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We consider a natural correspondence between a family of inequalities and a closed con-
vex set. As an application, we give new types of power mean inequalities and the Hölder-
type inequalities.

1. Concept and fundamental result

Given a natural correspondence between a family of inequalities and a closed convex set in
a topological linear space, one might expect that an inequality corresponding to a special
point (e.g., an extreme point) would be of special interest in view of the convex analysis
theory. In this paper, we realize this concept.

Let X be an arbitrary set and {ϕ0,ϕ1,ϕ} a triple of nonnegative real-valued functions
on X . Set

m= inf
ϕ0(x) �=0

ϕ(x)
ϕ0(x)

, M = sup
ϕ1(x) �=0

ϕ(x)
ϕ1(x)

. (1.1)

Suppose that 0 <m, M <∞. Then we have

mϕ0(x)≤ ϕ(x)≤Mϕ1(x) ∀x ∈ X. (1.2)

For each x ∈ X , put

Dϕ(x)= {(α,β)∈R2 : ϕ(x)≤ αϕ1(x) +βϕ0(x)
}
. (1.3)

We consider the intersection Dϕ =∩x∈XDϕ(x) of all such sets. Note that Dϕ is a nonempty
closed convex domain inR2 and that each point (α,β)∈Dϕ corresponds to the inequality
ϕ≤ αϕ1 +βϕ0 on X . We want to investigate the closed convex domain Dϕ. To do this, we
define the constant αϕ by

αϕ = sup
Mϕ1(x) �=mϕ0(x)

Mϕ(x)−mMϕ0(x)
Mϕ1(x)−mϕ0(x)

. (1.4)
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Clearly, 0≤ αϕ ≤M. Also, we have the following three fundamental facts:
(A) if (α,β)∈Dϕ and α/M +β/m= 1, then α≥ αϕ,
(B) {(α,β)∈R2 : α/M +β/m≥ 1, α≥ αϕ} ⊂Dϕ,
(C) Dϕ ⊂ {(α,β) ∈ R2 : α/M + β(mλ) ≥ 1} for some 1 ≤ λ ≤∞. In particular, if αϕ <

M, then Dϕ ⊂ {(α,β)∈R2 : α/M +β/m≥ 1}.
These facts will be used in the later sections to realize our concept.

Proof of (A). Suppose (α,β)∈Dϕ and α/M +β/m= 1. Then

ϕ(x)≤ αϕ1(x) +m
(

1− α

M

)
ϕ0(x), (1.5)

and hence

Mϕ(x)−mMϕ0(x)
Mϕ1(x)−mϕ0(x)

≤ α (1.6)

for all x ∈ X with Mϕ1(x) �=mϕ0(x). This implies that αϕ ≤ α. �

Proof of (B). If t ≥ αϕ/M, then ϕ(x)−mϕ0(x) ≤ t (Mϕ1(x)−mϕ0(x)) and so ϕ(x) ≤
tMϕ1(x) +m(1− t)ϕ0(x) for all x ∈ X . Hence, we have

Dϕ ⊃
{

(α,β)∈R2 : α≥ tM, β ≥m(1− t), t ≥ αϕ
M

for some t ∈R
}

=
{

(α,β)∈R2 :
α

M
+

β

m
≥ 1, α≥ αϕ

}
.

(1.7)

�

Proof of (C). By the definition of M, we find a sequence {xn} in X such that

ϕ1
(
xn
) �= 0, (n= 1,2, . . .), M = lim

n→∞
ϕ
(
xn
)

ϕ1
(
xn
) . (1.8)

Of course, we can assume that ϕ(xn) �= 0 for all n = 1,2, . . . . Since {ϕ0(xn)/ϕ(xn)} is a
bounded sequence with bound 1/m, we can take a subsequence {ϕ0(xn′)/ϕ(xn′)} converg-
ing to some real number t with 0≤ t ≤ 1/m. Set λ= 1/(tm) so that 1≤ λ≤∞. We have

Dϕ ⊂
⋂
n′

{
(α,β)∈R2 : α

ϕ1
(
xn′
)

ϕ
(
xn′
) +β

ϕ0
(
xn′
)

ϕ
(
xn′
) ≥ 1

}

⊂
{

(α,β)∈R2 :
α

M
+

β

mλ
≥ 1

}
.

