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Bernstein inequalities are given for polynomials of degree at most 2m (where m ≤ n),
weighted by (1 + x2)−n, in Lp norms on (−∞,∞), and also in related spaces of weighted
trigonometric polynomials. Also, Bernstein and Markov inequalities valid on [0,∞) are
derived for polynomials of degree m weighted by (1 + t)−n.

1. Introduction

Let Qm,n (with m≤ n) denote the space of polynomials of degree 2m or less on (−∞,∞),
weighted by (1 + x2)−n. The elements Qm,n are thus rational functions with denominator
(1 + x2)m and numerator of degree at most 2m (if m = n, we can write, more briefly,
Qn for Qn,n). The spaces Qm,n form a nested sequence as n increases and r = n−m
is held to some given value of weighted polynomial spaces, with the weight depending
upon n. As these spaces can obviously be used for approximation on the real line, their
approximation-theoretic properties are worthy of a systematic investigation, of which this
article is a part.

Briefly describing the previous work, the properties of Lagrange interpolation in these
spaces were investigated in Kilgore [2]. The main result there was that the Bernstein-
Erdös conditions characterize interpolation of minimal norm into these spaces, as was
already known for spaces of ordinarly polynomials, for trigonometric polynomials, and
for several other classes of polynomial spaces with weighted norm.

Inside of any of these rational function spaces Qm,n, there is the subspace of even func-
tions. That subspace is isometrically isomorphic to a space defined upon the half-line
[0,∞), which has been denoted by Rm,n in Kilgore [3]. Specifically, a typical function in
Rm,n is a rational function with denominator (1 + t)n and numerator Pm(t), where Pm is
a polynomial of degree at most m. The natural isometry between Rm,n and the even part
of Qm,n is induced by t↔ x2. This space had not been discussed in Kilgore [2], since the
corresponding results about interpolation in the spaces Rm,n follow as a special case from
Kilgore [1].

In the article [3], analogues of the Markov and Bernstein inequalities were shown to
hold, both in the spaces Qm,n and in the spaces Rm,n, under the uniform norm. Here, we
show Markov and Bernstein inequalities in Lp norms on the same spaces.
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It was also noted in Kilgore [2] that Qn is isometrically isomorphic to Tn, the space of
trigonometric polynomials of degree at most n, via the mapping x↔ tanθ/2. By the same
mapping, there is an isometric isomorphism between the spaces Qm,n and the weighted
spaces of trigonometric polynomials Tm,n, where Tm,n consists of the space Tm with weight
cos2r θ/2, where r = n−m as previously mentioned. Thus, in [2] similar results for inter-
polation were shown for these weighted trigonometric polynomial spaces, too, and in [3]
a weighted Bernstein inequality with uniform norm was shown to hold. Using the same
induced isometry, we will also give a Bernstein inequality in Tm,n in Lp norm.

2. Norms

For 1 < p <∞, the p-norm used for the space Tm,n will be the usual, unweighted Lp norm

∥∥Tm,n
∥∥
p =

(∫ π

−π

∣∣Tm,n(θ)
∣∣pdθ

)1/p

. (2.1)

Every function Tm,n in Tm,n is a trigonometric polynomial of degree at most n, which can
be written in the form Tm(θ)cos2r θ/2, where Tm is a trigonometric polynomial of degree
at most m and m+ r = n. Thus, this norm can equally be viewed as a weighted norm of
the polynomial Tm, with weight function cos2r θ/2.

The norm in Qm,n which naturally corresponds to the norm (2.1) in Tm,n may be con-
structed via the mapping x↔ tanθ/2. First, every function in Qm,n may be represented as
the product of a rational function

Qm(x)= P2m(x)
(
1 + x2)−m, (2.2)

in which P2m is an algebraic polynomial of degree at most m, with the additional factor
(1 + x2)−r , in which m+ r = n, as before. That is, a typical element f in Qm,n is repre-
sentable in the form

f (x)=Qm(x)
(
1 + x2)−r , (2.3)

and, via the transformation x↔ tanθ/2, we have a correspondence

Qm(x)
(
1 + x2)−r = Tm(θ)cos−2r θ

2
. (2.4)

The usual rules of substitution in integrals now give us the norm in Qm,n which naturally
corresponds to the norm (2.1). Specifically, for f ∈Qm,n, we define

‖ f ‖p,w =
(∫∞

−∞

∣∣ f (x)
∣∣p 2(

1 + x2
)dx

)1/p

. (2.5)

This in other words is a weighted norm, with weight function w(x)= 2/(1 + x2). Similar
considerations come into play for definition of the appropriate p-norm in Rm,n. A typical
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function f in Rm,n may be identified with an even function g in Qm,n, by f (t)= f (x2)=
g(x), with t↔ x2, x ≥ 0. Therefore, for f ∈ Rm,n, we define

‖ f ‖p,W =
(∫∞

0

∣∣ f (t)
∣∣p 1

(1 + t)
√
t
dt
)1/p

. (2.6)

This is a weighted norm, too, with weight function W(t)= 1/(1 + t)
√
t.

