ON MODULI OF CONVEXITY IN BANACH SPACES

JIŘí REIF
Received 15 September 2003

Let X be a normed linear space, $x \in X$ an element of norm one, and $\varepsilon>0$ and $\delta(x, \varepsilon)$ the local modulus of convexity of X. We denote by $\varrho(x, \varepsilon)$ the greatest $\varrho \geq 0$ such that for each closed linear subspace M of X the quotient mapping $Q: X \rightarrow X / M$ maps the open ε-neighbourhood of x in U onto a set containing the open ϱ-neighbourhood of $Q(x)$ in $Q(U)$. It is known that $\varrho(x, \varepsilon) \geq(2 / 3) \delta(x, \varepsilon)$. We prove that there is no universal constant C such that $\varrho(x, \varepsilon) \leq C \delta(x, \varepsilon)$, however, such a constant C exists within the class of Hilbert spaces X. If X is a Hilbert space with $\operatorname{dim} X \geq 2$, then $\varrho(x, \varepsilon)=\varepsilon^{2} / 2$.

1. Introduction

Let X be a real normed linear space of dimension $\operatorname{dim} X \geq 1$ and let U be the closed unit ball of X.

Let $\varepsilon>0$. The modulus of local convexity $\delta(x, \varepsilon)$, where $x \in U$, is defined by

$$
\begin{equation*}
\delta(x, \varepsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|: y \in U,\|x-y\| \geq \varepsilon\right\} \tag{1.1}
\end{equation*}
$$

and the modulus of convexity is

$$
\begin{equation*}
\delta(\varepsilon)=\inf \{\delta(x, \varepsilon): x \in U\} . \tag{1.2}
\end{equation*}
$$

If $\operatorname{dim} X \geq 2$, one can use an equivalent definition (see, e.g., [1]),

$$
\begin{equation*}
\delta(\varepsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|: x, y \in X,\|x\|=\|y\|=1,\|x-y\|=\varepsilon\right\} \tag{1.3}
\end{equation*}
$$

and if $\|x\|=1$,

$$
\begin{equation*}
\delta(x, \varepsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|: y \in X,\|y\|=1,\|x-y\|=\varepsilon\right\} . \tag{1.4}
\end{equation*}
$$

The space X is said to be uniformly convex (locally uniformly convex) if for each $\varepsilon>0$, $\delta(\varepsilon)>0(\delta(x, \varepsilon)>0$ for $x \in U$, resp. $)$.

The moduli $\delta(\varepsilon)$ of the spaces $L_{p}(\mu)$ have been found in [2]; they behave for $\varepsilon \rightarrow 0$ as $(p-1) \varepsilon^{2} / 8+o\left(\varepsilon^{2}\right)$ when $1<p \leq 2$, and as $p^{-1}(\varepsilon / 2)^{p}+o\left(\varepsilon^{p}\right)$ when $2<p<\infty$. In case of a Hilbert space X with $\operatorname{dim} X \geq 2, \delta(\varepsilon)=1-\left(1-\varepsilon^{2} / 4\right)^{1 / 2}$ for $\varepsilon \in(0,2]$.

We denote by \mathcal{T} the family of the canonical quotient maps $Q: X \rightarrow X / M$, where M ranges over all closed linear subspaces of X. For any $\varepsilon>0$ and $x \in U$, let $\varrho(x, \varepsilon)=\sup \{r$: $r \geq 0$ and for each $Q \in \mathscr{T}, Q$ maps the open ε-neighbourhood of x in U onto a set containing the open r-neighbourhood of $Q(x)$ in $Q(U)\}$, and let $\varrho(\varepsilon)$ be defined by

$$
\begin{equation*}
\varrho(\varepsilon)=\inf \{\varrho(x, \varepsilon): x \in U\} . \tag{1.5}
\end{equation*}
$$

We note that if T is an open linear mapping from X onto a normed linear space Y such that $T^{-1}(0)$ is closed and $T(U)$ contains a c-neighbourhood of 0 in Y, then for each $x \in U$ and $\varepsilon>0, T$ maps the ε-neighbourhood of x in U onto a set containing the $c \varrho(x, \varepsilon)$ neighbourhood of $T(x)$ in $T(U)$. Thus the " ϱ-moduli" help to estimate relative openness of T on U in a quantitative way. Relative openness of affine maps on convex sets has been treated in literature in various contexts, a list of references is presented in [3]. For each $\varepsilon>0$, the following holds [3]:

$$
\begin{align*}
\varrho(x, \varepsilon) & \geq \frac{2}{3} \delta(x, \varepsilon) \quad \text { for each } x \text { of norm one } \tag{1.6}\\
\varrho(\varepsilon) & \geq \frac{2}{3} \delta(\varepsilon) \tag{1.7}\\
\varrho(x, \varepsilon) & \leq \frac{4}{\lambda-1} \delta(x, \lambda \varepsilon) \quad \text { for each } x \in U \text { and } \lambda \in(1,3] \tag{1.8}\\
\varrho(\varepsilon) & \leq \frac{4}{\lambda-1} \delta(\lambda \varepsilon) \quad \text { for each } \lambda \in(1,3] \tag{1.9}
\end{align*}
$$

