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Let X be a normed linear space, x € X an element of norm one, and ¢ > 0 and §(x,¢)
the local modulus of convexity of X. We denote by o(x,¢) the greatest ¢ = 0 such that for
each closed linear subspace M of X the quotient mapping Q : X — X/M maps the open
e-neighbourhood of x in U onto a set containing the open p-neighbourhood of Q(x) in
Q(U). It is known that p(x,€) = (2/3)8(x,€). We prove that there is no universal constant
C such that p(x,e) < Cd(x,¢), however, such a constant C exists within the class of Hilbert
spaces X. If X is a Hilbert space with dimX > 2, then g(x,¢) = €2/2.

1. Introduction

Let X be a real normed linear space of dimension dimX > 1 and let U be the closed unit
ball of X.
Let ¢ > 0. The modulus of local convexity d(x, ), where x € U, is defined by

6(x,s):inf{1—H¥H:yeU, ||x—y||z$} (L.1)
and the modulus of convexity is
8(e) = inf {8(x,¢) : x € U}. (1.2)
If dimX > 2, one can use an equivalent definition (see, e.g., [1]),

. +
5(e) =mf{1—H¥\ xyeX, Ixl = lyl =1, lx—yl =e} (13)

and if 1]l = 1,
3 X+
S(x,e) = 1nf5L1 - HTyH .y eX, Iyl =1llx—yll = e}. (1.4)

The space X is said to be uniformly convex (locally uniformly convex) if for each € > 0,
d(e) >0 (8(x,e) >0 for x € U, resp.).
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The moduli §(¢) of the spaces L,(u) have been found in [2]; they behave for e — 0 as
(p—1)e*/8+0(e*) when 1 < p <2, and as p~!(&/2)P + 0(e?) when 2 < p < 0. In case of a
Hilbert space X with dimX > 2, §(e) = 1 — (1 — £2/4)"? for € € (0,2].

We denote by J the family of the canonical quotient maps Q : X — X/M, where M
ranges over all closed linear subspaces of X. For any ¢ >0 and x € U, let o(x,¢€) = sup{r:
r = 0 and for each Q € J, Q maps the open e-neighbourhood of x in U onto a set con-
taining the open r-neighbourhood of Q(x) in Q(U)}, and let p(¢) be defined by

o(e) = inf {p(x,€) : x € U}. (1.5)

We note that if T' is an open linear mapping from X onto a normed linear space Y such
that T-1(0) is closed and T(U) contains a c-neighbourhood of 0 in Y, then for each
x € Uand e >0, T maps the e-neighbourhood of x in U onto a set containing the co(x, ¢)-
neighbourhood of T'(x) in T(U). Thus the “po-moduli” help to estimate relative openness
of T on U in a quantitative way. Relative openness of affine maps on convex sets has been
treated in literature in various contexts, a list of references is presented in [3]. For each
€ > 0, the following holds [3]:

o(x,e) = %8(9@8) for each x of norm one, (1.6)
oe) = 25(e) (17)
o(x,€) < %8(%&) foreachx € Uand A € (1,3], (1.8)
ole) < %ms) for cach A & (1,3]. (1.9)

These relations suggest the following questions.
Question 1.1. Is there a constant ¢; such that

o(x,e) < c18(x,¢) (1.10)
for all X, x € X of norm one, and ¢ € (0,2]?

Question 1.2. Is there a constant ¢, such that
o(e) < c2d(e) (1.11)
forall X and ¢ € (0,2]?

We give a negative answer to Question 1.1, yet Question 1.2 remains unsolved. We
believe that evaluations of p(¢) for (some) spaces L,(u) might yield a negative answer to
Question 1.2.

In Proposition 2.7 we prove that for any X,

o(e) =inf {o(x,¢) :x € X, |lx| = 1}. (1.12)

It follows from this that if a constant ¢ works in (1.6) instead of the number 2/3, then it
also does in (1.7) and we conjecture that ¢ = 2 can be used for (1.6), hence also for (1.7).
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Finally, we prove that if X is a Hilbert space, dimX > 2, x € X with |lx] =1 and € €
(0,2], then

[}

o(x,€) = ole) = % (1.13)
Thus, in this case, the ratio p(x,€)/5(x, &) = p(€)/5(e) ranges over the interval (2,4].

