ON MODULI OF CONVEXITY IN BANACH SPACES

IIŘÍ REIF

Received 15 September 2003

Let X be a normed linear space, $x \in X$ an element of norm one, and $\varepsilon > 0$ and $\delta(x,\varepsilon)$ the local modulus of convexity of X. We denote by $\varrho(x,\varepsilon)$ the greatest $\varrho \geq 0$ such that for each closed linear subspace M of X the quotient mapping $Q: X \to X/M$ maps the open ε -neighbourhood of x in U onto a set containing the open ϱ -neighbourhood of Q(x) in Q(U). It is known that $\varrho(x,\varepsilon) \geq (2/3)\delta(x,\varepsilon)$. We prove that there is no universal constant C such that $\varrho(x,\varepsilon) \leq C\delta(x,\varepsilon)$, however, such a constant C exists within the class of Hilbert spaces X. If X is a Hilbert space with dim $X \geq 2$, then $\varrho(x,\varepsilon) = \varepsilon^2/2$.

1. Introduction

Let *X* be a real normed linear space of dimension $\dim X \ge 1$ and let *U* be the closed unit ball of *X*.

Let $\varepsilon > 0$. The modulus of local convexity $\delta(x, \varepsilon)$, where $x \in U$, is defined by

$$\delta(x,\varepsilon) = \inf\left\{1 - \left\|\frac{x+y}{2}\right\| : y \in U, \ \|x-y\| \ge \varepsilon\right\}$$
 (1.1)

and the modulus of convexity is

$$\delta(\varepsilon) = \inf \{ \delta(x, \varepsilon) : x \in U \}. \tag{1.2}$$

If $\dim X \ge 2$, one can use an equivalent definition (see, e.g., [1]),

$$\delta(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : x, y \in X, \ \|x\| = \|y\| = 1, \ \|x-y\| = \varepsilon \right\}$$
 (1.3)

and if ||x|| = 1,

$$\delta(x,\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : y \in X, \ \|y\| = 1, \|x-y\| = \varepsilon \right\}. \tag{1.4}$$

The space *X* is said to be uniformly convex (locally uniformly convex) if for each $\varepsilon > 0$, $\delta(\varepsilon) > 0$ ($\delta(x, \varepsilon) > 0$ for $x \in U$, resp.).

Copyright © 2005 Hindawi Publishing Corporation Journal of Inequalities and Applications 2005:4 (2005) 423–433 DOI: 10.1155/JIA.2005.423 The moduli $\delta(\varepsilon)$ of the spaces $L_p(\mu)$ have been found in [2]; they behave for $\varepsilon \to 0$ as $(p-1)\varepsilon^2/8 + o(\varepsilon^2)$ when $1 , and as <math>p^{-1}(\varepsilon/2)^p + o(\varepsilon^p)$ when 2 . In case of a Hilbert space <math>X with $\dim X \ge 2$, $\delta(\varepsilon) = 1 - (1 - \varepsilon^2/4)^{1/2}$ for $\varepsilon \in (0,2]$.

We denote by \mathcal{T} the family of the canonical quotient maps $Q: X \to X/M$, where M ranges over all closed linear subspaces of X. For any $\varepsilon > 0$ and $x \in U$, let $\varrho(x, \varepsilon) = \sup\{r : r \ge 0 \text{ and for each } Q \in \mathcal{T}, Q \text{ maps the open } \varepsilon\text{-neighbourhood of } x \text{ in } U \text{ onto a set containing the open } r\text{-neighbourhood of } Q(x) \text{ in } Q(U)\}$, and let $\varrho(\varepsilon)$ be defined by

$$\rho(\varepsilon) = \inf \{ \rho(x, \varepsilon) : x \in U \}. \tag{1.5}$$

We note that if T is an open linear mapping from X onto a normed linear space Y such that $T^{-1}(0)$ is closed and T(U) contains a c-neighbourhood of 0 in Y, then for each $x \in U$ and $\varepsilon > 0$, T maps the ε -neighbourhood of x in x0 onto a set containing the x0-neighbourhood of x1 in x1. Thus the "x2-moduli" help to estimate relative openness of x3 or x4 or x5 or x6-neighbourhood of x8 or x6-neighbourhood of x8 or x6-neighbourhood of x8 or x6-neighbourhood of x8-neighbourhood of x9-neighbourhood of x9-neighbourho

