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We consider T f = ∫ x1

0

∫ x2

0 f (t1, t2)dt1dt2 and a corresponding geometric mean operator
G f = exp(1/x1x2)

∫ x1

0

∫ x2

0 log f (t1, t2)dt1dt2. E. T. Sawyer showed that the Hardy-type in-
equality ‖T f ‖Lqu ≤ C‖ f ‖Lp

v
could be characterized by three independent conditions on

the weights. We give a simple proof of the fact that if the weight v is of product type,
then in fact only one condition is needed. Moreover, by using this information and by
performing a limiting procedure we can derive a weight characterization of the corre-
sponding two-dimensional Pólya-Knopp inequality with the geometric mean operator G
involved.

1. Introduction

The following remarkable result was proved by Sawyer in [3, Theorem 1].

Theorem 1.1. Let 1 < p ≤ q <∞ and let u and v be weight functions on R2
+. Then

(∫∞
0

∫∞
0

(∫ x1

0

∫ x2

0
f
(
t1, t2

)
dt1dt2

)q
u
(
x1,x2

)
dx1dx2

)1/q

≤ C
(∫∞

0

∫∞
0

f
(
x1,x2

)p
v
(
x1,x2

)
dx1dx2

)1/p
(1.1)

holds for all positive and measurable functions f on R2
+ if and only if

sup
y1,y2>0

(∫∞
y1

∫∞
y2

u
(
x1,x2

)
dx1dx2

)1/q(∫ y1

0

∫ y2

0
v
(
x1,x2

)1−p′
dx1dx2

)1/p′

=A1 <∞, (1.2)

sup
y1,y2>0

(∫ y1

0

∫ y2

0

(∫ x1

0

∫ x2

0 v
(
t1, t2

)1−p′
dt1dt2

)q
u
(
x1,x2

)
dx1dx2

)1/q

(∫ y1

0

∫ y2

0 v
(
x1,x2

)1−p′
dx1dx2

)1/p =A2 <∞, (1.3)

sup
y1,y2>0

(∫∞
y1

∫∞
y2

(∫∞
x1

∫∞
x2
u
(
t1,t2

)
dt1dt2

)p′
v
(
x1,x2

)1−p′
dx1dx2

)1/p′

(∫∞
y1

∫∞
y2
u
(
x1,x2

)
dx1dx2

)1/q′ = A3 <∞. (1.4)
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However in [4] it was proved that to characterize the two-dimensional Pólya-Knopp
inequality

(∫∞
0

∫∞
0

[
exp

(
1

x1x2

∫ x1

0

∫ x2

0
log f

(
t1, t2

)
dt1dt2

)]q
u
(
x1,x2

)
dx1dx2

)1/q

≤ C
(∫∞

0

∫∞
0

f p
(
x1,x2

)
v
(
x1,x2

)
dx1dx2

)1/p
(1.5)

for 0 < p ≤ q <∞, only one condition was needed. An interesting observation is that this
inequality can be characterized by just using one integral condition even if the inequality
seems to be a natural limiting inequality of the Sawyer result mentioned above.

The aim of this paper is to find a two-dimensional weight characterization that allow
us to perform a limiting procedure (as in [2, 4]), and receive a weight characterization of
the corresponding two-dimensional Pólya-Knopp inequality (1.5). From the correspond-
ing result in one dimension (see [2, 4]), we know that this requires special homogeneity
properties of the conditions that for instance the condition (1.2) doesn’t have. On the
other hand the fact that (1.5) is equivalent to a one-weighted Pólya-Knopp inequality
makes it possible for us to use an Hardy inequality where we allow one weight to be of
product type and thus characterize the Hardy inequality with only one condition and
with the special homogeneity properties (see Section 2). In Section 3 we will also show
that with that condition and the corresponding estimates of the best constant we will, by
performing a limiting procedure (as in [2, 4]), receive exactly the same condition and es-
timate of the best constant C for the weighted two dimensional Pólya-Knopp inequality
(1.5) as in [4].

2. A two-dimensional Hardy-type inequality

Our main result reads.