3. Results

We show a form of the Bernstein inequality for trigonometric polynomials in Tm,n and,
respectively, for the rational functions in Qm,n. Specifically, we have the following.

Theorem 3.1. Let Tm be a trigonometric polynomial of degree at most m. Then for a fixed
nonnegative integer r, we have in Lp norm, for 1 < p <∞,

∥∥∥∥T′m(θ)cos2r θ

2

∥∥∥∥
p
≤
(

1 +
2pr
p− 1

)
(m+ r)

∥∥∥∥Tm(θ)cos2r θ

2

∥∥∥∥
p
. (3.1)

Theorem 3.2. Let Qm be a rational function of the form

Qm(x)= P(x)(
1 + x2

)m , (3.2)

where P is a polynomial of degree at most 2m. Then for any integer r ≥−1,

∥∥Q′m(x)
(
1 + x2)−r∥∥

p,w ≤ 2
(

1 +
2p(r + 1)
p− 1

)
(m+ r + 1)

∥∥Qm(x)
(
1 + x2)−r−1∥∥

p,w. (3.3)

For the spaces Rm,n, the result corresponding to Theorem 3.2 is the following.

Theorem 3.3. Let Rm be a rational function of the form

Rm(t)= P(t)
(1 + t)m

, (3.4)

where P is a polynomial of degree at most m, and let 1 < p <∞. Then for any integer r ≥−1,

∥∥√tR′m(t)(1 + t)−r
∥∥
p,W ≤

(
1 +

2p(r + 1)
p− 1

)
(m+ r + 1)

∥∥Rm(t)(1 + t)−r−1
∥∥
p,W. (3.5)

There is also a result of Markov type for the spaces Rm,n, which eliminates the factor of√
t on the left and gives a global weighted estimate instead.
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Theorem 3.4. Let Rm be a rational function of the form

Rm(t)= P(t)
(1 + t)m

, (3.6)

where P is a polynomial of degree at most m and 1 < p <∞. Then for any integer r ≥−1,

∥∥(1 + t)−rR′m(t)
∥∥
p,W ≤

(
1 +

2p(r + 1)
p− 1

)(
2p
p− 1

)
(m+ r + 1)2

∥∥(1 + t)−r−1Rm(t)
∥∥
p,W.

(3.7)

Remark 3.5. As p→∞, the constants obtained in Theorems 3.1 through 3.4, which de-
pend upon p, converge to the constants obtained in [3] for the corresponding uniform
norm inequalities.

4. Proof of Theorem 3.1

A typical element of Tm,n may be represented as Tm(θ)cos2r θ/2, which is a trigonometric
polynomial of degree at most n=m+ r.

Bernstein’s inequality in Lp for trigonometric polynomials states that for any trigono-
metric polynomial TN of degree at most N ,

∥∥T′N∥∥p ≤N
∥∥TN

∥∥
p. (4.1)

The inequality follows in Lp as well as in uniform norm from the trigonometric identity
of Riesz [4].

Applying (4.1) in the present situation, we have

∥∥∥∥
(
Tm(θ)cos2r θ

2

)′∥∥∥∥
p
≤ (m+ r)

∥∥∥∥Tm(θ)cos2r θ

2

∥∥∥∥
p
. (4.2)

An explicit calculation gives

(
Tm(θ)cos2r θ

2

)′
= T′m(θ)cos2r θ

2
− rTm(θ)cos2r−1 θ

2
sin

θ

2
, (4.3)

whence

∥∥∥∥T′m(θ)cos2r θ

2

∥∥∥∥
p
≤
∥∥∥∥
(
Tm(θ)cos2r θ

2

)′∥∥∥∥
p

+ r
∥∥∥∥Tm(θ)cos2r−1 θ

2
sin

θ

2

∥∥∥∥
p
. (4.4)
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The first term on the right in (4.4) may be estimated using (4.2). Estimation of the
second term requires the use of Hardy’s inequality (cf. Zygmund [5, Chapter 1, (9.17)]).
We have first