(1.9)

In particular, if αϕ < M, then λ must be 1 by an easy geometrical consideration on the
αβ-plane R2. �
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2. Application: Djokovic’s inequality

Let H be a Hlawka space, that is, a Banach space in which the Hlawka inequality holds. If
n and k are natural numbers with 2≤ k ≤ n− 1, then

∑
1≤i1<···<ik≤n

∥∥xi1 + ···+ xik
∥∥≤

(
n− 2
k− 1

) n∑
i=1

∥∥xi∥∥+

(
n− 2
k− 2

)∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥ (2.1)

for all x1, . . . ,xn ∈H . This is well known as Djokovic’s inequality (cf. [1, 2]).
Let X be the linear space H ⊕ ···⊕H = {(x1, . . . ,xn) : x1, . . . ,xn ∈H}. For 1 ≤ k ≤ n,

set

δk
(
x1, . . . ,xn

)= ∑
1≤i1<···<ik≤n

∥∥xi1 + ···+ xik
∥∥ (2.2)

for all (x1, . . . ,xn)∈ X . Then {δk : 1≤ k ≤ n} constitutes a system of seminorms on X and
satisfies

(
n− 1
k− 1

)
δn ≤ δk ≤

(
n− 1
k− 1

)
δ1 (1≤ k ≤ n). (2.3)

Fix k and set ϕ0 = δn, ϕ1 = δ1, ϕ= δk. Then the above Djokovic inequality can be rewrit-
ten as

ϕ≤
(
n− 2
k− 1

)
ϕ1 +

(
n− 2
k− 2

)
ϕ0 on X. (2.4)

Also, we can see that m=M =
(
n−1
k−1

)
and αϕ =

(
n−2
k−1

)
because

(
n−1
k−1

)
=
(
n−2
k−1

)
+
(
n−2
k−2

)
. Then

we have

{
(α,β)∈R2 : α+β ≥

(
n− 1
k− 1

)
, α≥

(
n− 2
k− 1

)}
⊂Dϕ ⊂

{
(α,β)∈R2 : α+β ≥

(
n− 1
k− 1

)}

(2.5)
by the fundamental facts (B), (C). However, we have from [3, Theorem 1 (vi)] that

Dϕ ⊂
{

(α,β)∈R2 : α+β ≥
(
n− 1
k− 1

)
, α≥

(
n− 2
k− 1

)}
. (2.6)

It follows that Dϕ coincides with the minimum domain

{
(α,β)∈R2 :

α

M
+

β

m
≥ 1, α≥ αϕ

}
. (2.7)

Hence (αϕ,M−αϕ) is the only extreme point ofDϕ and the corresponding inequality, that
is Djokovic’s inequality, is of special interest. The above argument is nearly a restatement
of [3, Theorem 1].
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3. Application: the power mean inequality

Let X = {(x1, . . . ,xn)∈Rn : x1, . . . ,xn > 0} and take t ∈R. We define ϕ0, ϕ1, ϕ by

ϕ0
(
x1, . . . ,xn

)=min
{
x1, . . . ,xn

}
,

ϕ1
(
x1, . . . ,xn

)=max
{
x1, . . . ,xn

}
,

ϕ
(
x1, . . . ,xn

)=


(
xt1 + ···+ xnt

n

)1/t

if t �= 0,

n
√
x1 ···xn if t = 0,

(3.1)

for all (x1, . . . ,xn)∈ X . Then m=M = 1. We determine the domain Dϕ. For (α,β)∈ R2,
(α,β)∈Dϕ if and only if

ϕ
(
x1, . . . ,xn

)≤ αmax
{
x1, . . . ,xn

}
+βmin

{
x1, . . . ,xn

} ∀(x1, . . . ,xn
)∈ X. (3.2)

Dividing (3.2) by max{x1, . . . ,xn}, we see that (3.2) is equivalent to the following condi-
tion:

