We determine the domain D,,. For (a,f3) € R2,
(o, B) € D, if and only if

@(x1,...,%,) < amax{xy,...,x,} +fmin{x,...,x,} V(x1,...,x,) € X. (3.2)

Dividing (3.2) by max{x,...,x,}, we see that (3.2) is equivalent to the following condi-
tion:

min {x1,...,x,} = u
o+ fu = sup (X1 s%) : forO<u<1. (3.3)
max {x1,...,x,} =1

Denote by f(u) the right side of (3.3). Then (3.3) becomes

a+Pfuz= f(u) forO<u=<l. (3.4)
Also, we can easily see that
n—1 u\"
+ — ift #0
fu) = ( n n> 40 cu<). (3.5)
o ift=0

If t # 0, then we have

t

_ 1/t-1
R e e

n n

., n—1 o (n—1 ut\V?
=" (t—1)uf2(—+—) .

n n

(3.6)

(i) The case of t < 1 and t # 0. In this case, (3.6) implies that f is a concave function on
(0,1]. Hence (3.4) is equivalent to the following condition:

B= ' (u(a)) for lH(r)lf(u) <a<f(1)-f'(1),

(3.7)
a+pf=f(1) fora>f(1)—f'(1),
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where u(«a) is the unique solution of the equation a+ f'(u)u = f(u). Note that f(1) = 1,
f(1)—f'(1)=(n—1)/n,and

n_ 1\t .
lim f () = ( n ) =0 (3.8)
“o 0 ift <0.
To investigate f'(u(a)), set v = u(a) and y = f'(v). Then
n—1 pt 1/t-1 -
(D) ma =) (39)
Hence
_ t
f(v)=nyv1*’(n71+%) =(n—1)pv' " +yv, (3.10)

so that « = (n — 1)yv!~!. Therefore by a simple computation, we obtain the equation
(n— 1)VA=0g/(t=1) 4 t/(t=1) = /(=D Consequently, if t > 0, then

1/t
> (n1/<H)_(n_1)1/(14)“”(:71))<t—1>/t for(n_1> o< n-1
D, = (a, ) € R?: n ol
n—1
at+f=1fora> o
(3.11)

and if t < 0, then
B> (nV0D _ (n— 1)l/(l—t)“t/(tfl))(t—l)/f for0 < a < n-1
Dy =1 (a,B) € R?: "
n—1
a+p=1fora> -
(3.12)

Also, &y = (n— 1)/n from the fundamental facts (A), (B).
(ii) The case of t = 0. Note that f is a concave function on (0,1] and limy,o f(u) = 0,
f(1)=1,and f(1) — f'(1) = (n— 1)/n. By executing the argument of (i), we obtain that
> Mal_" forO<a< n-
D, =1 (a,p) € R?: n . not (3.13)
a+pf=1fora> -

and ay = (n—1)/n.
(iii) The case of t = 1. By (3.6), f is a convex function on (0, 1]. Therefore, (3.4) holds
precisely when

lim f (1) < «, f(l)<a+p. (3.14)

ul0
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Since lim,o f(u) = ((n—1)/n)"* and f(1) = 1, it follows that

D, = {(oc,/})e[Rzzocz <”Tl)m, (x+/321}, (3.15)

and ay = ((n—1)/n)V".

We are now in a position to give the inequalities of special interest. We describe the
corresponding inequality in each case.

(i) Let 0 <t < 1. Then

t 1/t
<x1 + n +x;> < ax, + (nv(H) —(n— 1)1/“")04'/“’”)(H)/txl (3.16)
forO<x; <--- <x,and ((n—1)/n)"* <a < (n—1)/n. In particular,
(x{+---+xf1)l/t<(n—l)x,,+x1 (3.17)
n - n )
forO<x; <--- <x,.
Let t < 0. Then
t N U/t
<x71 hl n +x”) <ax,+ (n/0 - (n- 1)1/(1_”“”([_1))(r71)/le (3.18)
forO<x; <---<x,and 0 < a < (n—1)/n. In particular,
(x§+---+xf1)l/t<(n—l)xn+x1 (3.19)
n - n )
forO<x; <---<x,.
(ii) The inequality
n (n_l)n_l 1-n
WXL Xy < Xy + o a "x (3.20)
holds for0 <x; < -+ <x, and 0 < « < (n— 1)/n. In particular,
+(n—-1)""1
“xl...xnsw (321)
holdsforO0<x; < --- < x,,.
(ii1) Let t > 1. Then
t+_ . £\ 1/t
(%) <ax,+ (1 —a)x; (3.22)