$$\varrho(x,\varepsilon) \ge \frac{2}{3}\delta(x,\varepsilon)$$
 for each x of norm one, (1.6)

$$\varrho(\varepsilon) \ge \frac{2}{3}\delta(\varepsilon),$$
 (1.7)

$$\varrho(x,\varepsilon) \le \frac{4}{\lambda-1}\delta(x,\lambda\varepsilon) \quad \text{for each } x \in U \text{ and } \lambda \in (1,3],$$
(1.8)

$$\varrho(\varepsilon) \le \frac{4}{\lambda - 1} \delta(\lambda \varepsilon) \quad \text{for each } \lambda \in (1, 3].$$
(1.9)

These relations suggest the following questions.

Question 1.1. Is there a constant c_1 such that

$$\rho(x,\varepsilon) \le c_1 \delta(x,\varepsilon) \tag{1.10}$$

for all X, $x \in X$ of norm one, and $\varepsilon \in (0,2]$?

Question 1.2. Is there a constant c_2 such that

$$\varrho(\varepsilon) \le c_2 \delta(\varepsilon) \tag{1.11}$$

for all X and $\varepsilon \in (0,2]$?

We give a negative answer to Question 1.1, yet Question 1.2 remains unsolved. We believe that evaluations of $\varrho(\varepsilon)$ for (some) spaces $L_p(\mu)$ might yield a negative answer to Question 1.2.

In Proposition 2.7 we prove that for any X,

$$\rho(\varepsilon) = \inf \left\{ \rho(x, \varepsilon) : x \in X, \|x\| = 1 \right\}. \tag{1.12}$$

It follows from this that if a constant c works in (1.6) instead of the number 2/3, then it also does in (1.7) and we conjecture that c = 2 can be used for (1.6), hence also for (1.7).

Finally, we prove that if *X* is a Hilbert space, $\dim X \ge 2$, $x \in X$ with ||x|| = 1 and $\varepsilon \in (0,2]$, then

$$\varrho(x,\varepsilon) = \varrho(\varepsilon) = \frac{\varepsilon^2}{2}.$$
 (1.13)

Thus, in this case, the ratio $\varrho(x,\varepsilon)/\delta(x,\varepsilon) = \varrho(\varepsilon)/\delta(\varepsilon)$ ranges over the interval (2,4].

2. Results

We start with auxiliary statements. The first one is very simple.

LEMMA 2.1. Let X be a two-dimensional normed linear space, $z \in X$, ||z|| = 1, $0 < \varepsilon \le 2$, and let $\rho_1 = \sup\{r : r \ge 0 \text{ and for each } f \in X^* \text{ with } ||f|| = 1 \text{ and each } y \in [-1,1] \text{ with } ||y - f(z)| < r \text{ there is } u \in U \text{ such that } ||u - z|| < \varepsilon \text{ and } f(u) = y\}$. Then $\rho_1 = \rho(z, \varepsilon)$.

Proof. As dim X = 2, the set of linear functionals on X of norm one can be identified with the family of quotient maps $Q_M : X \to X/M$, where M ranges throughout the set of all one-dimensional linear subspaces of X. So, it suffices to show that if M = X or $M = \{0\}$, Q_M maps the ε -neighbourhood of z in U onto a set containing the ρ_1 -neighbourhood of $Q_M(z)$ in $Q_M(U)$.

