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We give a Griiss-type inequality which is a refinement of a result due to Dragomir and
Agarwal. We also give its applications for the moments of random variables, guessing
mappings, and Ozeki’s inequality.

1. Introduction

Let a = (ay,...,a,), b= (by,...,b,) be n-tuples (sequences) of real numbers and let p =
(p1>-.->pn) be an n-tuple of positive numbers. Then (discrete) Griiss’ inequality is an
estimation of the difference

I(a,b; p) := P, > piaibi — > pia; > pibi, (L.1)
P o1 el

where P, = > | pi.
If both a and b are assumed to be nondecreasing (or nonincreasing), that is,

a<---<apb <---<b, (or a;=--->a,b =---2b,), (1.2)

then the above difference I(a, b; p) is nonnegative, that is,

n

P, Zpiaibi > zpiai Zpibi- (1.3)
i=1 i=1 i

i=1

This is well known as Cebysev’s inequality [10, page 240]. As a complement of this in-
equality, one of the authors proved the following theorem.

THeoOREM 1.1 [11, Theorem 8], [10, page 302]. Let a, b be nondecreasing (or nonincreas-
ing) n-tuples of real numbers and let p be an n-tuple of positive numbers. Then

|I(a,b;p)| < |anw—ar]|by—b] lg?frile(Pn—Pj), (1.4)

where P; = Z£=1pk.
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Without any assumption of monotonicity on n-tuples a and b, the following extension
of Theorem 1.1 was given by D. Andrica and C. Badea.

TaEOREM 1.2 [1, Theorem 2]. Let a, b be n-tuples of real numbers satisfying
WhSaiSMl, M2SbiSM2 (i=1,...,71), (1.5)
and let p be an n-tuple of positive numbers. Then

| 1(a,b;p)| < (My —my) (M, — mz)r]naxP(])(Pn - P(])), (1.6)

n

where I, = {1,...,n} and P(]) = ;¢ pi for ] C 1, (cf. P, = P(I,)).

There are a number of further results concerning (discrete or integral type) Griiss
inequalities with or without monotonicity conditions on n-tuples a and b (2, 5, 7, 8, 9,
12], and so forth. (See [10, Chapter X].)

Recently, Dragomir and Agarwal [3] (or Dragomir and Diamond [4]) presented a gen-
eral Griiss-type inequality for complex n-tuples in terms of the first differences of them.

THeOREM 1.3 [3, Theorems 22 and 23], [4, Theorems 4 and 5]. Let a, b be n-tuples of
complex numbers and let p be an n-tuple of positive numbers such that 3.\, p; = 1, that is,
p is a probability distribution. Then

|1(a,b;p) |
n
_max_ | @ker = ax| - max [b;] > pipjli—jl,
i,j=1
n 1/s 1/q 11
S<n1/51<r]1<1ax | ags1—ax |- (z|bi|s) (Zp,pjlz—ﬂq) <$,q>1,;+a:1),
i=1 ij=1

n

\n max [ag —ag| - lzllbl max pip;li=jl,

|1(a,b;p)|

n
max | ax. —ag | - max p;| by > pili—jl,

t=ksn= ihj=1

" s , » 1/q
. . 1 1
s«lgilax |ak+1—ak| (ZP1|b1|S) (Zpipj|l—]|q> (s,q>1,;+§:1>,
i=1

ij=1

(n—1)  Tnax | ax1 — ak | - sz|b|
L i=1

(1.7)
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In 3], the following inequality was basically used as a key fact to obtain Theorem 1.3:

|I(a,b;p)|sl<r]£1<a;<_1|Aak|- > pipili—jl|bil, (1.8)

ij=1

where Aa; =a;y1 —a; (i=1,...,n—1).
In this paper, with the notations

j
Z Piyy=1-P; (j=1,..,n—1) (1.9)

for a probability distribution p, (further, conveniently putting Py = P,+; = 0 and Aay =
Aa, = 0), we prove a fundamental identity

n i—1
I(a,b;p) = Z (ZP Aa; - ZP]HAa])p, > (1.10)

j=0

which brings a stronger inequality (than (1.8), cf. Remark 2.4)

n i—1
|I(a,b;p)| <z<zp | Aa; | +2P]+1|Aa]|>pl|b |. (1.11)

j=0

Using the above identity and inequality, we give our main results (Theorems 2.3 and
2.6) as refinements of Theorem 1.3. We also give some applications for the moments of
discrete random variables, for guessing mappings considered in [3, 4], and for Ozeki’s
inequality related to [6, 7, 8].