These relations suggest the following questions.
Question 1.1. Is there a constant c_{1} such that

$$
\begin{equation*}
\varrho(x, \varepsilon) \leq c_{1} \delta(x, \varepsilon) \tag{1.10}
\end{equation*}
$$

for all $X, x \in X$ of norm one, and $\varepsilon \in(0,2]$?
Question 1.2. Is there a constant c_{2} such that

$$
\begin{equation*}
\varrho(\varepsilon) \leq c_{2} \delta(\varepsilon) \tag{1.11}
\end{equation*}
$$

for all X and $\varepsilon \in(0,2]$?
We give a negative answer to Question 1.1, yet Question 1.2 remains unsolved. We believe that evaluations of $\varrho(\varepsilon)$ for (some) spaces $L_{p}(\mu)$ might yield a negative answer to Question 1.2.

In Proposition 2.7 we prove that for any X,

$$
\begin{equation*}
\varrho(\varepsilon)=\inf \{\varrho(x, \varepsilon): x \in X,\|x\|=1\} . \tag{1.12}
\end{equation*}
$$

It follows from this that if a constant c works in (1.6) instead of the number $2 / 3$, then it also does in (1.7) and we conjecture that $c=2$ can be used for (1.6), hence also for (1.7).

Finally, we prove that if X is a Hilbert space, $\operatorname{dim} X \geq 2, x \in X$ with $\|x\|=1$ and $\varepsilon \in$ $(0,2]$, then

$$
\begin{equation*}
\varrho(x, \varepsilon)=\varrho(\varepsilon)=\frac{\varepsilon^{2}}{2} . \tag{1.13}
\end{equation*}
$$

Thus, in this case, the ratio $\varrho(x, \varepsilon) / \delta(x, \varepsilon)=\varrho(\varepsilon) / \delta(\varepsilon)$ ranges over the interval $(2,4]$.

2. Results

We start with auxiliary statements. The first one is very simple.
Lemma 2.1. Let X be a two-dimensional normed linear space, $z \in X,\|z\|=1,0<\varepsilon \leq 2$, and let $\rho_{1}=\sup \left\{r: r \geq 0\right.$ and for each $f \in X^{*}$ with $\|f\|=1$ and each $y \in[-1,1]$ with $|y-f(z)|<r$ there is $u \in U$ such that $\|u-z\|<\varepsilon$ and $f(u)=y\}$. Then $\rho_{1}=\rho(z, \varepsilon)$.

Proof. As $\operatorname{dim} X=2$, the set of linear functionals on X of norm one can be identified with the family of quotient maps $Q_{M}: X \rightarrow X / M$, where M ranges throughout the set of all one-dimensional linear subspaces of X. So, it suffices to show that if $M=X$ or $M=\{0\}$, Q_{M} maps the ε-neighbourhood of z in U onto a set containing the ρ_{1}-neighbourhood of $Q_{M}(z)$ in $Q_{M}(U)$.

If $M=X$, we have $Q_{M}(X)=\{0\}$, thus the image of any neighbourhood of z in U coincides with $Q_{M}(U)$. Now, let $M=\{0\}$; then Q_{M} is the identity map on X, so we must show that $\rho_{1} \leq \varepsilon$. Pick an $f \in X^{*}$ such that $\|f\|=f(z)=1$. Then, for any $u \in U$ such that $\|u-z\|<\varepsilon$, we have

$$
\begin{equation*}
f(u)=1+f(u-z) \geq 1-\|u-z\|>1-\varepsilon, \tag{2.1}
\end{equation*}
$$

hence $\rho_{1} \leq \varepsilon$ by the definition of ρ_{1}.
Lemma 2.2. Let $1<p<\infty$ and let $X=\mathbb{R}^{2}$ be given the l_{p}-norm $\|(x, y)\|=\left(|x|^{p}+|y|^{p}\right)^{1 / p}$ for any $(x, y) \in X$. Then for the element $z=(0,1)$ of X and $\varepsilon>0$ we have $\rho(z, \varepsilon)=(p-$ 1) $p^{-1} \varepsilon^{p}+o\left(\varepsilon^{p}\right)$ for $\varepsilon \rightarrow 0$.