∫ π

0

∣∣∣∣Tm(θ)cos2r−1 θ

2
sin

θ

2

∣∣∣∣
p

dθ

≤
∫ π

0

∣∣∣∣Tm(θ)cos2r θ/2
cosθ/2

sin
θ

2

∣∣∣∣
p

dθ

≤
∫ π

0

∣∣∣∣Tm(θ)cos2r θ/2
θ−π

(
θ−π

cosθ/2

)
sin

θ

2

∣∣∣∣
p

dθ

≤
∥∥∥∥
(

θ−π

cosθ/2

)
sin

θ

2

∥∥∥∥
p

∞

∫ π

0

∣∣∣∣Tm(θ)cos2r θ/2
θ−π

∣∣∣∣
p

dθ

≤
(

p

p− 1

)p∥∥∥∥
(

θ−π

cosθ/2

)
sin

θ

2

∥∥∥∥
p

∞

∫ π

0

∣∣∣∣
(
Tm(θ)cos2r θ

2

)′∣∣∣∣
p

dθ.

(4.5)

Noting now that for 0≤ θ < π,

∥∥∥∥
(

θ−π

cosθ/2

)
sin

θ

2

∥∥∥∥
p

∞
≤ 2p, (4.6)

we get

∫ π

0

∣∣∣∣Tm(θ)cos2r−1 θ

2
sin

θ

2

∣∣∣∣
p

dθ ≤ 2p
(

p

p− 1

)p ∫ π

0

∣∣∣∣
(
Tm(θ)cos2r θ

2

)′∣∣∣∣
p

dθ, (4.7)

and, in like fashion, it is seen that

∫ 0

−π

∣∣∣∣Tm(θ)cos2r−1 θ

2
sin

θ

2

∣∣∣∣
p

dθ ≤ 2p
(

p

p− 1

)p ∫ 0

−π

∣∣∣∣
(
Tm(θ)cos2r θ

2

)′∣∣∣∣
p

dθ. (4.8)

Adding the left-hand side of (4.8) to the left-hand side of (4.7) and the right-hand side of
(4.8) to the right-hand side of (4.7) now gives

∫ π

−π

∣∣∣∣Tm(θ)cos2r−1 θ

2
sin

θ

2

∣∣∣∣
p

dθ ≤ 2p
(

p

p− 1

)p ∫ π

−π

∣∣∣∣
(
Tm(θ)cos2r θ

2

)′∣∣∣∣
p

dθ, (4.9)

and taking the pth root of both sides gives

∥∥∥∥Tm(θ)cos2r−1 θ

2
sin

θ

2

∥∥∥∥
p
≤
(

2p
p− 1

)∥∥∥∥
(
Tm(θ)cos2r θ

2

)′∥∥∥∥
p
. (4.10)
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Using this estimate in (4.4), we obtain

∥∥∥∥T′m(θ)cos2r θ

2

∥∥∥∥
p
≤
∥∥∥∥
(
Tm(θ)cos2r θ

2

)′∥∥∥∥
p

+
(

2pr
p− 1

)∥∥∥∥
(
Tm(θ)cos2r θ

2

)′∥∥∥∥
p
, (4.11)

and, applying (4.2), we get

∥∥∥∥T′m(θ)cos2r θ

2

∥∥∥∥
p
≤ (m+ r)

∥∥∥∥Tm(θ)cos2r θ

2

∥∥∥∥
p

+
(

2pr
p− 1

)∥∥∥∥
(
Tm(θ)cos2r θ

2

)′∥∥∥∥
p
, (4.12)

The estimate (3.1) follows, concluding the proof.

5. Proof of Theorem 3.2

It has already been seen that the correspondence x↔ tanθ/2 gives an isometry between
the rational function space Qm,n, with underlying domain (−∞,∞), and the space Tm,n

of trigonometric polynomials, on the underlying domain (−π,π). This mapping causes
in particular the correspondences

1
1 + x2

= cos2 θ

2
,

1− x2

1 + x2
= cosθ,

2x
1 + x2

= sinθ.

(5.1)

However, differentiation gives

dx

dθ
= 1

2cos2 θ/2
= 1

2

(
1 + x2), (5.2)

and the problem here is to deal with the consequences.
A given function in Qm,n, can be written in the form Qm(x)(1 + x2)−r , where r =m−n.