2. Griiss-type inequalities

We prepare two useful facts before we give the main results. Recall that for n-tuples a, b
and a probability distribution p, we write (cf. (1.1))

I(a,b;p) = Zp,a bi— > piai > pibi. (2.1)

=1 =1
For this difference we have the following lemma.

LEMMA 2.1.

n

i—1 n
I(a,b; p) = Z (ZPjAaj - ZP]-HAaj>p,-b,-. (2.2)
j=0

j=i

Proof. First, by definition,

n

Kabip) = pit - zpjajzpib,:z(z —a))pbe
=1 —

i=1 i=1
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Next, note the following fact which is an extension of Abel’s identity for a sequence
Cls...,cp With Acj = ¢jy1 — ¢j for j = 1,...,n — 1 (and conveniently putting Acy = I'c, = 0):

i—1

n
ijcj =¢i— ZP Ac; +ZP]+1ACJ (i=1,...,n). (2.4)
j=1

j=0 Jj=i

Putting ¢; = a; — a; in the above identity, we have

n i—1 n
Z a;i—aj) = (a;—a;) — > PjA(a; Z Pj1A(a; - aj)
j=1 j=0 j=i
i-1 no (2.5)
= ZP]‘A(Z]' — ZP]'.HAC!J'.
j=0 j=i
Hence from (2.3) and (2.5), we obtain the desired identity (2.2). O

LEmMa 2.2 [10, page 14]. If a and p are positive n-tuples, then the function
( 1 n 1/r
(PZp,'af> ifr#0,
"i=1

" VP,
M(r) =1 (Hafi) ifr=0, (2.6)
i=1

min{ai,...,a,} ifr=—o0

max{ai,...,a,} ifr=o0
is monotone increasing on [—oo, 0],
Now we give the following result as a refinement of Theorem 1.3.

THEOREM 2.3. Let a and b be n-tuples of complex numbers and let p be a probability distri-
bution. Then

| I(a,bsp)|
(n i—1
> (S 180 43 ey )b
i=1 \j=0 j=i

n n 1-1/q 1/q
5| (Z-in) (SpismrrEnaianr) ot @,

i=1 i

max | Aa| - i(i|i—j|Pj>Pi|bi|r

1<k =

(2.7)

Moreover, if Ry, Ry, and R denote the right-hand sides of (2.7), successively from above to
below, then

Ry <R, <Rs. (28)
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Proof. By Lemma 2.1, we immediately obtain

n i—1
a,bp Z(ZP|Aa]|+z +1|Aaj|>pi|b,-|, (29)

which is the first inequality in (2.7). To obtain the other inequalities, put

ZP +ij+1 (i=1,...,n). (2.10)
j=0

Then from Lemma 2.2, we have, for g > 1,

1 i—1
Ql(zp |Aa]|+ZP]+1|AaJ|>

J=t

1/q
{Ql(zp 8a; |7+ Byt | Ay |1 )} (2.11)

] i

IA

max |Aa;|,
1<j<n-1

so that

i—1

ZP|Aa1|+ZPJ+1|Aa1|
j=0 j=i

g o u v (2.12)
SQi q<2P1|Aa]|q+zP]H|Aa]|q)
“— pr
< max [Aa;|Q;
I<j<n-1
For Q;, we have, by an elementary computation,
n
= > li—jlp;. (2.13)
j=1

Hence from (2.9), (2.12), and (2.13), we obtain (2.8) and at the same time the second and
the third inequalities in (2.7). O

Remark 2.4. The inequality

i—1

> P |Aa]|+zP]+1|AaJ| | Joax |Aa]|z|1 jlp; (2.14)
j=0 j=i j=1

(immediately obtained from (2.12) and (2.13)) says that our basic inequality (2.9) is
stronger than (1.8) which was used in [3, Theorem C].
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Remark 2.5. 1f we define by F(q) the right-hand side of the second inequality in (2.7),
then we see, by Lemma 2.2, that F(q) is an increasing function and lim, ., F(q) < F(q) <
lim, . F(q), which implies (2.8).

For positive n-tuples a and b with an assumption of monotonicity, we have the follow-
ing theorem.