Proof. For $\varepsilon \in(0,1)$, let $t=t(\varepsilon) \in(0,1)$ be defined by the equation

$$
\begin{equation*}
t^{p}+1-(1-t)^{p}=\varepsilon^{p} \tag{2.2}
\end{equation*}
$$

and let $r=1-(1-t)^{p-1}$. Clearly, for $\varepsilon \rightarrow 0$ we have $t \rightarrow 0$, (2.2) yields $p t+o(t)=\varepsilon^{p}$, hence

$$
\begin{equation*}
t=p^{-1} \varepsilon^{p}+o\left(\varepsilon^{p}\right) \tag{2.3}
\end{equation*}
$$

so that $r=(p-1) t+o(t)=(p-1) p^{-1} \varepsilon^{p}+o\left(\varepsilon^{p}\right)$.
Thus, by Lemma 2.1, it suffices to show that for small ε and for ρ_{1} defined in Lemma 2.1 we have $\rho_{1}=r$. Define $y_{1}=1-t$ and $x_{1}=\left(1-y_{1}^{p}\right)^{1 / p}$. The element $z_{1}=\left(x_{1}, y_{1}\right)$ of X has norm one and (2.2) implies

$$
\begin{equation*}
\left\|z_{1}-z\right\|=\varepsilon \tag{2.4}
\end{equation*}
$$

Represent X^{*} by \mathbb{R}^{2} with the l_{q}-norm, where $1 / q+1 / p=1$, and consider the functional $f_{1} \in X^{*}$ represented by $f_{1}=\left(x_{1}^{p-1}, y_{1}^{p-1}\right)$. Then $f_{1}\left(z_{1}\right)=1$ and, since $q(p-1)=p$, f_{1} is of norm one. As the space X is strictly convex, there is no point u in the closed unit ball U of X such that $u \neq z_{1}$ and $f_{1}(u)=1$. Hence, taking (2.4) into account, we get

$$
\begin{equation*}
\rho_{1} \leq 1-f_{1}(z)=1-y_{1}^{p-1}=r . \tag{2.5}
\end{equation*}
$$

Now we will prove the inequality $\rho_{1} \geq r$ for small ε. To show this, let $f \in X^{*}$ be a functional of norm one. Represent f by $(v, w) \in \mathbb{R}^{2}$ with $|v|^{q}+|w|^{q}=1$. We will prove that, for small ε, f maps the set $U_{\varepsilon}=\{u \in U:\|u-z\|<\varepsilon\}$ onto a set containing the interval $[-1,1] \cap(f(z)-r, f(z)+r)$.

Let $g, h \in X^{*}$ be the functionals with the representations $g=(-v, w)$ and $h=(v,-w)$. Since, for any $(x, y) \in \mathbb{R}^{2},(x, y)$ is in U_{ε} if and only if $(-x, y)$ is in U_{ε}, we have $g\left(U_{\varepsilon}\right)=$ $f\left(U_{\varepsilon}\right)$ and $h\left(U_{\varepsilon}\right)=-f\left(U_{\varepsilon}\right)$. Trivially, $g(z)=f(z)$ and $h(z)=-f(z)$. It follows readily from this that we can assume without loss of generality that $v, w \geq 0$. Since X is strictly convex, there is exactly one point $z_{f}=\left(x_{f}, y_{f}\right) \in X$ such that $\left\|z_{f}\right\|=f\left(z_{f}\right)=1$. It is easy to see that $x_{f} \geq 0, y_{f} \geq 0$ and that

$$
\begin{equation*}
v=x_{f}^{p / q}=x_{f}^{p-1}, \quad w=y_{f}^{p / q}=y_{f}^{p-1} . \tag{2.6}
\end{equation*}
$$

As $\left\|z_{f}\right\|=\left\|z_{1}\right\|$, we have

$$
\begin{equation*}
x_{f}^{p}+y_{f}^{p}=x_{1}^{p}+y_{1}^{p} . \tag{2.7}
\end{equation*}
$$