α+βu≥ sup




min
{
x1, . . . ,xn

}= u
ϕ
(
x1, . . . ,xn

)
:

max
{
x1, . . . ,xn

}= 1


 for 0 < u≤ 1. (3.3)

Denote by f (u) the right side of (3.3). Then (3.3) becomes

α+βu≥ f (u) for 0 < u≤ 1. (3.4)

Also, we can easily see that

f (u)=



(
n− 1
n

+
ut

n

)1/t

if t �= 0

n
√
u if t = 0

(0 < u≤ 1). (3.5)

If t �= 0, then we have

f ′(u)= 1
n
ut−1

(
n− 1
n

+
ut

n

)1/t−1

,

f ′′(u)= n− 1
n2

(t− 1)ut−2
(
n− 1
n

+
ut

n

)1/t−2

.

(3.6)

(i) The case of t < 1 and t �= 0. In this case, (3.6) implies that f is a concave function on
(0,1]. Hence (3.4) is equivalent to the following condition:

β ≥ f ′
(
u(α)

)
for lim

u↓0
f (u)≤ α≤ f (1)− f ′(1),

α+β ≥ f (1) for α > f (1)− f ′(1),
(3.7)
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where u(α) is the unique solution of the equation α+ f ′(u)u= f (u). Note that f (1)= 1,
f (1)− f ′(1)= (n− 1)/n, and

lim
u↓0

f (u)=


(
n− 1
n

)1/t

if t > 0,

0 if t < 0.
(3.8)

To investigate f ′(u(α)), set v = u(α) and γ = f ′(v). Then

(
n− 1
n

+
vt

n

)1/t−1

= nγv1−t, α+ γv = f (v). (3.9)

Hence

f (v)= nγv1−t
(
n− 1
n

+
vt

n

)
= (n− 1)γv1−t + γv, (3.10)

so that α = (n− 1)γv1−t. Therefore by a simple computation, we obtain the equation
(n− 1)1/(1−t)αt/(t−1) + γt/(t−1) = n1/(1−t). Consequently, if t > 0, then

Dϕ =


(α,β)∈R2 :

β ≥ (n1/(1−t)−(n−1)1/(1−t)αt/(t−1))(t−1)/t
for
(
n−1
n

)1/t

α≤ n−1
n

α+β ≥ 1 for α >
n− 1
n


 ,

(3.11)

and if t < 0, then

Dϕ =


(α,β)∈R2 :

β ≥ (n1/(1−t)− (n− 1)1/(1−t)αt/(t−1))(t−1)/t
for 0≤ α≤ n− 1

n

α+β ≥ 1 for α >
n− 1
n


 .
(3.12)

Also, αϕ = (n− 1)/n from the fundamental facts (A), (B).
(ii) The case of t = 0. Note that f is a concave function on (0,1] and limu↓0 f (u) = 0,

f (1)= 1, and f (1)− f ′(1)= (n− 1)/n. By executing the argument of (i), we obtain that

Dϕ =


(α,β)∈R2 :

β ≥ (n− 1)n−1

nn
α1−n for 0 < α≤ n− 1

n

α+β ≥ 1 for α >
n− 1
n


 , (3.13)

and αϕ = (n− 1)/n.
(iii) The case of t ≥ 1. By (3.6), f is a convex function on (0,1]. Therefore, (3.4) holds

precisely when

lim
u↓0

f (u)≤ α, f (1)≤ α+β. (3.14)
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Since limu↓0 f (u)= ((n− 1)/n)1/t and f (1)= 1, it follows that

Dϕ =
{

(α,β)∈R2 : α≥
(
n− 1
n

)1/t

, α+β ≥ 1
}

, (3.15)

and αϕ = ((n− 1)/n)1/t.
We are now in a position to give the inequalities of special interest. We describe the

corresponding inequality in each case.
(i) Let 0 < t < 1. Then

(
xt1 + ···+ xtn

n

)1/t

≤ αxn +
(
n1/(1−t)− (n− 1)1/(1−t)αt/(t−1))(t−1)/t

x1 (3.16)

for 0 < x1 ≤ ··· ≤ xn and ((n− 1)/n)1/t < α≤ (n− 1)/n. In particular,

(
xt1 + ···+ xtn

n

)1/t

≤ (n− 1)xn + x1

n
(3.17)