THEOREM 2.6. Let a and b be n-tuples of positive numbers and let p be a probability distri-
bution. Assume that a is nondecreasing. Then

i—1 1-1/q ,i—q 1/q
I(a,b; p) < 1 [( j)p]-) (ZPj(Aaj)q) ]p,-b,- (g>1), (2.15)
j=0

n i—1
| max 1Aak > <z(i—j)p;‘>Pibi,
L =r=rT i=1

=0

(where conveniently py = 0) and
3 (Spna o
o 1-1/q , » 1/q
[(2(1_’ PJ) (2 1(Aaj) ) :|pibi (g>1), (2.16)

J=t

— max Aak-Z<Z(j—i)Pj pibi.
\ i=1

1<k<n-1 )
J=t

Mx

I(a,b;p) = 1

i=1

Moreover, as in Theorem 2.3, if R}, R, and R} denote (resp., R}, R}, and RS ) the right-hand
sides of (2.15) (resp., (2.16)), successively from above to below, then

R <R, <R; (resp, R} =Ry >Rj). (2.17)
Proof. Since Aa; > 0, we have

n i—1 i—1

z ir1Aa; < > PjAaj— ZP]HAaJ < > PjAaj, (2.18)
j=i j=0 j=i j=0

so that from Lemma 2.1 we obtain the first inequalities in (2.15) and (2.16). To see the
remaining inequalities, note that the following identities

50-

n[\/]\

i~ j)pjs ZP,+1 Z p; (2.19)

] i

hold. From these and the first inequalities in (2.15) and (2.16), we can obtain all other
desired inequalities by the similar argument as in the proof of Theorem 2.3. O
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3. Applications for the moments of random variables, guessing mappings,
and Ozeki’s inequality

Consider a discrete random variable

X: X15--.5Xn ) (31)
Pl yeee >Pn
which takes positive values xi,...,x, with a probability distribution p = (p1,..., p»). Then
the y-moment (y > 0) of X is defined as the expectation E(X?), that is,

M,(X) = E(X?) = Z pix]. (3.2)

i=1

An approximation result which compares M,5(X) (&, 8 > 0) with the product of M, (X)
and Mg(X) was shown in [3, 4]. We here give an improvement of the result by applying
Theorem 2.3.

ProrosriTioN 3.1. Under the above assumptions,

| Marp(X) = Ma(X)Mp(X) |

(n i—1
Z(ZP |Ax | +ZP]+1 |Ax |>pixz-ﬁ,
i=1 \j=0 j=i
n 1-1/q 1/q
= [(Z |1—J|P1> (ZP | Ax§ |q+ZPJ+1 | AxS | ) }pix? (g>1),
i=1 j=0 j=i
lgggxl FEAEDY (Z |1—JIP1)P1xﬁ
n i=1 =1
(3.3)
Proof. Writing x¥ = (x{,...,x%) for y > 0, we see that
Meip(X) = Ma(X)Mp(X) = I(x%,x; p). (3.4)
Hence we obtain the desired inequalities in (3.3) from Theorem 2.3. O

Now in connection with the random variable X, consider a uniformly distributed ran-
dom variable

X15eee5Xn
nn

and its a-moment M, (U) = (1/n) >\, x¥. Then we have the following proposition as an
improvement of a result in [3, 4].
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ProrosiTioN 3.2. Under the above assumptions,

| Mo (X) — Mo (U) |

'1 n i—1
EZ(ZJ‘APJ|+ZH j) |AP1|>
i=1 \j=0 j=i
j 1 1/ v
g*zz[(sz 1+ S Q(ZJIAM“Z" JIAPJIq) ]x?‘ (q>1),
i=1 j=0 J=t
1 - R
X, | Apx| ';(Si—l +Sui) X8
(3.6)
| Ma(X) -
fl "
nz(zfmxmzm 1w ).
i=1
1n 1/q
S*;Z[ i1+ Sui) 1 Uq(ZJ|Ax“|q+zn 7) |Ax"‘|q> }pi (g>1),
i=1 j=0 j=i
1 n
kzlsksn—l|Axk| ;(S 1+Sn l)p“

(3.7)

where S = k(k+1)/2
Proof. Let p = (1/n,...,1/n). Then we see that

My(X) — My (U) = nl(p,x%p), My(X) — My (U) = nI(x%, p; p). (3.8)

Hence corresponding to the first or the second identity in the above (3.8), the first in-
equality in (3.6) or (3.7) is obtained immediately by Theorem 2.3. For the other inequal-
ities in (3.6) and (3.7), notice that

i—-1

=D+ (n—j) =S +Sus. (3.9)
j=0 j=i

Hence again from Theorem 2.3, we can obtain all desired inequalities. O

A discrete guessing mapping G is defined [3, 4] as a special random variable

G:( Lot ) (3.10)
pl)-n)pn
Since g7 = (17,...,n”) (y > 0) is nondecreasing and

Mauip(G) — Mo(G)Mp(G) = 1(g%,gP;p) (o, >0), (3.11)
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we can obtain the following proposition as a refinement of a result in [3, 4] by using
Theorem 2.6.