We consider two cases. Suppose first that $x_{f}<x_{1}$; then, by (2.7), $y_{f}>y_{1}$. Therefore, $\left\|z_{f}-z\right\|<\left\|z_{1}-z\right\|$, hence by (2.4), z_{f} is in the ε-neighbourhood of z. As $f\left(z_{f}\right)=1$, it suffices to find a $u \in U$ such that $\|u-z\|<\varepsilon$ and $f(u) \leq f(z)-r$. Define $u=(1-\varepsilon / 2) z$. Then $u \in U,\|u-z\|=\varepsilon / 2$, and

$$
\begin{align*}
f(z)-f(u) & =\frac{\varepsilon}{2} f(z)=\frac{\varepsilon}{2} w=\frac{\varepsilon}{2} y_{f}^{p-1} \\
& >\frac{\varepsilon}{2} y_{1}^{p-1}=\frac{\varepsilon}{2}(1-t)^{p-1}=\frac{\varepsilon}{2}(1-r) . \tag{2.8}
\end{align*}
$$

Since $r=o(\varepsilon)$ for $\varepsilon \rightarrow 0$, the last expression is greater than r for small ε.
Consider now the second case, that is, let

$$
\begin{equation*}
x_{f} \geq x_{1} \tag{2.9}
\end{equation*}
$$

then (2.7) yields

$$
\begin{equation*}
y_{f} \leq y_{1} . \tag{2.10}
\end{equation*}
$$

For any $x \in\left(0, x_{1}\right]$, let $a(x)$ be the uniquely determined positive number such that the elements $u(x), \bar{u}(x)$ of X, defined by

$$
\begin{equation*}
u(x)=(x, a(x)), \quad \bar{u}(x)=(-x, a(x)) \tag{2.11}
\end{equation*}
$$

are of norm one. Clearly, $u\left(x_{1}\right)=z_{1}$. The function $d(x)=\|u(x)-z\|$ is strictly increasing on ($0, x_{1}$] and, by (2.4), $d\left(x_{1}\right)=\varepsilon$. Thus, for each $x \in\left(0, x_{1}\right), u(x)$ (and hence also $\bar{u}(x)$) is in the ε-neighbourhood of z. Furthermore,

$$
\begin{align*}
f(z)-f(\bar{u}(x)) & =w+v x-w a(x) \\
& \geq v x+w a(x)-w \tag{2.12}\\
& =f(u(x))-f(z) .
\end{align*}
$$

Therefore, it suffices to show that, for each $\alpha>0$, there is $x \in\left(0, x_{1}\right)$ such that $f(u(x))-$ $f(z)>r-\alpha$. Since the functions f and u are continuous, it will suffice to prove that $f\left(u\left(x_{1}\right)\right)-f(z) \geq r$. If follows from (2.6), (2.9), and (2.10) that $v \geq x_{1}^{p-1}$ and $w \leq y_{1}^{p-1}$.

Consequently, $f\left(u\left(x_{1}\right)\right)-f(z)=v x_{1}+w\left(y_{1}-1\right) \geq x_{1}^{p}+y_{1}^{p-1}\left(y_{1}-1\right)=1-y_{1}^{p-1}=$ $1-(1-t)^{p-1}=r$, which concludes the proof.
Lemma 2.3. Let X and z be as in Lemma 2.2 and let $\varepsilon>0$. Then

$$
\begin{equation*}
\delta(z, \varepsilon)=p^{-1}\left(2^{-1}-2^{-p}\right) \varepsilon^{p}+o\left(\varepsilon^{p}\right) \quad \text { for } \varepsilon \longrightarrow 0 \tag{2.13}
\end{equation*}
$$

Proof. Let $0<\varepsilon<1$. By the results of [1],

$$
\begin{equation*}
\delta(z, \varepsilon)=1-\left\|\frac{z_{1}+z}{2}\right\| \tag{2.14}
\end{equation*}
$$

for a point $z_{1}=\left(x_{1}, y_{1}\right) \in X$ of norm one such that

$$
\begin{equation*}
\left\|z_{1}-z\right\|=\varepsilon . \tag{2.15}
\end{equation*}
$$

The symmetry of the unit ball of X and the inequality $\varepsilon<1$ enable us to assume that $x_{1}, y_{1}>0$. Define $t=1-y_{1}$. Since $\left\|z_{1}\right\|=1$, we have

$$
\begin{equation*}
x_{1}^{p}=1-y_{1}^{p}=1-(1-t)^{p} . \tag{2.16}
\end{equation*}
$$