for 0 < x1 ≤ ··· ≤ xn.
Let t < 0. Then

(
xt1 + ···+ xtn

n

)1/t

≤ αxn +
(
n1/(1−t)− (n− 1)1/(1−t)αt/(t−1))(t−1)/t

x1 (3.18)

for 0 < x1 ≤ ··· ≤ xn and 0 < α≤ (n− 1)/n. In particular,

(
xt1 + ···+ xtn

n

)1/t

≤ (n− 1)xn + x1

n
(3.19)

for 0 < x1 ≤ ··· ≤ xn.
(ii) The inequality

n
√
x1 ···xn ≤ αxn +

(n− 1)n−1

nn
α1−nx1 (3.20)

holds for 0 < x1 ≤ ··· ≤ xn and 0 < α≤ (n− 1)/n. In particular,

n
√
x1 ···xn ≤ xn + (n− 1)n−1x1

n
(3.21)

holds for 0 < x1 ≤ ··· ≤ xn.
(iii) Let t ≥ 1. Then

(
xt1 + ···+ xtn

n

)1/t

≤ αxn + (1−α)x1 (3.22)

for 0 < x1 ≤ ··· ≤ xn and ((n− 1)/n)1/t ≤ α. In particular,

(
xt1 + ···+ xtn

n

)1/t

≤
(
n− 1
n

)1/t

xn +

(
1−

(
n− 1
n

)1/t
)
x1 (3.23)

for 0 < x1 ≤ ··· ≤ xn.
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4. Application: the Hölder inequality

Let (Ω,µ) be a finite measure space and 0 < p < q < r ≤∞. Let X = Lr(Ω,µ) and set

ϕ0( f )= ‖ f ‖p, ϕ1( f )= ‖ f ‖r , ϕ( f )= ‖ f ‖q (4.1)

for all f ∈ X . Then

m= µ(Ω)1/q−1/p, M = µ(Ω)1/q−1/r , (4.2)

because the map t �→ µ(Ω)−1/t‖ f ‖t is a monotone increasing function. If dimX = 1, then
we have

Dϕ =
{

(α,β)∈R2 : µ(Ω)1/q ≤ αµ(Ω)1/r +βµ(Ω)1/p}
=
{

(α,β)∈R2 : 1≤ α

M
+

β

m

}
.

(4.3)

In general, it is hard to determine the domain Dϕ. We consider the following two special
cases:

(I) Ω= {1,2}, µ({1})= a > 0, µ({2})= b > 0, p = 1, and r =∞,
(II) 1≤ p < q < r and µ is nonatomic.

(I) We first consider the case (I). In this case, m= (a+ b)−1+1/q and M = (a+ b)1/q. Let
(α,β)∈R2. Then (α,β)∈Dϕ if and only if

(
axq + byq

)1/q ≤ αmax{x, y}+β(ax+ by) ∀x, y ≥ 0. (4.4)

This is equivalent to the following condition:

α+βt ≥ sup

{(
axq + byq

)1/q
:
ax+ by = t, 0≤ x, y ≤ 1

max{x, y} = 1

}
for min{a,b} ≤ t ≤ a+ b,

(4.5)
namely,

α+βt ≥ (a1−q(t− b)q + b
)1/q

for b≤ t ≤ a+ b,

α+βt ≥ (b1−q(t− a)q + a
)1/q

for a≤ t ≤ a+ b.
(4.6)

Set f (t)= (a1−q(t− b)q + b)1/q for b ≤ t ≤ a+ b. Since 1 < q <∞, f is a convex function
on [b,a+ b]. Hence α+βt ≥ f (t) for b ≤ t ≤ a+ b if and only if α+βb ≥ f (b)= b1/q and
α+β(a+ b)≥ f (a+ b)= (a+ b)1/q. Also, set g(t)= (b1−q(t− a)q + a)1/q for a≤ t ≤ a+ b.
The same argument shows that α+ βt ≥ g(t) for a≤ t ≤ a+ b if and only if α+ βa≥ a1/q

and α+β(a+ b)≥ (a+ b)1/q. Therefore, in view of the condition (4.6), we have

Dϕ =

(α,β)∈R2 :