If M = X, we have $Q_M(X) = \{0\}$, thus the image of any neighbourhood of z in U coincides with $Q_M(U)$. Now, let $M = \{0\}$; then Q_M is the identity map on X, so we must show that $\rho_1 \le \varepsilon$. Pick an $f \in X^*$ such that ||f|| = f(z) = 1. Then, for any $u \in U$ such that $||u - z|| < \varepsilon$, we have

$$f(u) = 1 + f(u - z) \ge 1 - ||u - z|| > 1 - \varepsilon, \tag{2.1}$$

hence $\rho_1 \leq \varepsilon$ by the definition of ρ_1 .

LEMMA 2.2. Let $1 and let <math>X = \mathbb{R}^2$ be given the l_p -norm $\|(x,y)\| = (|x|^p + |y|^p)^{1/p}$ for any $(x,y) \in X$. Then for the element z = (0,1) of X and $\varepsilon > 0$ we have $\rho(z,\varepsilon) = (p-1)p^{-1}\varepsilon^p + o(\varepsilon^p)$ for $\varepsilon \to 0$.

Proof. For $\varepsilon \in (0,1)$, let $t = t(\varepsilon) \in (0,1)$ be defined by the equation

$$t^p + 1 - (1 - t)^p = \varepsilon^p \tag{2.2}$$

and let $r = 1 - (1 - t)^{p-1}$. Clearly, for $\varepsilon \to 0$ we have $t \to 0$, (2.2) yields $pt + o(t) = \varepsilon^p$, hence

$$t = p^{-1}\varepsilon^p + o(\varepsilon^p), \tag{2.3}$$

so that $r = (p-1)t + o(t) = (p-1)p^{-1}\varepsilon^p + o(\varepsilon^p)$.

Thus, by Lemma 2.1, it suffices to show that for small ε and for ρ_1 defined in Lemma 2.1 we have $\rho_1 = r$. Define $y_1 = 1 - t$ and $x_1 = (1 - y_1^p)^{1/p}$. The element $z_1 = (x_1, y_1)$ of X has norm one and (2.2) implies

$$||z_1 - z|| = \varepsilon. \tag{2.4}$$

Represent X^* by \mathbb{R}^2 with the l_q -norm, where 1/q+1/p=1, and consider the functional $f_1 \in X^*$ represented by $f_1 = (x_1^{p-1}, y_1^{p-1})$. Then $f_1(z_1) = 1$ and, since q(p-1) = p, f_1 is of norm one. As the space X is strictly convex, there is no point u in the closed unit ball U of X such that $u \neq z_1$ and $f_1(u) = 1$. Hence, taking (2.4) into account, we get

$$\rho_1 \le 1 - f_1(z) = 1 - y_1^{p-1} = r. \tag{2.5}$$

Now we will prove the inequality $\rho_1 \ge r$ for small ε . To show this, let $f \in X^*$ be a functional of norm one. Represent f by $(v, w) \in \mathbb{R}^2$ with $|v|^q + |w|^q = 1$. We will prove that, for small ε , f maps the set $U_{\varepsilon} = \{u \in U : ||u - z|| < \varepsilon\}$ onto a set containing the interval $[-1,1] \cap (f(z)-r,f(z)+r)$.

Let $g,h \in X^*$ be the functionals with the representations $g=(-\nu,w)$ and $h=(\nu,-w)$. Since, for any $(x,y) \in \mathbb{R}^2$, (x,y) is in U_ε if and only if (-x,y) is in U_ε , we have $g(U_\varepsilon)=f(U_\varepsilon)$ and $h(U_\varepsilon)=-f(U_\varepsilon)$. Trivially, g(z)=f(z) and h(z)=-f(z). It follows readily from this that we can assume without loss of generality that $\nu, w \ge 0$. Since X is strictly convex, there is exactly one point $z_f=(x_f,y_f)\in X$ such that $\|z_f\|=f(z_f)=1$. It is easy to see that $x_f\ge 0, y_f\ge 0$ and that

$$v = x_f^{p/q} = x_f^{p-1}, \qquad w = y_f^{p/q} = y_f^{p-1}.$$
 (2.6)