Theorem 2.1. Let 1 < p ≤ q <∞, s1,s2 ∈ (1, p), let u be a weight function on R2
+ and let v1

and v2 be weight functions on R+. Then the inequality

(∫∞
0

∫∞
0

(∫ x1

0

∫ x2

0
f
(
t1, t2

)
dt1dt2

)q
u
(
x1,x2

)
dx1dx2

)1/q

≤ C
(∫∞

0

∫∞
0

f p
(
x1,x2

)
v1
(
x1
)
v2
(
x2
)
dx1dx2

)1/p
(2.1)

holds for all measurable functions f ≥ 0 if and only if

AW
(
s1,s2

)= sup
t1,t2>0

V1
(
t1
)(s1−1)/p

V2
(
t2
)(s2−1)/p

×
(∫∞

t1

∫∞
t2
u
(
x1,x2

)
V1
(
x1
)q((p−s1)/p)

V2
(
x2
)q((p−s2)/p)

dx1dx2

)1/q

<∞,

(2.2)

where V1(t1)= ∫ t10 v1(x1)1−p′dx1 and V2(t2)= ∫ t20 v2(x2)1−p′dx2.
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Moreover, if C is the best possible constant in (2.1), then

sup
1<s1,s2<p

( (
p/
(
p− s1

))p
(
p/
(
p− s1

))p
+ 1/

(
s1− 1

)
)1/p( (

p/
(
p− s2

))p
(
p/
(
p− s2

))p
+ 1/

(
s2− 1

)
)1/p

AW
(
s1,s2

)

≤ C ≤ inf
1<s1,s2<p

AW
(
s1,s2

)( p− 1
p− s1

)1/p′( p− 1
p− s2

)1/p′

.

(2.3)

For the proof of Theorem 2.1 we need the following Minkowski inequality (see [4]).

Lemma 2.2. Let r > 1, −∞≤ a1 < b1 ≤∞, −∞≤ a2 < b2 ≤∞ and let Φ and Ψ be positive
measurable functions on [a1,b1]× [a2,b2]. Then

(∫ b1

a1

∫ b2

a2

Φ
(
x1,x2

)(∫ x1

a1

∫ x2

a2

Ψ
(
t1, t2

)
dt1dt2

)r
dx1dx2

)1/r

≤
∫ b1

a1

∫ b2

a1

Ψ
(
t1, t2

)(∫ b1

t1

∫ b2

t1
Φ
(
x1,x2

)
dx1d2

)1/r

dt1dt2.

(2.4)

Proof of Theorem 2.1. Let f p(x1,x2)v1(x)v2(x2)= g(x1,x2) in (2.1). Then (2.1) is equiva-
lent to the inequality

(∫∞
0

∫∞
0

(∫ x1

0

∫ x1

0
g
(
t1, t2

)1/p
v1
(
t1
)−1/p

v2
(
t2
)−1/p

dt1dt2

)q
u
(
x1,x2

)
dx1dx2

)1/q

≤ C
(∫∞

0

∫∞
0
g
(
x1,x2

)
dx1dx2

)1/p

.

(2.5)

Assume that (2.2) holds. By applying Hölder’s inequality, the fact that (d/dt1)V1(t1) =
v1(t1)1−p′ = v1(t1)−p′/p, (d/dt2)V2(t2)= v2(t2)1−p′ = v2(t2)−p′/p and Lemma 2.2 we have

(∫∞
0

∫∞
0

(∫ x1

0

∫ x2

0
g
(
t1, t2

)1/p
v1
(
t1
)−1/p

v2
(
t2
)−1/p

dt1dt2

)q
u
(
x1,x2

)
dx1dx2

)1/q

=
(∫∞

0

∫∞
0

(∫ x1

0

∫ x2

0
g
(
t1, t2

)1/p
V1
(
t1
)(s1−1)/p

V2
(
t2
)(s2−1)/p

V1
(
t1
)−(s1−1)/p

v1
(
t1
)−1/p

×V2
(
t2
)−(s2−1)/p

v2
(
t2
)−1/p

dt1dt2

)q
u
(
x1,x2

)
dx1dx2

)1/q

≤
(∫∞

0

∫∞
0

(∫ x1

0

∫ x2

0
g
(
t1, t2

)
V1
(
t1
)s1−1

V2
(
t2
)s2−1

dt1dt2

)q/p

×
(∫ x1

0
V1
(
t1
)−(s1−1)p′/p

v1
(
t1
)−p′/p

dt1

)q/p′

×
(∫ x2

0
V2
(
t2
)−(s2−1)p′/p

v2
(
t2
)−p′/p

dt2

)q/p′
u
(
x1,x2

)
dx1dx2

)1/q

=
(
p− 1
p− s1

)1/p′( p− 1
p− s2

)1/p′(∫∞
0

∫∞
0

(∫ x1

0

∫ x2

0
g
(
t1, t2

)
V1
(
t1
)s1−1

V2
(
t2
)s2−1

dt1dt2

)q/p

×V1
(
x1
)q((p−s1)/p)