α+βb ≥ b1/q, α+βa≥ a1/q

α+β(a+ b)≥ (a+ b)1/q


 . (4.7)
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Moreover, since α+ β(a+ b)≥ (a+ b)1/q means α/M + β/m≥ 1, it follows from the fun-
damental facts (A), (B) that

αϕ = max{a,b}1/q(a+ b)− (a+ b)1/q max{a,b}
min{a,b} . (4.8)

Also, Dϕ has two extreme points:

(
max{a,b}1/q(a+ b)− (a+ b)1/q max{a,b}

min{a,b} ,
(a+ b)1/q−max{a,b}1/q

min{a,b}

)
,

(
a1/qb− ab1/q

b− a
,
b1/q− a1/q

b− a

)
.

(4.9)

The first extreme point corresponds to the following inequality:

(
axq + byq

)1/q ≤ max{x, y}
min{a,b}

(
max{a,b}1/q(a+ b)− (a+ b)1/q max{a,b})

+
ax+ by

min{a,b}
(
(a+ b)1/q−max{a,b}1/q) (4.10)

for all a,b,x, y > 0 and q > 1. In particular, if a= b, then we have

(
xq + yq

)1/q ≤max{x, y}(2− 21/q)+ (x+ y)
(
21/q− 1

)
(4.11)

for all x, y > 0 and q > 1. Since x+ y =max{x, y}+ min{x, y}, it follows that

(
xq + yq

)1/q ≤max{x, y}+
(
21/q− 1

)
min{x, y} (4.12)

for all x, y > 0 and q > 1. This is just equal to (3.23) in case of n= 2. The second extreme
point corresponds to the following inequality:

(
axq + byq

)1/q ≤ a1/qb− ab1/q

b− a
max{x, y}+

b1/q− a1/q

b− a
(ax+ by) (4.13)

for all a,b,x, y > 0 and q > 1.
(II) We consider the case (II). Take f ∈ X . Set t = (r− p)/(q− p) and s= (r− p)/(r−

q). Then r/t+ p/s= q and 1/t+ 1/s= 1. Also, we have

p

sq
= r p− pq

rq− pq
= 1/q− 1/r

1/p− 1/r
,

r

tq
= 1− p

sq
. (4.14)

Now put γ = (1/q− 1/r)/(1/p− 1/r). Then 0 < γ < 1, p/(sq)= γ, and r/(tq)= 1− γ. We
use the Hölder inequality to see that

‖ f ‖q =
(∫

| f |qdx
)1/q

=
(∫

| f |r/t| f |p/sdx
)1/q

≤
(∫

| f |rdx
)1/tq(∫

| f |pdx
)1/sq

= ‖ f ‖r/tqr ‖ f ‖p/sqp = ‖ f ‖1−γ
r ‖ f ‖γp.

(4.15)
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Take ε > 0 arbitrarily and put α = (1− γ)ε. If u = 1/(1− γ) and v = 1/γ, then the Young
inequality yields

‖ f ‖1−γ
r ‖ f ‖γp =

(
ε‖ f ‖r

)1−γ(
ε(γ−1)/γ‖ f ‖p

)γ

≤
(
ε‖ f ‖r

)(1−γ)u

u
+

(
ε(γ−1)/γ‖ f ‖p

)γv
v

= (1− γ)ε‖ f ‖r + γε(γ−1)/γ‖ f ‖p

= α‖ f ‖r + γ
(

α

1− γ

)(γ−1)/γ

‖ f ‖p.