ProposiTION 3.3. Under the above assumptions,

Maip(G) — Ma(G)Mp(G)

i-1 1-1/9 /i1 /q
{( j)Pj) (ZPj(AJ“)q) :|Piiﬁ (g>1),
i=1 ]=0 j=0

n i—1 n i-1
max Ak D (Z(i—j)pj>pii"< = 8a(m) X (Z(i—f)Pj)Piiﬁ>a
- i=1

j=0 i-1

Ma:p(G) — Ma(G)Mp(G)

-3 (s

i=1 \j=i

n 1-1q , » 1/q
[(Z(J'—i)m) (2 41 (A7) ) ]Piiﬁ (q>1),

j=i

> < —

[
M=

i=1

~, max Ak“-Z(Z(j—i)pj>piiﬁ(= ~8a(n) 2. (Z(j—i)pj>piiﬁ>,
i=1 i=1

l1<k=n-1 -y -
L j=i j=i
(3.12)

where

Oy(n) = max |[(k+1)%- (3.13)

1<k<n-1

n*—(n-0% ifaz=l,
k| =
2% —1 ifo<a<l.

1,...,n
V. ‘l 17 (3.14)
n,“.,n

be the size-n guessing mapping with the uniform probability distribution. Then, similarly
as (3.8), we see that

Let

M)~ M) =l () (=i pip), (V) =136). )
i-1

Hence we can obtain the following result by the similar argument as in Proposition 3.3.
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ProrosiTioN 3.4. Under the above assumptions,

Mo(G) =+ 3% (= Ma(G) = Mu(V)
i=1
) (ZJM“)pZ,
i=1 \j=0
Jraf -y N
= H;[(T) (%J(M)) pi (g>1)
1 sii-1) (1 1
e XS (= L0 (3R@) - 5E@))).
1<,
Mq(G) = — > i

(
[((n—i)(;—iﬂ))“/q(i

n 1/q
=11y (n—j)(Aj“)q) }pi (g>1),
i-1 =i
—%5a(n)zwpi(= —%%(n)(%E(GZ) - 2”; YEG)+ %n(n—k 1))).

(3.16)

Ozeki’s inequality [6, 7, 8] (cf. [10, page 121]) is a complement of Cauchy-Schwarz
inequality, which estimates the difference

n 2
L(a,b;p): Zpl zszbz (prnln) (=0) (3.17)
i=1

i=1 i=1

for positive n-tuples a and b with a probability distribution p. Note that

2 bZ’P ZP: 2b2 Zpl ZZPlbzz’

) , (3.18)
I(ab,ab; p) = Z pialb? — (Z p,a,»b,-) ,
i=1 i=
where ab = (a1 by,...,a,b,). Hence, we see that
L(a,b;p) = —1(a*,b*p) +1(ab,ab; p). (3.19)

From this fact, we obtain a new estimation of the difference I;(a, b; p) in terms of the first
differences of @ and ab.
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ProrosiTioN 3.5. Under the above assumptions,

Iz(a)b;p)
(n si—1 n n i—1
(210145 70 ) 3. (5.1 a0 45t )
T " o 1/9 = l/q
271[(Z|i—j|p,) (ZP |aa? |q+ZPJH|Aa |°I) }pib%

<A j=1

- n n 1-1/q 1/q
+Z|:<z|l—_]|p]) (ZP|A(ab |q+z +1|A(ab)j|q> ]piaibi (q>1),

i=1

max |Aak| Z(le—]|p1>p,a + max | Aab)i |- Z(Zh—ﬂp;)plab

\1 j=1 j=1
(3.20)
Proof. By (3.19) we see that
L(a,b;p) < |1(a*,b%p) | + |I(ab,ab;p)|. (3.21)
Hence, we can obtain the desired inequalities in (3.20) from Theorem 2.3. O

For n-tuples a, b with an assumption of monotonicity, we have the following proposi-
tion.

PROPOSITION 3.6. Let a, b be positive n-tuples and let p be a probability distribition. Assume
that

0<)a; <--- <a,, (0<)by <---<b,. (3.22)
Then,
Z <zP A(ab J>p,a,b
1;1 1-1/q 1/q
L(a,b;p) < A Z [( p]> ( A(ab);) ) ]p,-a,-bi (g>1), (3.23)
i=1

n i—1
1r]£1ax1A (ab) - z<z(z— p]>p,ab

i=1

Proof. Since all the n-tuples a2, b2, ab are nondecreasing, we see, by Cebysev’s inequality,
that

I(a*,b%p) =0,  I(ab,ab;p) > 0. (3.24)
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Hence from (3.19)
L(a,b; p) < I(ab,ab;p), (3.25)

so that from Theorem 2.6, we obtain the desired inequalities in (3.23). |
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