As $||z_f|| = ||z_1||$, we have

$$x_f^p + y_f^p = x_1^p + y_1^p. (2.7)$$

We consider two cases. Suppose first that $x_f < x_1$; then, by (2.7), $y_f > y_1$. Therefore, $\|z_f - z\| < \|z_1 - z\|$, hence by (2.4), z_f is in the ε -neighbourhood of z. As $f(z_f) = 1$, it suffices to find a $u \in U$ such that $\|u - z\| < \varepsilon$ and $f(u) \le f(z) - r$. Define $u = (1 - \varepsilon/2)z$. Then $u \in U$, $\|u - z\| = \varepsilon/2$, and

$$f(z) - f(u) = \frac{\varepsilon}{2} f(z) = \frac{\varepsilon}{2} w = \frac{\varepsilon}{2} y_f^{p-1}$$

$$> \frac{\varepsilon}{2} y_1^{p-1} = \frac{\varepsilon}{2} (1-t)^{p-1} = \frac{\varepsilon}{2} (1-r).$$
(2.8)

Since $r = o(\varepsilon)$ for $\varepsilon \to 0$, the last expression is greater than r for small ε .

Consider now the second case, that is, let

$$x_f \ge x_1; \tag{2.9}$$

then (2.7) yields

$$y_f \le y_1. \tag{2.10}$$

For any $x \in (0,x_1]$, let a(x) be the uniquely determined positive number such that the elements u(x), $\bar{u}(x)$ of X, defined by

$$u(x) = (x, a(x)), \quad \bar{u}(x) = (-x, a(x)),$$
 (2.11)

are of norm one. Clearly, $u(x_1) = z_1$. The function d(x) = ||u(x) - z|| is strictly increasing on $(0,x_1]$ and, by (2.4), $d(x_1) = \varepsilon$. Thus, for each $x \in (0,x_1)$, u(x) (and hence also $\bar{u}(x)$) is in the ε -neighbourhood of z. Furthermore,

$$f(z) - f(\bar{u}(x)) = w + vx - wa(x)$$

$$\geq vx + wa(x) - w$$

$$= f(u(x)) - f(z).$$
(2.12)

Therefore, it suffices to show that, for each $\alpha > 0$, there is $x \in (0, x_1)$ such that $f(u(x)) - f(z) > r - \alpha$. Since the functions f and u are continuous, it will suffice to prove that $f(u(x_1)) - f(z) \ge r$. If follows from (2.6), (2.9), and (2.10) that $v \ge x_1^{p-1}$ and $w \le y_1^{p-1}$. Consequently, $f(u(x_1)) - f(z) = vx_1 + w(y_1 - 1) \ge x_1^p + y_1^{p-1}(y_1 - 1) = 1 - y_1^{p-1} = 1 - (1 - t)^{p-1} = r$, which concludes the proof.

LEMMA 2.3. Let X and z be as in Lemma 2.2 and let $\varepsilon > 0$. Then

$$\delta(z,\varepsilon) = p^{-1}(2^{-1} - 2^{-p})\varepsilon^p + o(\varepsilon^p) \quad \text{for } \varepsilon \longrightarrow 0.$$
 (2.13)

Proof. Let $0 < \varepsilon < 1$. By the results of [1],

$$\delta(z,\varepsilon) = 1 - \left| \left| \frac{z_1 + z}{2} \right| \right| \tag{2.14}$$

for a point $z_1 = (x_1, y_1) \in X$ of norm one such that

$$||z_1 - z|| = \varepsilon. \tag{2.15}$$

The symmetry of the unit ball of X and the inequality $\varepsilon < 1$ enable us to assume that $x_1, y_1 > 0$. Define $t = 1 - y_1$. Since $||z_1|| = 1$, we have

$$x_1^p = 1 - y_1^p = 1 - (1 - t)^p.$$
 (2.16)

The equality (2.15) can be written as (2.2) and, for $\varepsilon \to 0$, (2.3) is true. Using (2.16), we have

$$\left\| \frac{z_1 + z}{2} \right\|^p = \left(\frac{x_1}{2} \right)^p + \left(\frac{(y_1 + 1)}{2} \right)^p$$

$$= 2^{-p} \left(1 - (1 - t)^p \right) + \left(1 - \frac{t}{2} \right)^p$$

$$= 2^{-p} pt + 1 - 2^{-1} pt + o(t) \quad \text{for } t \longrightarrow 0.$$
(2.17)

From this we obtain $||(z_1+z)/2|| = 1 + 2^{-p}t - 2^{-1}t + o(t)$, and in combination with (2.14) and (2.3), it concludes the proof.