(4.16)

Combining (4.15) and (4.16), we obtain

‖ f ‖q ≤ α‖ f ‖r + γ
(

α

1− γ

)(γ−1)/γ

‖ f ‖p. (4.17)

Since ε > 0 is arbitrary, so is α > 0. Hence we have

{
(α,β)∈R2 : α > 0, β ≥ h(α)

}⊂Dϕ, (4.18)

where h(α)= γ(α/(1− γ))(γ−1)/γ. Now, set

α0 = (1− γ)µ(Ω)γ/p−γ/r . (4.19)

We observe that

{
(α,β)∈R2 : 0 < α≤ α0, β ≥ h(α)

}=Dϕ∩
{

(α,β)∈R2 : 0 < α≤ α0
}
. (4.20)

Actually, the equality holds in (4.17) if and only if the equalities hold in both (4.15) and
(4.16). Hence the equality condition in (4.17) is that

{∣∣ f (ω)
∣∣ : ω ∈Ω

}⊂ {0,c} for some c ∈R,
(

α

1− γ

)1/γ

‖ f ‖r = ‖ f ‖p. (4.21)

Define

a(α)=
(

α

1− γ

)pr/(r−p)γ

(4.22)

for all α > 0. Let 0 < α ≤ α0. Then 0 < a(α) ≤ a(α0) = µ(Ω), and hence we can take a
measurable set A such that µ(A)= a(α), because µ is nonatomic. Since the characteristic
function χA on A satisfies the condition (4.21), the equality in (4.17) holds for f = χA.
Consequently, we easily see that (4.20) is valid. Notice that

h′(α)= γ

1− γ

γ− 1
γ

(
α

1− γ

)(γ−1)/γ−1

=−
(

α

1− γ

)−1/γ

< 0 (α > 0),

h′′(α)= 1
1− γ

1
γ

(
α

1− γ

)−1/γ−1

= 1
γ(1− γ)

(
α

1− γ

)−(1+γ)/γ

> 0 (α > 0).

(4.23)
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Hence h(α) is a strictly monotone decreasing concave function on (0,∞). Note also that
h′(α0)=−m/M, since m/M = µ(Ω)−1/p+1/r . Next we assert that the point (α0,h(α0)) is on
the line α/M +β/m= 1. Indeed,

γ− 1
p

+
1− γ

r
= (γ− 1)

(
1
p
− 1

r

)
=− r

q

q− p

r− p

r− p

pr
= p− q

pq
= 1

q
− 1

p
, (4.24)

and so

m
(

1− α0

M

)
= µ(Ω)1/q−1/p−µ(Ω)1/r−1/p(1− γ)µ(Ω)γ/p−γ/r

= µ(Ω)1/q−1/p−µ(Ω)(γ−1)/p+(1−γ)/r + γµ(Ω)(γ−1)/p+(1−γ)/r

= γµ(Ω)(γ−1)/p+(1−γ)/r = h(α0).

(4.25)

This implies the assertion. Therefore αϕ is just equal to α0 by the fundamental facts (A),
(B). Hence the above observations imply that

αϕ = (1− γ)µ(Ω)γ/p−γ/r ,

Dϕ =
{

(α,β)∈R2 : 0 < α≤ αϕ, β ≥ h(α)
}∪{(α,β)∈R2 : α≥ αϕ,

α

M
+

β

m
≥ 1

}
.

(4.26)

Thus the corresponding inequality is

‖ f ‖q ≤ α‖ f ‖r + γ
(

α

1− γ

)(γ−1)/γ

‖ f ‖p (4.27)

for all f ∈ Lr(Ω,µ), 1≤ p < q < r, 0 < α≤ (1− γ)µ(Ω)γ/p−γ/r , and γ = (1/q− 1/r)/(1/p−
1/r). In particular, we have

‖ f ‖q ≤ (1− γ)µ(Ω)γ/p−γ/r‖ f ‖r + γµ(Ω)(γ−1)/p−(1−γ)/r‖ f ‖p (4.28)

for all f ∈ Lr(Ω,µ), 1 ≤ p < q < r, and γ = (1/q− 1/r)/(1/p− 1/r). Moreover, as r →∞,
we have

µ(Ω)−1/q‖ f ‖q ≤
(

1− p

q

)
‖ f ‖∞ +

p

q
µ(Ω)−1/p‖ f ‖p (4.29)

for all f ∈ L∞(Ω,µ) and 1≤ p < q <∞.
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[1] D. Ž. Doković, Generalizations of Hlawka’s inequality, Glasnik Mat.-Fiz. Astronom. Društvo
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