V2
(
x2
)q((p−s2)/p)

u
(
x1,x2

)
dx1dx2

)1/q
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≤
(
p− 1
p− s1

)1/p′( p− 1
p− s2

)1/p′(∫∞
0

∫∞
0
g
(
t1, t2

)
V1
(
t1
)s1−1

V2
(
t2
)s2−1

×
(∫∞

t1

∫∞
t2
V1
(
x1
)q((p−s1)/p)

V2
(
x2
)q((p−s2)/p)

u
(
x1,x2

)
dx1dx2

)p/q

dt1dt2

)1/p

≤
(
p− 1
p− s1

)1/p′( p− 1
p− s2

)1/p′

AW
(
s1,s2

)(∫∞
0

∫∞
0
g
(
t1, t2

)
dt1dt2

)1/p

.

(2.6)

Hence (2.5) and, thus, (2.1) holds with a constant satisfying the right-hand side inequality
in (2.3).

Now we assume that (2.1) and, thus, (2.5) holds and choose the test function

g
(
x1,x2

)= ( p

p− s1

)p( p

p− s2

)p

×V1
(
t1
)−s1v1

(
x1
)1−p′

V2
(
t2
)−s2v2

(
x2
)1−p′

χ(0,t1)
(
x1
)
χ(0,t2)

(
x2
)

+
(

p

p− s1

)p

V1
(
t1
)−s1v1

(
x1
)1−p′

V2
(
x2
)−s2v2

(
x2
)1−p′

χ(0,t1)
(
x1
)
χ(t2,∞)

(
x2
)

+
(

p

p− s2

)p

V1
(
x1
)−s1v1

(
x1
)1−p′

V2
(
t2
)−s2v2

(
x2
)1−p′

χ(t1,∞)
(
x1
)
χ(0,t2)

(
x2
)

+V1
(
x1
)−s1v1

(
x1
)1−p′

V2
(
x2
)−s2v2

(
x2
)1−p′

χ(t1,∞)
(
x1
)
χ(t2,∞)

(
x2
)
,

(2.7)

where t1, t2 are fixed numbers > 0. Then the integral on right-hand side of (2.5) can be
estimated as follows:

(∫∞
0

∫∞
0
g
(
x1,x2

)
dx1dx2

)1/p

=
(∫ t1

0

(
p

p− s1

)p

V1
(
t1
)−s1v1

(
x1
)1−p′

dx1

∫ t2

0

(
p

p− s2

)p

V2
(
t2
)−s2v2

(
x2
)1−p′

dx2

+
∫ t1

0

(
p

p− s1

)p

V1
(
t1
)−s1v1

(
x1
)1−p′

dx1

∫∞
t2
V2
(
x2
)−s21v2

(
x2
)1−p′

dx2

+
∫∞
t1
V1
(
x1
)−s1v1

(
x1
)1−p′

dx1

∫ t2

0

(
p

p− s2

)p

V2
(
t2
)−s2v2

(
x2
)1−p′

dx2

+
∫∞
t1
V1
(
x1
)−s1v1

(
x1
)1−p′

dx1

∫∞
t2
V2
(
x2
)−s2v2

(
x2
)1−p′

dx2

)1/p

≤
((

p

p− s1

)p

+
1

s1− 1

)1/p(( p

p− s2

)p

+
1

s2− 1

)1/p

V1
(
t1
)(1−s1)/p

V2
(
t2
)(1−s2)/p

.