Proposition 2.4. Let c be a real constant such that for every normed linear space X there is $\varepsilon_o > 0$ such that

$$\rho(x,\varepsilon) \ge c\delta(x,\varepsilon) \tag{2.18}$$

for each $x \in X$ of norm one and $\varepsilon \in (0, \varepsilon_0)$. Then $c \le 2/\log 2$.

Proof. It follows from Lemmas 2.2 and 2.3 that if *c* satisfies the assumptions of the proposition,

$$c \le (p-1)(2^{-1}-2^{-p})^{-1} \quad \forall p > 1.$$
 (2.19)

One can easily observe that the limit of the right side of this inequality for $p \to 1$ (or, infimum over p > 1) is $2/\log 2$.

Proposition 2.5. Let λ , C be real constants, $\lambda > 1$, such that for every normed linear space X there is $\varepsilon_0 > 0$ such that

$$\rho(x,\varepsilon) \le C\delta(x,\lambda\varepsilon) \tag{2.20}$$

for each $x \in X$ of norm one and $\varepsilon \in (0, \varepsilon_0)$. Then $C > 2(e\lambda \log \lambda)^{-1}$.

Proof. Let λ and C satisfy the assumptions of the proposition. By Lemmas 2.2 and 2.3, for each p > 1 we have

$$C \ge (p-1)(2^{-1}-2^{-p})^{-1}\lambda^{-p} > 2(p-1)\lambda^{-p}.$$
 (2.21)

Choosing $p = 1 + \log^{-1} \lambda$, we obtain from this the desired inequality.

COROLLARY 2.6. There is no constant C such that for every normed linear space X there is $\varepsilon_0 > 0$ such that

$$\rho(x,\varepsilon) \le C\delta(x,\varepsilon) \tag{2.22}$$

for each $x \in X$ of norm one and $\varepsilon \in (0, \varepsilon_0)$.

Proof. If *C* were such a constant, Proposition 2.5 and the inequality $\delta(x, \varepsilon) \le \delta(x, \lambda \varepsilon)$ for $\lambda > 1$ would yield $C > 2(e\lambda \log \lambda)^{-1}$ for each $\lambda > 1$, a contradiction.

Proposition 2.7. For every normed linear space X and $\varepsilon > 0$ we have

$$\rho(\varepsilon) = \inf \{ \rho(x, \varepsilon) : x \in X, \ \|x\| = 1 \}. \tag{2.23}$$

Proof. It follows from the definition that we need only prove the inequality

$$\rho(\varepsilon) \ge \inf \left\{ \rho(x, \varepsilon) : x \in X, \ \|x\| = 1 \right\}. \tag{2.24}$$

Let *r* be a real number such that

$$r > \rho(\varepsilon)$$
. (2.25)

It suffices to show that, for each such a number r, there is $x_1 \in X$ of norm one such that

$$\rho(x_1,\varepsilon) \le r. \tag{2.26}$$

By (2.25), there is $x_0 \in U$ with $\rho(x_0, \varepsilon) < r$. Therefore, there exists a closed linear subspace M of X with the associated quotient map $Q: X \to X/M$ and a $y \in Q(U)$ such that

 $||y - Q(x_0)|| < r$ and $||x - x_0|| \ge \varepsilon$ for each $x \in U$ with Q(x) = y. Let x be a fixed inverse image of y in U. Then

$$||Q(x - x_0)|| = ||y - Q(x_0)|| < r$$
(2.27)

and, for all $m \in M$,

$$||x+m-x_0|| \ge \varepsilon$$
 whenever $x+m \in U$. (2.28)