Then, via x↔ tanθ/2, we have

Qm(x)= Tm(θ), (5.3)

in which Tm is a trigonometric polynomial of degree at most 2m, and

Q′m(x)= 2T′m(θ)cos2 θ

2
, (5.4)

or equivalently

Q′m(x)
(
1 + x2)= 2T′m(θ). (5.5)

In any event, we get for r ≥−1 that

Q′m(x)
(
1 + x2)−r = 2T′m(θ)cos2r+2 θ

2
, (5.6)
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and therefore we have, using (3.1),

∥∥Q′m(x)
(
1 + x2)−r∥∥

p,w = 2
∥∥∥∥T′m(θ)cos2r+2 θ

2

∥∥∥∥
p

≤ 2
(

1 +
2p(r + 1)
p− 1

)
(m+ r + 1)

∥∥∥∥Tm(θ)cos2r+2 θ

2

∥∥∥∥
p

= 2
(

1 +
2p(r + 1)
p− 1

)
(m+ r + 1)

∥∥∥∥Qm(x)
(
1 + x2)−r−1

∥∥∥∥
p
,

(5.7)

which is what was to be proved.

6. Proof of Theorem 3.3

We let t↔ x2, and we can assume that x ≥ 0. We have then

dt

dx
= 2x = 2

√
t. (6.1)

Using the substitution t = x2, we further notice that the function Rm(t) in the theorem
may be represented as

Rm(t)= P(t)
(1 + t)m

=Qm(x) (6.2)

in which the numerator on the right is thus P(x2), which is an even polynomial. Then,

√
tR′m(t)= 1

2
Q′m(x). (6.3)

Applying (3.3) from Theorem 3.2 now gives the result immediately.

7. Proof of Theorem 3.4

We have for t ≥ 0, x ≥ 0, and θ ≥ 0,

t1/2 = x = tan
θ

2
, (7.1)

and thus

dθ

dt
= cos2 θ

2

(
cosθ/2
sinθ/2

)
= t−1/2(1 + t). (7.2)

Furthermore, we may identify

Rm(t)= P(t)
(1 + t)m

= Tm(θ), (7.3)
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in which P is an algebraic polynomial of degree at mostm andTm is an even trigonometric
polynomial of degree at most m. Thus,

R′m(t)= T′m(θ)
dθ

dt

= T′m(θ)cos2 θ

2

(
cosθ/2
sinθ/2

)
,

(7.4)

whence

(1 + t)−rR′m(t)= T′m(θ)cos2r+2 θ

2

(
cosθ/2
sinθ/2

)
. (7.5)

Starting with (7.3) and (7.5), we now have

∥∥(1 + t)−rR′m(t)
∥∥
p,W =

∥∥∥∥T′m(θ)cos2r+2 θ

2

(
cosθ/2
sinθ/2

)∥∥∥∥
p
, (7.6)

and we must estimate what is on the right. Noting that T′m(θ) is odd and therefore is zero
when θ = 0, and that for 0 < |θ| < |π|, one has 0 < |θ/2| < | tanθ/2|, we apply Hardy’s
inequality, obtaining

∥∥∥∥T′m(θ)cos2r+2 θ

2

(
cosθ/2
sinθ/2

)∥∥∥∥
p
≤
∥∥∥∥2
θ

(
T′m(θ)cos2r+2 θ

2

)∥∥∥∥
p

≤ 2p
p− 1

∥∥∥∥
(
T′m(θ)cos2r+2 θ

2

)′∥∥∥∥
p
.

(7.7)

The Bernstein inequality in Lp (4.2) gives

∥∥∥∥
(
T′m(θ)cos2r+2 θ

2

)′∥∥∥∥
p
≤ (m+ r + 1)

∥∥∥∥T′m(θ)cos2r+2 θ

2

∥∥∥∥
p
, (7.8)

whence

∥∥(1 + t)−rR′m(t)
∥∥
p,W ≤

(
2p
p− 1

)
(m+ r + 1)

∥∥∥∥T′m(θ)cos2r+2 θ

2

∥∥∥∥
p
. (7.9)

Then Theorem 3.1 gives

∥∥∥∥T′m(θ)cos2r+2 θ

2

∥∥∥∥
p
≤
(

1 +
2p(r + 1)r

p− 1

)
(m+ r + 1)

∥∥∥∥Tm(θ)cos2r+2 θ

2

∥∥∥∥
p
. (7.10)

Combining this estimate with (7.7) provides

∥∥(1 + t)−rR′m(t)
∥∥
p,W ≤

(
1 +

2p(r + 1)
p− 1

)(
2p
p− 1

)
(m+ r + 1)2

∥∥∥∥Tm(θ)cos2r+2 θ

2

∥∥∥∥
p
.

(7.11)
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Then, application of (7.3) gives

∥∥(1 + t)−rR′m(t)
∥∥
p,W ≤

(
1 +

2p(r + 1)
p− 1

)(
2p
p− 1

)
(m+ r + 1)2

∥∥(1 + t)−r−1Rm(t)
∥∥
p,W ,

(7.12)

which proves the theorem.
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