2. Results
We start with auxiliary statements. The first one is very simple.

LEMMA 2.1. Let X be a two-dimensional normed linear space, z€ X, ||z|l =1, 0 < e <2,
and let py = sup{r :r = 0 and for each f € X* with || f|l = 1 and each y € [-1,1] with
ly — f(2)| <rthereisu € U such that |lu —z|| < e and f(u) = y}. Then p; = p(z,¢).

Proof. As dimX = 2, the set of linear functionals on X of norm one can be identified with
the family of quotient maps Qu : X — X/M, where M ranges throughout the set of all
one-dimensional linear subspaces of X. So, it suffices to show that if M = X or M = {0},
Qu maps the e-neighbourhood of z in U onto a set containing the p;-neighbourhood of
Qum(z) in Qu(U).

If M =X, we have Qu(X) = {0}, thus the image of any neighbourhood of z in U
coincides with Qu(U). Now, let M = {0}; then Qy is the identity map on X, so we must
show that p; < e. Pick an f € X* such that || f|| = f(z) = 1. Then, for any u € U such
that ||lu — z|| < &, we have

fw)=1+f(u-—2)=z1-llu—zl>1-g¢ (2.1)

hence p; < ¢ by the definition of p;. O

LemMA 2.2. Let 1 < p < co and let X = R? be given the l,-norm ||(x, y)|| = (|x[? + [ y|?)VP
for any (x,y) € X. Then for the element z = (0,1) of X and € >0 we have p(z,e) = (p —
1)p~'e? +o(eP) fore — 0.

Proof. Fore e (0,1),lett=t(e) € (0,1) be defined by the equation
41— (1—)F = &b (22)

and let r =1 — (1 —t)?~1. Clearly, for ¢ — 0 we have t — 0, (2.2) yields pt + o(t) = €?,
hence

t=plel +o(eP), (2.3)

sothatr = (p—1)t+o(t) = (p—1)p~tef +o(eP).

Thus, by Lemma 2.1, it suffices to show that for small e and for p; defined in Lemma 2.1
we have p; = r. Define y; =1 —tand x; = (1 - yf)l/f’. The element z; = (x1, y1) of X has
norm one and (2.2) implies

|z =zl =e. (2.4)
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Represent X* by R? with the I;-norm, where 1/q+1/p = 1, and consider the func-
tional f; € X* represented by f; = (x!"',5”""). Then fi(z1) = 1 and, since g(p — 1) = p,
/1 is of norm one. As the space X is strictly convex, there is no point u in the closed unit
ball U of X such that u # z; and fi(u) = 1. Hence, taking (2.4) into account, we get

plsl—fl(z):l—yf_l=r. (2.5)

Now we will prove the inequality p; = r for small e. To show this, let f € X* be a
functional of norm one. Represent f by (v,w) € R? with [v|1+ [w[9 = 1. We will prove
that, for small ¢, f maps the set U, = {u € U: |lu —z|| < ¢} onto a set containing the
interval [-1,1]1 N (f(2) =1, f(2) + 7).

Let g,h € X* be the functionals with the representations ¢ = (—v,w) and h = (v, —w).
Since, for any (x,y) € R2, (x,y) is in U, if and only if (—x, y) is in UE, we have g(U;) =
f(Ue) and h(U;) = — f(U,). Trivially, g(z) = f(z) and h(z) = — f(z). It follows readily
from this that we can assume without loss of generality that v,w = 0. Since X is strictly
convex, there is exactly one point zy = (xy, ys) € X such that [|z¢[| = f(zf) = 1. It is easy
to see that xf > 0,y > 0 and that

/ /
v=xt=xf o w=yf =y (2.6)
As |lzfll = llz1 ]I, we have
x4y =yl 2.7)

We consider two cases. Suppose first that x¢ < x;; then, by (2.7), y; > y1. Therefore,
llzf — zll < llz1 — zll, hence by (2.4), zf is in the e-neighbourhood of z. As f(zf) = 1, it
suffices to find a u € U such that ||lu —z|| <e and f(u) < f(z) — r. Define u = (1 — ¢/2)z.
Thenu € U, ||lu—z|| = &/2, and

€ £ p-
f@) = fw)= 3 f@) = 5w zyjil
e e (2.8)
>7y1 —f(l—t) =—(1-r).
2 2 2
Since r = o(e) for € — 0, the last expression is greater than r for small e.
Consider now the second case, that is, let
Xp = x5 (2.9)
then (2.7) yields
Jf =) (2.10)

For any x € (0,x;], let a(x) be the uniquely determined positive number such that the
elements u(x), it(x) of X, defined by

u(x) = (x,a(x)), u(x) = (- x,a(x)), (2.11)
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are of norm one. Clearly, u(x;) = z;. The function d(x) = [lu(x) — z|| is strictly increasing
on (0,x;] and, by (2.4), d(x;) = e. Thus, for each x € (0,x;), u(x) (and hence also #(x))
is in the e-neighbourhood of z. Furthermore,

f(z) = f(a(x)) = w+vx —wal(x)
> vx+wa(x) —w (2.12)

= f(u(x) - f(2.