The equality (2.15) can be written as (2.2) and, for $\varepsilon \rightarrow 0$, (2.3) is true. Using (2.16), we have

$$
\begin{align*}
\left\|\frac{z_{1}+z}{2}\right\|^{p} & =\left(\frac{x_{1}}{2}\right)^{p}+\left(\frac{\left(y_{1}+1\right)}{2}\right)^{p} \\
& =2^{-p}\left(1-(1-t)^{p}\right)+\left(1-\frac{t}{2}\right)^{p} \tag{2.17}\\
& =2^{-p} p t+1-2^{-1} p t+o(t) \text { for } t \longrightarrow 0
\end{align*}
$$

From this we obtain $\left\|\left(z_{1}+z\right) / 2\right\|=1+2^{-p} t-2^{-1} t+o(t)$, and in combination with (2.14) and (2.3), it concludes the proof.
Proposition 2.4. Let c be a real constant such that for every normed linear space X there is $\varepsilon_{o}>0$ such that

$$
\begin{equation*}
\rho(x, \varepsilon) \geq c \delta(x, \varepsilon) \tag{2.18}
\end{equation*}
$$

for each $x \in X$ of norm one and $\varepsilon \in\left(0, \varepsilon_{0}\right)$. Then $c \leq 2 / \log 2$.

Proof. It follows from Lemmas 2.2 and 2.3 that if c satisfies the assumptions of the proposition,

$$
\begin{equation*}
c \leq(p-1)\left(2^{-1}-2^{-p}\right)^{-1} \quad \forall p>1 . \tag{2.19}
\end{equation*}
$$

One can easily observe that the limit of the right side of this inequality for $p \rightarrow 1$ (or, infimum over $p>1$) is $2 / \log 2$.

Proposition 2.5. Let λ, C be real constants, $\lambda>1$, such that for every normed linear space X there is $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
\rho(x, \varepsilon) \leq C \delta(x, \lambda \varepsilon) \tag{2.20}
\end{equation*}
$$

for each $x \in X$ of norm one and $\varepsilon \in\left(0, \varepsilon_{0}\right)$. Then $C>2(e \lambda \log \lambda)^{-1}$.
Proof. Let λ and C satisfy the assumptions of the proposition. By Lemmas 2.2 and 2.3, for each $p>1$ we have

$$
\begin{equation*}
C \geq(p-1)\left(2^{-1}-2^{-p}\right)^{-1} \lambda^{-p}>2(p-1) \lambda^{-p} . \tag{2.21}
\end{equation*}
$$

Choosing $p=1+\log ^{-1} \lambda$, we obtain from this the desired inequality.
Corollary 2.6. There is no constant C such that for every normed linear space X there is $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
\rho(x, \varepsilon) \leq C \delta(x, \varepsilon) \tag{2.22}
\end{equation*}
$$

for each $x \in X$ of norm one and $\varepsilon \in\left(0, \varepsilon_{0}\right)$.
Proof. If C were such a constant, Proposition 2.5 and the inequality $\delta(x, \varepsilon) \leq \delta(x, \lambda \varepsilon)$ for $\lambda>1$ would yield $C>2(e \lambda \log \lambda)^{-1}$ for each $\lambda>1$, a contradiction.

Proposition 2.7. For every normed linear space X and $\varepsilon>0$ we have

$$
\begin{equation*}
\rho(\varepsilon)=\inf \{\rho(x, \varepsilon): x \in X,\|x\|=1\} . \tag{2.23}
\end{equation*}
$$

Proof. It follows from the definition that we need only prove the inequality

$$
\begin{equation*}
\rho(\varepsilon) \geq \inf \{\rho(x, \varepsilon): x \in X,\|x\|=1\} . \tag{2.24}
\end{equation*}
$$

Let r be a real number such that

$$
\begin{equation*}
r>\rho(\varepsilon) . \tag{2.25}
\end{equation*}
$$

It suffices to show that, for each such a number r, there is $x_{1} \in X$ of norm one such that

$$
\begin{equation*}
\rho\left(x_{1}, \varepsilon\right) \leq r . \tag{2.26}
\end{equation*}
$$

By (2.25), there is $x_{0} \in U$ with $\rho\left(x_{0}, \varepsilon\right)<r$. Therefore, there exists a closed linear subspace M of X with the associated quotient map $Q: X \rightarrow X / M$ and a $y \in Q(U)$ such that
$\left\|y-Q\left(x_{0}\right)\right\|<r$ and $\left\|x-x_{0}\right\| \geq \varepsilon$ for each $x \in U$ with $Q(x)=y$. Let x be a fixed inverse image of y in U. Then

$$
\begin{equation*}
\left\|Q\left(x-x_{0}\right)\right\|=\left\|y-Q\left(x_{0}\right)\right\|<r \tag{2.27}
\end{equation*}
$$

and, for all $m \in M$,

$$
\begin{equation*}
\left\|x+m-x_{0}\right\| \geq \varepsilon \quad \text { whenever } x+m \in U \tag{2.28}
\end{equation*}
$$