Applying (2.28) to m = 0, we get

$$||x - x_0|| \ge \varepsilon, \tag{2.29}$$

which, particularly, implies that $\varepsilon \le 2$ and that the space X is not trivial, that is, $X \ne \{0\}$. Suppose first that $M = \{0\}$. Then $||x - x_0|| = ||Q(x - x_0)||$ and, combining this with (2.27) and (2.29), we obtain $\varepsilon < r$. Choose any $x_1 \in X$ of norm one. Since Q is an isometry and, as we have showed, $\varepsilon \le 2$ and $\varepsilon < r$, Q does not map the open ε -neighbourhood of x_1 in U onto a set containing the open r-neighbourhood of $Q(x_1)$ in Q(U), so that (2.26) holds.

Suppose now $M \neq \{0\}$. By (2.27), we can choose a nonzero $m_0 \in M$ such that

$$||x - x_0 + m_0|| < r. (2.30)$$

Let $S = [s_1, s_2]$ and $T = [t_1, t_2]$ be the intervals of real numbers defined by

$$S = \{s : x + sm_0 \in U\} \tag{2.31}$$

and

$$T = \{t : x_0 + tm_0 \in U\}. \tag{2.32}$$

As $x_0 \in U$, we have $0 \in T$, that is,

$$t_1 \le 0 \le t_2. \tag{2.33}$$

Denote

$$u_s = x + sm_0 \quad \text{for } s \in S \tag{2.34}$$

and

$$v_i = x_0 + t_i m_0$$
 for $i = 1, 2$. (2.35)

Clearly, $||v_i|| = 1$ for i = 1, 2. We will show that (2.26) is true for either $x_1 = v_1$ or $x_1 = v_2$. Let M_0 denote the one-dimensional linear subspace of X containing m_0 and let Q_0 : $X \to X/M_0$ be the quotient map associated with M_0 . We have $Q_0(x) - Q_0(v_i) = Q_0(x - x_0)$ for i = 1, 2, hence, by (2.30),

$$||Q_0(x) - Q_0(v_i)|| < r \quad \text{for } i = 1, 2.$$
 (2.36)

Let $u \in U$ be such that $Q_0(u) = Q_0(x)$; then $u - x \in M_0$, hence $u = u_s$ for some $s \in S$. Thus, it suffices to show that for some $i \in \{1, 2\}$,

$$||u_s - v_i|| \ge \varepsilon \quad \forall s \in S.$$
 (2.37)

Suppose on the contrary that there are some $r_i \in S$ (i = 1, 2) such that

$$||u_{r_i} - v_i|| < \varepsilon \quad \text{for } i = 1, 2. \tag{2.38}$$

By the definitions of u_s and v_i , it follows that

$$||x - x_0 + p_i m_0|| < \varepsilon \quad \text{for } i = 1, 2,$$
 (2.39)

where $p_i = r_i - t_i$ (i = 1, 2). Observe that (2.33) implies

$$p_1 \ge r_1, \qquad p_2 \le r_2,$$
 (2.40)

and, since $r_i \in S$ for i = 1, 2, we get

$$p_1 \ge s_1, \qquad p_2 \le s_2. \tag{2.41}$$

Suppose first that $p_1 \le s_2$. Then (2.41) yields $p_1 \in S$ so that $x + p_1 m_0 \in U$ by the definition of S. Therefore, (2.39) is in contradiction with (2.28).

Suppose now that $p_1 > s_2$. Then, by (2.41), the element s_2 is in $[p_2, p_1)$. Since the function $f(s) = ||x - x_0 + sm_0||$ is convex, we get from (2.39) that $f(s_2) < \varepsilon$. But, since $s_2 \in S$, we have $x + s_2m_0 \in U$, which contradicts (2.28).

Turning our attention to the case of a Hilbert space *X*, we start with a lemma.