Therefore, it suffices to show that, for each a > 0, there is x € (0,x;) such that f(u(x)) —

f(z) >r — a. Since the functions f and u are continuous, it will suffice to prove that

(u(x1)) — f(2) = r. If follows from (2.6), (2.9), and (2.10) that v > xf_l and w < f_l.
Yy

Consequently, f(u(x1)) — f(z) =vxi+win —1) =xl+ ! (-1 =1-y" =
1 —(1—¢t)P~! = r, which concludes the proof. O

LeMMA 2.3. Let X and z be as in Lemma 2.2 and let € > 0. Then
8(z,e) =p ' (27" —27P)eP +0(eP) fore — 0. (2.13)

Proof. Let 0 < ¢ < 1. By the results of [1],

+
Sze) =1 —‘ ZI—ZZH (2.14)
for a point z; = (x, y1) € X of norm one such that
llz1 —zll = e (2.15)

The symmetry of the unit ball of X and the inequality € < 1 enable us to assume that
x1, 1 >0. Define t = 1 — y;. Since ||z || = 1, we have

A =1-y=1-(1-17. (2.16)

The equality (2.15) can be written as (2.2) and, for € — 0, (2.3) is true. Using (2.16), we

have
() ()
t

»
:Z’P(l—(l—t)f’)+<1—§>
=2"Fpt+1-2""pt+o(t) fort— 0.

Z1t+z
2

(2.17)

From this we obtain || (z; +2)/2|| = 1 +27Pt — 27t + o(t), and in combination with (2.14)
and (2.3), it concludes the proof. O

PROPOSITION 2.4. Let ¢ be a real constant such that for every normed linear space X there is
&, > 0 such that

p(x,€e) = cd(x,¢) (2.18)

for each x € X of norm one and € € (0,¢y). Then ¢ < 2/log2.
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Proof. Tt follows from Lemmas 2.2 and 2.3 that if ¢ satisfies the assumptions of the
proposition,

c<(p-1@2 =277 vps1 (2.19)

One can easily observe that the limit of the right side of this inequality for p — 1 (or,
infimum over p > 1) is 2/log?2. O

ProrosiTioN 2.5. Let A, C be real constants, A > 1, such that for every normed linear space
X there is €y > 0 such that

p(x,e) < Co(x,Ae) (2.20)

for each x € X of norm one and ¢ € (0,&). Then C >2(eAlogh)~".

Proof. Let A and C satisfy the assumptions of the proposition. By Lemmas 2.2 and 2.3, for
each p > 1 we have

Cz=(p-1(Q27'=27) A P>2(p- AP (2.21)

Choosing p = 1 +log ™' A, we obtain from this the desired inequality. O

COROLLARY 2.6. There is no constant C such that for every normed linear space X there is
&0 > 0 such that

p(x,e) < Co(x,¢) (2.22)

for each x € X of norm one and € € (0, ¢).

Proof. 1f C were such a constant, Proposition 2.5 and the inequality §(x,e) < &(x,Ae) for
A > 1 would yield C > 2(eAlog))~! for each A > 1, a contradiction. O

PrOPOSITION 2.7. For every normed linear space X and ¢ >0 we have
p(e) =inf {p(x,e) :x € X, |Ixll = 1}. (2.23)
Proof. It follows from the definition that we need only prove the inequality
p(e) = inf {p(x,e) :x € X, |Ixl| = 1}. (2.24)
Let r be a real number such that
r>p(e). (2.25)
It suffices to show that, for each such a number r, there is x; € X of norm one such that
p(xy,e) <. (2.26)