Applying (2.28) to $m=0$, we get

$$
\begin{equation*}
\left\|x-x_{0}\right\| \geq \varepsilon \tag{2.29}
\end{equation*}
$$

which, particularly, implies that $\varepsilon \leq 2$ and that the space X is not trivial, that is, $X \neq\{0\}$.
Suppose first that $M=\{0\}$. Then $\left\|x-x_{0}\right\|=\left\|Q\left(x-x_{0}\right)\right\|$ and, combining this with (2.27) and (2.29), we obtain $\varepsilon<r$. Choose any $x_{1} \in X$ of norm one. Since Q is an isometry and, as we have showed, $\varepsilon \leq 2$ and $\varepsilon<r, Q$ does not map the open ε-neighbourhood of x_{1} in U onto a set containing the open r-neighbourhood of $Q\left(x_{1}\right)$ in $Q(U)$, so that (2.26) holds.

Suppose now $M \neq\{0\}$. By (2.27), we can choose a nonzero $m_{0} \in M$ such that

$$
\begin{equation*}
\left\|x-x_{0}+m_{0}\right\|<r . \tag{2.30}
\end{equation*}
$$

Let $S=\left[s_{1}, s_{2}\right]$ and $T=\left[t_{1}, t_{2}\right]$ be the intervals of real numbers defined by

$$
\begin{equation*}
S=\left\{s: x+s m_{0} \in U\right\} \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
T=\left\{t: x_{0}+t m_{0} \in U\right\} . \tag{2.32}
\end{equation*}
$$

As $x_{0} \in U$, we have $0 \in T$, that is,

$$
\begin{equation*}
t_{1} \leq 0 \leq t_{2} \tag{2.33}
\end{equation*}
$$

Denote

$$
\begin{equation*}
u_{s}=x+s m_{0} \quad \text { for } s \in S \tag{2.34}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{i}=x_{0}+t_{i} m_{0} \quad \text { for } i=1,2 \tag{2.35}
\end{equation*}
$$

Clearly, $\left\|v_{i}\right\|=1$ for $i=1,2$. We will show that (2.26) is true for either $x_{1}=v_{1}$ or $x_{1}=v_{2}$.
Let M_{0} denote the one-dimensional linear subspace of X containing m_{0} and let Q_{0} : $X \rightarrow X / M_{0}$ be the quotient map associated with M_{0}. We have $Q_{0}(x)-Q_{0}\left(v_{i}\right)=Q_{0}\left(x-x_{0}\right)$ for $i=1,2$, hence, by (2.30),

$$
\begin{equation*}
\left\|Q_{0}(x)-Q_{0}\left(v_{i}\right)\right\|<r \quad \text { for } i=1,2 . \tag{2.36}
\end{equation*}
$$

Let $u \in U$ be such that $Q_{0}(u)=Q_{0}(x)$; then $u-x \in M_{0}$, hence $u=u_{s}$ for some $s \in S$. Thus, it suffices to show that for some $i \in\{1,2\}$,

$$
\begin{equation*}
\left\|u_{s}-v_{i}\right\| \geq \varepsilon \quad \forall s \in S \tag{2.37}
\end{equation*}
$$

Suppose on the contrary that there are some $r_{i} \in S(i=1,2)$ such that

$$
\begin{equation*}
\left\|u_{r_{i}}-v_{i}\right\|<\varepsilon \quad \text { for } i=1,2 . \tag{2.38}
\end{equation*}
$$

By the definitions of u_{s} and v_{i}, it follows that

$$
\begin{equation*}
\left\|x-x_{0}+p_{i} m_{0}\right\|<\varepsilon \quad \text { for } i=1,2 \tag{2.39}
\end{equation*}
$$

where $p_{i}=r_{i}-t_{i}(i=1,2)$. Observe that (2.33) implies

$$
\begin{equation*}
p_{1} \geq r_{1}, \quad p_{2} \leq r_{2}, \tag{2.40}
\end{equation*}
$$

and, since $r_{i} \in S$ for $i=1,2$, we get

$$
\begin{equation*}
p_{1} \geq s_{1}, \quad p_{2} \leq s_{2} . \tag{2.41}
\end{equation*}
$$

Suppose first that $p_{1} \leq s_{2}$. Then (2.41) yields $p_{1} \in S$ so that $x+p_{1} m_{0} \in U$ by the definition of S. Therefore, (2.39) is in contradiction with (2.28).