(2.8)
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Moreover, the left-hand side of (2.5) is greater than

(∫∞
t1

∫∞
t2

[(∫ t1

0

p

p−s1
V1
(
t1
)−s1/pv1

(
y1
)1−p′

dy1

)(∫ t2

0

p

p− s2
V2
(
t2
)−s2/pv2

(
y2
)1−p′

dy2

)

+
(∫ t1

0

p

p− s1
V1
(
t1
)−s1/pv1

(
y1
)1−p′

dy1

)(∫ x2

t2
V2
(
y1
)−s2/pv2

(
y2
)1−p′

dy2

)

+
(∫ x1

t1
V1
(
y1
)−s1/pv1

(
y1
)1−p′

dy1

)(∫ t2

0

p

p− s2
V2
(
t2
)−s2/pv2

(
y2
)1−p′

dy2

)

+
(∫ x1

t1
V1
(
y1
)−s1/pv1

(
y1
)1−p′

dy1

)

×
(∫ x2

t2
V2
(
y1
)−s2/pv2

(
y2
)1−p′

dy2

)]q
u
(
x1,x2

)
dx1dx2

)1/q

= ···

= p

p− s1

p

p− s2

(∫∞
t1

∫∞
t2
u
(
x1,x2

)
V1
(
x1
)q((p−s1)/p)

V2
(
x2
)q((p−s2)/p)

dx1dx2

)1/q

.

(2.9)

Hence, (2.5) implies that

p

p− s1

p

p− s2

(∫∞
t1

∫∞
t2
u
(
x1,x2

)
V1
(
x1
)q((p−s1)/p)

V2
(
x2
)q((p−s2)/p)

dx1dx2

)1/q

≤ C
((

p

p− s1

)p

+
1

s1− 1

)1/p(( p

p− s2

)p

+
1

s2− 1

)1/p

V1
(
t1
)(1−s1)/p

V2(t2)(1−s2)/p,

(2.10)

that is, that

( (
p/
(
p−s1

))p
(
p/
(
p− s1

))p
+1/

(
s1− 1

)
)1/p( (

p/
(
p− s2

))p
(
p/
(
p− s2

))p
+1/

(
s2− 1

)
)1/p

V1
(
t1
)(s1−1)/p

V2
(
t2
)(s2−1)/p

×
(∫∞

t1

∫∞
t2
u
(
x1,x2

)
V1
(
x1
)q((p−s1)/p)

V
(
x2
)q((p−s2)/p)

dx1dx2

)1/q

≤ C.

(2.11)

We conclude that (2.2) and the left-hand side of the estimate of (2.3) hold. The proof is
complete. �

3. A two-dimensional Pólya-Knopp inequality

Here, we will give another proof of two-dimensional Pólya-Knopp inequality (1.5) proved
in [4] by proving that this theorem is just the natural limit result of our theorem
(Theorem 2.1).
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Theorem 3.1 [4]. The inequality (1.5) holds for all positive and measurable functions on
R2

+ if and only if

DW (s1,s2) := sup
y1>0
y2>0

y(s1−1)/p
1

y(s2−1)/p
2

(∫∞
y1

∫∞
y2

x
−s1q/p
1 x

−s2q/p
2 w

(
x1,x2

)
dx1dx2

)1/q

<∞,

(3.1)

where s1,s2 > 1 and

w
(
x1,x2

)= [exp
(

1
x1x2

∫ x1

0

∫ x2

0
log

1
v
(
t1, t2

)dt1dt2
)]q/p

u
(
x1,x2

)
(3.2)

and the best possible constant C in (1.5) can be estimated in the following way:

sup
s1,s2>1

(
es1
(
s1− 1

)
es1
(
s1− 1

)
+ 1

)1/p( es2
(
s2− 1

)
es2
(
s2− 1

)
+ 1

)1/p

DW
(
s1,s2

)
≤ C ≤ inf

s1,s2>1
e(s1+s2−2)/pDW

(
s1,s2

)
.

(3.3)

Remark 3.2. For the case p = q = 1, a similar result was recently proved by Heinig, Ker-
man and Krbec [1] but without the estimates of the operator norm (= the best constant
C in (1.5)) pointed out in (3.3) here.

Proof of Theorem 3.1. If we in the inequality (1.5) replace f p(x1,x2)v(x1,x2) with f p(x1,
x2) and let w(x1,x2) be defined as in (3.2), then (1.5) is equivalent to

(∫∞
0

∫∞
0

[
exp

(
1

x1x2

∫ x1

0

∫ x2

0
log f

(
y1, y2

)
dy1dy2

)]q
w
(
x1,x2

)
dx1dx2

)1/q

≤ C
(∫∞

0

∫∞
0

f p
(
x1,x2

)
dx1dx2

)1/p

.