LEMMA 2.8. Let X be a Hilbert space, $\dim X \ge 2$, x an element of X of norm one, and let $\varepsilon \in (0,2]$. Then $\rho(x,\varepsilon) \le \varepsilon^2/2$.

Proof. Choose a point $u \in X$ of norm one such that $||x - u|| = \varepsilon$ and a point $m \in X$ such that $\{m, u\}$ is an orthonormal basis of the linear span of the points x, u. Let M be the linear subspace of X of dimension one containing m and let $Q: X \to X/M$ be the quotient map associated with M. Then x = tm + su for some real numbers t, s. We have

$$t^2 + s^2 = ||x||^2 = 1 (2.42)$$

and

$$t^{2} + (s-1)^{2} = ||x - u||^{2} = \varepsilon^{2}.$$
 (2.43)

Subtracting these inequalities, we get $2s - 1 = 1 - \varepsilon^2$, hence $s = 1 - \varepsilon^2/2$. Since for any nonzero real number r we have ||u + rm|| > 1, u is the only inverse image of Q(u) in U. These facts yield

$$\rho(x,\varepsilon) \le ||Q(x) - Q(u)|| = ||Q(tm + su - u)||$$

$$= \inf \{||(s-1)u + rm|| : r \in \mathbb{R}\}$$

$$= |s-1| = \frac{\varepsilon^2}{2}.$$

$$(2.44)$$

The reader is probably familiar with the following simple fact. We give a proof for the sake of completeness.

LEMMA 2.9. Let X be a Hilbert space, M a closed linear subspace of X, $Q: X \to X/M$ the quotient map associated with M, and let $y \in X/M$ be arbitrary. Then there exists $u \in X$ such that Q(u) = y, ||u|| = ||y||, and u is orthogonal to M.

Proof. Choose any $x \in X$ such that Q(x) = y. As X is reflexive, it follows readily that there is an $m_0 \in M$ such that $||x + m_0|| = ||Q(x)||$. Define $u = x + m_0$. Then Q(u) = Q(x) = y and ||u|| = ||y||. Let $m \in M$ be arbitrary; by the definitions of u and m_0 , for any real number t we have $||u + tm|| = ||x + m_0 + tm|| \ge ||Q(x)|| = ||u||$, thus u is orthogonal to m.

Theorem 2.10. Let X be a Hilbert space, $x \in U$ and $\varepsilon > 0$. Then

$$\rho(x,\varepsilon) \ge \frac{\varepsilon^2}{2}.\tag{2.45}$$

Proof. Let M be a closed linear subspace of X, $Q: X \to X/M$ the quotient map associated with M, $x_0 \in U$ and $y_0 = Q(x_0)$. We show that Q maps the ε -neighbourhood of x_0 in U onto a set containing the $\varepsilon^2/2$ -neighbourhood of y_0 in Q(U).

Let $y \in Q(U)$ be such that $||y - y_0|| = r$ with $r < \varepsilon^2/2$. We will find $x \in U$ such that Q(x) = y and $||x - x_0||^2 \le 2r$; observe that the last inequality implies that $||x - x_0|| < \varepsilon$. By Lemma 2.9, there are elements u_0, u of X orthogonal to M such that

$$Q(u_0) = y_0, \quad ||u_0|| = ||y_0||,$$
 (2.46)

$$Q(u) = y, \quad ||u|| = ||y||.$$
 (2.47)

Clearly, $x_0 = u_0 + m_0$ for some $m_0 \in M$ and, since $x_0 \in U$, the orthogonality of u_0 and m_0 yields

$$||u_0||^2 + ||m_0||^2 \le 1.$$
 (2.48)

As any $m \in M$ is orthogonal to u and u_0 (and hence to $u - u_0$), we have $||u - u_0 + m|| \ge ||u - u_0||$ for each $m \in M$, thus

$$||u - u_0|| = ||Q(u - u_0)|| = ||y - y_0|| = r.$$
 (2.49)

Suppose first that

$$||u||^2 + ||m_0||^2 \le 1;$$
 (2.50)

in this case define $x = u + m_0$. Then Q(x) = Q(u) = y, $x \in U$ by (2.50) and, using (2.49), we obtain

$$||x - x_0|| = ||(u + m_0) - (u_0 + m_0)|| = r \le (2r)^{1/2},$$
 (2.51)

hence x is the desired element of U.