By (2.25), there is xy € U with p(xg,¢) < r. Therefore, there exists a closed linear sub-
space M of X with the associated quotient map Q: X — X/M and a y € Q(U) such that
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ly — Q(x0)ll <7 and [lx — x0ll > € for each x € U with Q(x) = y. Let x be a fixed inverse
image of y in U. Then

1QGx =)l = Iy = Qlxo) [ <7 (2.27)
and, for all m € M,
|[x+m—xo||>e wheneverx+m e U. (2.28)
Applying (2.28) to m = 0, we get
l|x — xo]| = &, (2.29)

which, particularly, implies that ¢ < 2 and that the space X is not trivial, that is, X # {0}.
Suppose first that M = {0}. Then |[x — x0ll = [|Q(x — x0)[l and, combining this with
(2.27) and (2.29), we obtain ¢ < r. Choose any x; € X of norm one. Since Q is an isometry
and, as we have showed, ¢ <2 and € < r, Q does not map the open e-neighbourhood of
x1 in U onto a set containing the open r-neighbourhood of Q(x;) in Q(U), so that (2.26)
holds.
Suppose now M # {0}. By (2.27), we can choose a nonzero my € M such that

[|x — x0 +mo|| < 7. (2.30)

Let S = [s1,52] and T = [#1,1,] be the intervals of real numbers defined by

S={s:x+smy€ U} (2.31)
and
T ={t:xo+tmy < U}. (2.32)
As xg € U, we have 0 € T, that is,
Hh<0<t. (2.33)
Denote
u;=x+smy forses (2.34)
and
v;=x0+timg fori=1,2. (2.35)

Clearly, [|lvill = 1 for i = 1,2. We will show that (2.26) is true for either x; = v, or x; = v,.

Let My denote the one-dimensional linear subspace of X containing m, and let Qy :
X — X/M, be the quotient map associated with My. We have Qo (x) — Qo(vi) = Qo(x — xo)
for i = 1,2, hence, by (2.30),

[|Qo(x) —Qo(vi)||<r fori=1,2. (2.36)



430  On moduli of convexity in Banach spaces

Let u € U be such that Qy(u) = Qy(x); then u — x € My, hence u = u, for some s € S.
Thus, it suffices to show that for some i € {1,2},

[lus—vi||=¢e VseS (2.37)
Suppose on the contrary that there are some r; € S (i = 1,2) such that
[luy, —vil| <e fori=1,2. (2.38)
By the definitions of u; and v;, it follows that
[|x = xo+ pimo|| <& fori=1,2, (2.39)
where p; = r; — t; (i = 1,2). Observe that (2.33) implies
pr=r1, p2 <12, (2.40)

and, since r; € S for i = 1,2, we get

p1 =51, P2 =s2. (2.41)

Suppose first that p; <s,. Then (2.41) yields p; € S so that x + pymg € U by the defi-
nition of S. Therefore, (2.39) is in contradiction with (2.28).

Suppose now that p; >s,. Then, by (2.41), the element s, is in [ p,, p1). Since the func-
tion f(s) = [lx — xo + smypll is convex, we get from (2.39) that f(s;) < &. But, since s; € S,
we have x + s;mg € U, which contradicts (2.28). O

Turning our attention to the case of a Hilbert space X, we start with a lemma.

LemMA 2.8. Let X be a Hilbert space, dimX > 2, x an element of X of norm one, and let
€ € (0,2]. Then p(x,¢e) < €%/2.

Proof. Choose a point u € X of norm one such that [lx — u]| = € and a point m € X such
that {m,u} is an orthonormal basis of the linear span of the points x,u. Let M be the
linear subspace of X of dimension one containing m and let Q : X — X/M be the quotient
map associated with M. Then x = tm + su for some real numbers t,s. We have

P+s?=x)?>=1 (2.42)
and
P4(s—1)72=|lx—ull®>=¢. (2.43)

Subtracting these inequalities, we get 2s — 1 = 1 — €2, hence s = 1 — ¢2/2. Since for any
nonzero real number r we have ||[u +rm|| > 1, u is the only inverse image of Q(u) in U.
These facts yield

p(x,€) < [|Q(x) — Q)| = [|Q(tm + su—u)|

=inf{||(s— Du+rm||:r € R}

2
&
=ls—1]==.
[s—1] 5

(2.44)
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The reader is probably familiar with the following simple fact. We give a proof for the
sake of completeness.