IA

- < x,and ((n—1)/n)"! < a. In particular,

Eyopxt\ V2 _\ 1\
(u) < (”—) X, + 1—(” ) X1 (3.23)
n n n

= Xy

for 0 < x;

IA

for 0 < x;
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4. Application: the Holder inequality

Let (Q,u) be a finite measure spaceand 0 < p< g <r < 0. Let X = L"(Q, ) and set

o(f)=1Mfllps o) =11l o) =1l (4.1)
forall f € X. Then
m= M(Q)l/q—l/p’ M = H(Q)l/q—l/r) (4.2)

because the map ¢ — u(Q) V|| f ||; is a monotone increasing function. If dim X = 1, then
we have

D, = {(a,B) € R? cu(Q)Y1 < au( Q)Y+ Bu(Q)VP}

:{(a,/)’)eR2:1s%+%}. (43)

In general, it is hard to determine the domain D,,. We consider the following two special
cases:
M Q={L2},u({1})=a>0,u({2})=b>0,p=1,and r = o,
(II) 1 < p < g < r and y is nonatomic.
(I) We first consider the case (I). In this case, m = (a+b) "4 and M = (a+b)V4. Let
(a,f) € R%. Then (a,8) € D, if and only if

1/
)‘1

(ax1+ byt < amax{x,y} +f(ax+by) Vx,y=0. (4.4)

This is equivalent to the following condition:

g ax+by=1t0=<x, y<1 )
a+fpt > sup{(axq+byq) : max(x, y} = 1 } for min{a,b} <t<a+b,
(4.5)

namely,

a+pt=(a"9(t-b)1+b)"" forb<t<a+b, o)
4.6
a+[3t2(b1*q(t—a)q+a)l/q fora<t<a+b.

Set f(t) = (a'"9(t - b)1+b)i forb <t <a+b.Since 1 < q< o, f is a convex function
on [b,a+b]. Hence a+ Bt > f(t) forb <t <a+bifand onlyif a+pb > f(b) = b4 and
a+f(a+b)= f(a+b)=(a+b)". Also, set g(t) = (b'9(t—a)i+a)/ifora<t<a+b.
The same argument shows that a+ ft > g(¢) for a < t < a+b if and only if a + fa > a'/1
and a+ B(a+b) = (a+b)"4. Therefore, in view of the condition (4.6), we have

(4.7)

a+pb=b", a+Pa>a
“a+platb)=(a+b)Vd

D, = {((x,ﬁ) € R
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Moreover, since a+ (a+b) > (a+b)"1 means a/M + /m > 1, it follows from the fun-
damental facts (A), (B) that

_ max{a,b}"4(a+b) — (a+b)/1max{a,b}

¢ min{a, b} (4.8)
Also, D, has two extreme points:
maxi{a,b}Y1(a+b) — (a+b)Yimax{a,b} (a+b)"1—max{a,b}¥1
min{a, b} ’ min{a,b} ’
(4.9)
avap — gbVa pVa — gl/a
b-a ’ b-a )
The first extreme point corresponds to the following inequality:
(ax? + byq)l/q < M (max{a,b}"1(a+b) - (a+b)"9max{a,b})
min{a,b} (4.10)
ax+ by 1/q _ 1/q ‘
minia.b] ((a+b) max{a,b}"1)
forall a,b,x,y >0and g > 1. In particular, if a = b, then we have
(x4 +yq)1/q < max{x, y} (2 -2Y) + (x+ y) (21 - 1) (4.11)
forall x,y >0 and g > 1. Since x + y = max{x, y} + min{x, y}, it follows that
(x4 +y‘1)1/q < max{x, y} + (21— 1) min{x, y} (4.12)

for all x,y >0 and g > 1. This is just equal to (3.23) in case of n = 2. The second extreme
point corresponds to the following inequality:

1/q avap — gb4 bVa — gl/q
< bimax{x,y} + B

(axT+by?) (ax+by) (4.13)
foralla,b,x,y >0and g > 1.
(II) We consider the case (II). Take f € X. Sett = (r — p)/(g— p) and s = (r — p)/(r —
q)- Then r/t+ p/s = g and 1/t + 1/s = 1. Also, we have
P _rp—pq 1/q—-1r r ] P (4.14)

sq rq-pq 1p-1/r E - sq’

Now put y = (1/g — 1/r)/(1/p—1/r). Then 0 < y < 1, p/(sq) = y, and r/(tq) = 1 — y. We
use the Holder inequality to see that

Ifllg = (J |f|qu) 1/q ) (J IfI’”\fIP/de) 1/q

< ([1frax) w([ firdx) AT I A1

(4.15)
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Take ¢ > 0 arbitrarily and put & = (1 — y)e. If u = 1/(1 — y) and v = 1/y, then the Young
inequality yields

LA = el F1L) 7 (-2 £11,)
_ Gl Fll) L f,)”
u v 4.16
= (L= el fll +pe D7 £, (4.16)
(y=1)y
=a\|f||,+y(l%‘y) £l

Combining (4.15) and (4.16), we obtain

a oy
£l =alfl+y(725)Ifl (4.17)
Since € > 0 is arbitrary, so is « > 0. Hence we have
{(a,) eR*:a >0, f = h(a)} C D, (4.18)
where h(a) = y(a/(1 - y))7~D/7, Now, set
ap = (1 —p)u(Q)re-rr, (4.19)
We observe that
{(a,p) eR*:0<a < ag, f=h(a)} =Dy N {(a,f) ER?:0< & < a0} (4.20)

Actually, the equality holds in (4.17) if and only if the equalities hold in both (4.15) and
(4.16). Hence the equality condition in (4.17) is that

o 1/y
{1 f(w)]:weQ} c{0,c} forsomeceR, (1—)/) Il =1fll,.  (421)

Define

pr/(r=p)y
& ) (4.22)

a(a):(l—y

for all @ >0. Let 0 < a < ap. Then 0 < a(a) < a(ap) = u(Q), and hence we can take a
measurable set A such that u(A) = a(«), because p is nonatomic. Since the characteristic
function ya on A satisfies the condition (4.21), the equality in (4.17) holds for f = ya.
Consequently, we easily see that (4.20) is valid. Notice that

_ (-1/y-1 ~1/y
h'((x):L_l( o ) :_(1fy> <0 (a>0),

Y
1 1 a -1/y-1 1 a —(1+y)/y
TTLILY BTN g NS N TR A
@=1 Y y(—y)\1—-y @0

(4.23)
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Hence h(«) is a strictly monotone decreasing concave function on (0, o). Note also that
W (o) = —m/M, since m/M = u(Q)~VP*1/r Next we assert that the point (ag,h(ap)) is on
the line o/M + f/m = 1. Indeed,

el | ) e e (R0
p r p T qr—p pr pq q p
and so
m<1 _ %) — ‘u(Q)l/q—l/p —y(Q)l/Fl/P(l _ y)‘u(Q)V/P*Y/'
= p(Q)VaVP (@) =D/ gy () 0=V p+ =) (4.25)

— ),M(Q)(yfl)/pﬂlfy)/r = h(ag).

This implies the assertion. Therefore a,, is just equal to « by the fundamental facts (A),
(B). Hence the above observations imply that

ap = (1= p)u(Q)rrrr,

.26
D(pz{((x,ﬂ)e[R2:0<(xsocq,,ﬂzh(oc)}u{((x,ﬁ)e[Rzzocz%, +% 21}. (4.26)

<|=

Thus the corresponding inequality is

(y=1/y
T sa||f||r+y(%) £l (4.27)

forall fe L'(Qu),1<p<q<r,0<a<(l—y)u(Q)?~" andy=(1/q—1/r)/(1/p -
1/r). In particular, we have

£l < (U= p)u( Q27| f1l, + pu(Q) = D2= 00 £, (4.28)

forall f e L"(Q,u),1<p<q<r,andy=(1/q—1/r)/(1/p —1/r). Moreover, as r — oo,
we have

W@l fll, < (1 - g) 1 flleo + gy(m-wnfnp (4.29)

forall f e L®(Q,u)and 1 < p<g< oo,
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