Suppose now that $p_{1}>s_{2}$. Then, by (2.41), the element s_{2} is in $\left[p_{2}, p_{1}\right)$. Since the function $f(s)=\left\|x-x_{0}+s m_{0}\right\|$ is convex, we get from (2.39) that $f\left(s_{2}\right)<\varepsilon$. But, since $s_{2} \in S$, we have $x+s_{2} m_{0} \in U$, which contradicts (2.28).

Turning our attention to the case of a Hilbert space X, we start with a lemma.
Lemma 2.8. Let X be a Hilbert space, $\operatorname{dim} X \geq 2, x$ an element of X of norm one, and let $\varepsilon \in(0,2]$. Then $\rho(x, \varepsilon) \leq \varepsilon^{2} / 2$.

Proof. Choose a point $u \in X$ of norm one such that $\|x-u\|=\varepsilon$ and a point $m \in X$ such that $\{m, u\}$ is an orthonormal basis of the linear span of the points x, u. Let M be the linear subspace of X of dimension one containing m and let $Q: X \rightarrow X / M$ be the quotient map associated with M. Then $x=t m+s u$ for some real numbers t, s. We have

$$
\begin{equation*}
t^{2}+s^{2}=\|x\|^{2}=1 \tag{2.42}
\end{equation*}
$$

and

$$
\begin{equation*}
t^{2}+(s-1)^{2}=\|x-u\|^{2}=\varepsilon^{2} . \tag{2.43}
\end{equation*}
$$

Subtracting these inequalities, we get $2 s-1=1-\varepsilon^{2}$, hence $s=1-\varepsilon^{2} / 2$. Since for any nonzero real number r we have $\|u+r m\|>1, u$ is the only inverse image of $Q(u)$ in U. These facts yield

$$
\begin{align*}
\rho(x, \varepsilon) & \leq\|Q(x)-Q(u)\|=\|Q(t m+s u-u)\| \\
& =\inf \{\|(s-1) u+r m\|: r \in \mathbb{R}\} \tag{2.44}\\
& =|s-1|=\frac{\varepsilon^{2}}{2} .
\end{align*}
$$

The reader is probably familiar with the following simple fact. We give a proof for the sake of completeness.

Lemma 2.9. Let X be a Hilbert space, M a closed linear subspace of $X, Q: X \rightarrow X / M$ the quotient map associated with M, and let $y \in X / M$ be arbitrary. Then there exists $u \in X$ such that $Q(u)=y,\|u\|=\|y\|$, and u is orthogonal to M.

Proof. Choose any $x \in X$ such that $Q(x)=y$. As X is reflexive, it follows readily that there is an $m_{0} \in M$ such that $\left\|x+m_{0}\right\|=\|Q(x)\|$. Define $u=x+m_{0}$. Then $Q(u)=Q(x)=y$ and $\|u\|=\|y\|$. Let $m \in M$ be arbitrary; by the definitions of u and m_{0}, for any real number t we have $\|u+t m\|=\left\|x+m_{0}+t m\right\| \geq\|Q(x)\|=\|u\|$, thus u is orthogonal to m.

Theorem 2.10. Let X be a Hilbert space, $x \in U$ and $\varepsilon>0$. Then

$$
\begin{equation*}
\rho(x, \varepsilon) \geq \frac{\varepsilon^{2}}{2} . \tag{2.45}
\end{equation*}
$$

Proof. Let M be a closed linear subspace of $X, Q: X \rightarrow X / M$ the quotient map associated with $M, x_{0} \in U$ and $y_{0}=Q\left(x_{0}\right)$. We show that Q maps the ε-neighbourhood of x_{0} in U onto a set containing the $\varepsilon^{2} / 2$-neighbourhood of y_{0} in $Q(U)$.

Let $y \in Q(U)$ be such that $\left\|y-y_{0}\right\|=r$ with $r<\varepsilon^{2} / 2$. We will find $x \in U$ such that $Q(x)=y$ and $\left\|x-x_{0}\right\|^{2} \leq 2 r$; observe that the last inequality implies that $\left\|x-x_{0}\right\|<\varepsilon$. By Lemma 2.9, there are elements u_{0}, u of X orthogonal to M such that

$$
\begin{array}{cl}
Q\left(u_{0}\right)=y_{0}, & \left\|u_{0}\right\|=\left\|y_{0}\right\| \\
Q(u)=y, & \|u\|=\|y\| . \tag{2.47}
\end{array}
$$