LemMa 2.9. Let X be a Hilbert space, M a closed linear subspace of X, Q: X — X/M the
quotient map associated with M, and let y € X/M be arbitrary. Then there exists u € X such
that Q(u) = y, llull = Iy, and u is orthogonal to M.

Proof. Choose any x € X such that Q(x) = y. As X is reflexive, it follows readily that there
is an my € M such that ||x +myll = [[Q(x)[l. Define u = x + my. Then Q(u) = Q(x) = y

and [|ull = [|yll. Let m € M be arbitrary; by the definitions of u and my, for any real
number f we have [|u+ tml| = llx+mo+tml = [|Q(x)|l = |[ull, thus u is orthogonal to m.
O

THEOREM 2.10. Let X be a Hilbert space, x € U and € > 0. Then

82

> (2.45)

plx,e) =

Proof. Let M be a closed linear subspace of X, Q : X — X/M the quotient map associated
with M, xo € U and yy = Q(x). We show that Q maps the e-neighbourhood of x; in U
onto a set containing the €2/2-neighbourhood of y, in Q(U).

Let y € Q(U) be such that ||y — yoll = r with r < €2/2. We will find x € U such that
Q(x) = y and |lx — xo|I> < 2r; observe that the last inequality implies that [|x — x| < &. By
Lemma 2.9, there are elements ug, u of X orthogonal to M such that

Q(uo) = yo, - luol| = lloll; (2.46)
Q) =y, lul =1yl (2.47)

Clearly, xo = uo + myg for some my € M and, since xy € U, the orthogonality of 1y and my
yields

| |* + || o] |* = 1. (2.48)

As any m € M is orthogonal to u and 1y (and hence to u — 1), we have ||[u — uy+m|| =
llu — ug|| for each m € M, thus

[l = uol| = 1Q(u = uo) || = [ly = yol| = . (2.49)
Suppose first that
luall? + [ mo|* < 15 (2.50)

in this case define x = u +my. Then Q(x) = Q(u) = y, x € U by (2.50) and, using (2.49),
we obtain

[l — x0]] = || (+mo) — (uo+mo)|| =r < (2r)V?, (2.51)

hence x is the desired element of U.
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Suppose now that
a2+ o |” > 1. (2.52)

Then, clearly, my # 0. Define real numbers ¢, p, and x € X by

t = |mol|” (1 = Null®)"?,
p=(1=1)||mol|, (2.53)
X = u+tmo.

We have ||x]|2 = ||ul|> + ||tmg|? = 1, thus x € U. Furthermore, ||x — xol|% = || (v + tmg) —
(o +mo)lI? = llu—uoll?+ (1 — t)?||my|?, hence, by (2.49) and by the definition of p,

|lx = xo||* = r2 + p2. (2.54)
Also, (2.49) and triangle inequalities yield [|uoll = |l|u]l — r|. Thus, using (2.48), we have
lmol” < 1= (lull - ). (2.55)

We denote by f the function
fv,w)=(1- 1/2)1/2 -(1- WZ)U2 for v,w € [0,1]. (2.56)

Observe that p = [|myll — (1 — [[ull>)"/?; in combination with (2.52), (2.55) and with the
definition of the function f, it yields

0<p < f(|lul=rllull). (2.57)

We consider three cases.

Case 1. Let |lull = r. Since, for any fixed r = 0, f(s —r,s) is an increasing function of the
variable s € [r,1], we obtain from (2.54) and (2.57) that

llx = xo|)> < 2+ f2(1 = 1,1) = 2. (2.58)

Case 2. Let ||lull <r < 1. Now, since the function f(v,w) is decreasing in the variable v
and increasing in the variable w, we get from (2.54) and (2.57) that

lx = xol | < 7+ £2(0,r) =2-2(1 - r*) " < 2r. (2.59)
Case 3. Let r > 1. In this case, (2.54) with (2.57) and the inequality [|u]| < 1 yield
llx = xo|)> < 72+ f2(r = 1,1) = 2r, (2.60)

which completes the proof. O
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THEOREM 2.11. Let X be a Hilbert space, dimX > 2, and let € € (0,2]. Then

82

P(g) (2.61)

and, for each x € X of norm one,

&2
p(x,e) = X (2.62)
Proof. The assertion follows immediately from Lemma 2.8, Theorem 2.10, and the defi-

nition of p(e). O

We note that since for one-dimensional space we have p(e) = ¢ for any ¢ € (0,2], the
restriction dimX > 2 in Theorem 2.11 is essential.
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