Suppose now that

$$||u||^2 + ||m_0||^2 > 1.$$
 (2.52)

Then, clearly, $m_0 \neq 0$. Define real numbers t, p, and $x \in X$ by

$$t = ||m_0||^{-1} (1 - ||u||^2)^{1/2},$$

$$p = (1 - t)||m_0||,$$

$$x = u + tm_0.$$
(2.53)

We have $||x||^2 = ||u||^2 + ||tm_0||^2 = 1$, thus $x \in U$. Furthermore, $||x - x_0||^2 = ||(u + tm_0) - (u_0 + m_0)||^2 = ||u - u_0||^2 + (1 - t)^2 ||m_0||^2$, hence, by (2.49) and by the definition of p,

$$||x - x_0||^2 = r^2 + p^2.$$
 (2.54)

Also, (2.49) and triangle inequalities yield $||u_0|| \ge ||u|| - r|$. Thus, using (2.48), we have

$$||m_0||^2 \le 1 - (||u|| - r)^2.$$
 (2.55)

We denote by f the function

$$f(v, w) = (1 - v^2)^{1/2} - (1 - w^2)^{1/2}$$
 for $v, w \in [0, 1]$. (2.56)

Observe that $p = ||m_0|| - (1 - ||u||^2)^{1/2}$; in combination with (2.52), (2.55) and with the definition of the function f, it yields

$$0$$

We consider three cases.

Case 1. Let $||u|| \ge r$. Since, for any fixed $r \ge 0$, f(s-r,s) is an increasing function of the variable $s \in [r,1]$, we obtain from (2.54) and (2.57) that

$$||x - x_0||^2 \le r^2 + f^2(1 - r, 1) = 2r.$$
 (2.58)

Case 2. Let $||u|| < r \le 1$. Now, since the function f(v, w) is decreasing in the variable v and increasing in the variable w, we get from (2.54) and (2.57) that

$$||x - x_0||^2 \le r^2 + f^2(0, r) = 2 - 2(1 - r^2)^{1/2} \le 2r.$$
 (2.59)

Case 3. Let r > 1. In this case, (2.54) with (2.57) and the inequality $||u|| \le 1$ yield

$$||x - x_0||^2 \le r^2 + f^2(r - 1, 1) = 2r,$$
 (2.60)

which completes the proof.

Theorem 2.11. Let X be a Hilbert space, dim $X \ge 2$, and let $\varepsilon \in (0,2]$. Then

$$\rho(\varepsilon) = \frac{\varepsilon^2}{2} \tag{2.61}$$

and, for each $x \in X$ of norm one,

$$\rho(x,\varepsilon) = \frac{\varepsilon^2}{2}.\tag{2.62}$$

Proof. The assertion follows immediately from Lemma 2.8, Theorem 2.10, and the definition of $\rho(\varepsilon)$.

We note that since for one-dimensional space we have $\rho(\varepsilon) = \varepsilon$ for any $\varepsilon \in (0,2]$, the restriction dim $X \ge 2$ in Theorem 2.11 is essential.

References

- [1] J. Daneš, On local and global moduli of convexity, Comment. Math. Univ. Carolinae 17 (1976), no. 3, 413–420.
- [2] O. Hanner, On the uniform convexity of L^p and l^p , Ark. Mat. 3 (1956), 239–244.
- [3] J. Reif, A characterization of (locally) uniformly convex spaces in terms of relative openness of quotient maps on the unit ball, J. Funct. Anal. 177 (2000), no. 1, 1–15.

Jiří Reif: Department of Mathematics, Faculty of Applied Sciences, University of West Bohemia, 306 14 Plzeň, Czech Republic

E-mail address: reif@kma.zcu.cz