(3.4)

Further, by using Theorem 2.1 with the special weights u(x1,x2) = w(x1,x2)x
−q
1 x

−q
2 and

v1(x1)= v2(x2)= 1 we have that

(∫∞
0

∫∞
0

(
1

x1x2

∫ x1

0

∫ x2

0
f
(
t1, t2

)
dt1dt2

)q
w
(
x1,x2

)
dx1dx2

)1/q

≤ C
(∫∞

0

∫∞
0

f p
(
x1,x2

)
dx1dx2

)1/p
(3.5)

holds for all f ≥ 0 if and only if

AW
(
s1,s2

)= sup
t1,t2>0

t
(s1−1)/p
1 t

(s2−1)/p
2

(∫∞
t1

∫∞
t2
w
(
x1,x2

)
x
−s1q/p
1 x

−s2q/p
2 dx1dx2

)1/q

<∞,

(3.6)
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where s1,s2 ∈ (1, p). We note that AW (s1,s2) coincides with the constant DW (s1,s2) =
DW (s1,s2,q, p) defined by (3.1). Moreover, if C is the best possible constant in (3.5), then

sup
1<s1,s2<p

( (
p/
(
p− s1

))p
(
p/
(
p− s1

))p
+ 1/

(
s1− 1

)
)1/p( (

p/
(
p− s2

))p
(
p/
(
p− s2

))p
+ 1/

(
s2− 1

)
)1/p

DW
(
s1,s2

)

≤ C ≤ inf
1<s1,s2<p

DW
(
s1,s2

)( p− 1
p− s1

)1/p′( p− 1
p− s2

)1/p′

.

(3.7)

Now, if we replace f in (3.5) with f α, 0 < α < p and after that replace p with p/α and q
with q/α in (3.5), (3.6), and (3.7), then we find that, for 1 < s1,s2 < p/α,

(∫∞
0

∫∞
0

(
1

x1x2

∫ x1

0

∫ x2

0
f α
(
t1, t2

)
dt1dt2

)q/α
w
(
x1,x2

)
dx1dx2

)1/q

≤ Cα

(∫∞
0

∫∞
0

f p
(
x1,x2

)
dx1dx2

)1/p
(3.8)

holds for all f ≥ 0 if and only if DW (s1,s2,q/α, p/α) = Dα
W (s1,s2,q, p) <∞. Moreover, if

Cα is the best possible constant in (3.8), then

sup
1<s1,s2<p/α

( (
p/
(
p−αs1

))p/α
(
p/
(
p−αs1

))p
+1/

(
s1−1

)
)1/p( (

p/
(
p−αs2

))p/α
(
p/
(
p−αs2

))p
+ 1/

(
s2− 1

)
)1/p

Dα
W

(
s1,s2,q, p

)

≤ Cα ≤ inf
1<s1,s2<p/α

Dα
W

(
s1,s2,q, p

)( p−α

p−αs1

)(p−α)/αp( p−α

p−αs2

)(p−α)/αp

.

(3.9)

We also note that
(

1
x1x2

∫ x1

0

∫ x2

0
f α
(
t1, t2

)
dt1dt2

)1/α

↓ exp
1

x1x2

∫ x1

0

∫ x2

0
ln f

(
t1, t2

)
dt1dt2, as α−→ 0+.

(3.10)

We conclude that (3.1) holds exactly when limsupα→0+
Cα <∞ and this holds, according

to (3.9), exactly when (3.6) holds. Moreover, when α→ 0+ (3.9) implies that the upper
estimate in (3.3) holds. For the lower estimate we apply the following testfunction (c.f.
[4]): For fixed t1 and t2, t1, t2 > 0, let

g
(
x1,x2

)= g0
(
x1,x2

)= t−1
1 t−1

2 χ(0,t1)
(
x1
)
χ(0,t2)

(
x2
)

+ t−1
1 χ(0,t1)

(
x1
)e−s2 t

s2−1
2

xs2
2

χ(t2,∞)
(
x2
)

+
e−s1 ts1−1

1

xs1
1

χ(t1,∞)
(
x1
)
t−1
2 χ(0,t2)

(
x2
)

+
e−(s1+s2)ts1−1

1 t
s2−1
2

xs1
1 x

s2
2

χ(t1,∞)
(
x1
)
χ(t2,∞)

(
x2
)
.

(3.11)

The proof is complete. �
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Remark 3.3. This proof shows that the Pólya-Knopp inequality (1.5) characterized in
Theorem 3.1 may be regarded as a natural limiting inequality of the (Sawyer type) Hardy
inequality characterized in Theorem 2.1.
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