Clearly, $x_{0}=u_{0}+m_{0}$ for some $m_{0} \in M$ and, since $x_{0} \in U$, the orthogonality of u_{0} and m_{0} yields

$$
\begin{equation*}
\left\|u_{0}\right\|^{2}+\left\|m_{0}\right\|^{2} \leq 1 . \tag{2.48}
\end{equation*}
$$

As any $m \in M$ is orthogonal to u and u_{0} (and hence to $u-u_{0}$), we have $\left\|u-u_{0}+m\right\| \geq$ $\left\|u-u_{0}\right\|$ for each $m \in M$, thus

$$
\begin{equation*}
\left\|u-u_{0}\right\|=\left\|Q\left(u-u_{0}\right)\right\|=\left\|y-y_{0}\right\|=r . \tag{2.49}
\end{equation*}
$$

Suppose first that

$$
\begin{equation*}
\|u\|^{2}+\left\|m_{0}\right\|^{2} \leq 1 ; \tag{2.50}
\end{equation*}
$$

in this case define $x=u+m_{0}$. Then $Q(x)=Q(u)=y, x \in U$ by (2.50) and, using (2.49), we obtain

$$
\begin{equation*}
\left\|x-x_{0}\right\|=\left\|\left(u+m_{0}\right)-\left(u_{0}+m_{0}\right)\right\|=r \leq(2 r)^{1 / 2} \tag{2.51}
\end{equation*}
$$

hence x is the desired element of U.

Suppose now that

$$
\begin{equation*}
\|u\|^{2}+\left\|m_{0}\right\|^{2}>1 \tag{2.52}
\end{equation*}
$$

Then, clearly, $m_{0} \neq 0$. Define real numbers t, p, and $x \in X$ by

$$
\begin{gather*}
t=\left\|m_{0}\right\|^{-1}\left(1-\|u\|^{2}\right)^{1 / 2}, \\
p=(1-t)\left\|m_{0}\right\|, \tag{2.53}\\
x=u+t m_{0} .
\end{gather*}
$$

We have $\|x\|^{2}=\|u\|^{2}+\left\|t m_{0}\right\|^{2}=1$, thus $x \in U$. Furthermore, $\left\|x-x_{0}\right\|^{2}=\|\left(u+t m_{0}\right)-$ $\left(u_{0}+m_{0}\right)\left\|^{2}=\right\| u-u_{0}\left\|^{2}+(1-t)^{2}\right\| m_{0} \|^{2}$, hence, by (2.49) and by the definition of p,

$$
\begin{equation*}
\left\|x-x_{0}\right\|^{2}=r^{2}+p^{2} \tag{2.54}
\end{equation*}
$$

Also, (2.49) and triangle inequalities yield $\left\|u_{0}\right\| \geq|\|u\|-r|$. Thus, using (2.48), we have

$$
\begin{equation*}
\left\|m_{0}\right\|^{2} \leq 1-(\|u\|-r)^{2} \tag{2.55}
\end{equation*}
$$

We denote by f the function

$$
\begin{equation*}
f(v, w)=\left(1-v^{2}\right)^{1 / 2}-\left(1-w^{2}\right)^{1 / 2} \quad \text { for } v, w \in[0,1] \tag{2.56}
\end{equation*}
$$

Observe that $p=\left\|m_{0}\right\|-\left(1-\|u\|^{2}\right)^{1 / 2}$; in combination with (2.52), (2.55) and with the definition of the function f, it yields

$$
\begin{equation*}
0<p \leq f(|\|u\|-r|,\|u\|) . \tag{2.57}
\end{equation*}
$$

We consider three cases.
Case 1. Let $\|u\| \geq r$. Since, for any fixed $r \geq 0, f(s-r, s)$ is an increasing function of the variable $s \in[r, 1]$, we obtain from (2.54) and (2.57) that

$$
\begin{equation*}
\left\|x-x_{0}\right\|^{2} \leq r^{2}+f^{2}(1-r, 1)=2 r . \tag{2.58}
\end{equation*}
$$

Case 2. Let $\|u\|<r \leq 1$. Now, since the function $f(v, w)$ is decreasing in the variable v and increasing in the variable w, we get from (2.54) and (2.57) that

$$
\begin{equation*}
\left\|x-x_{0}\right\|^{2} \leq r^{2}+f^{2}(0, r)=2-2\left(1-r^{2}\right)^{1 / 2} \leq 2 r . \tag{2.59}
\end{equation*}
$$

Case 3. Let $r>1$. In this case, (2.54) with (2.57) and the inequality $\|u\| \leq 1$ yield

$$
\begin{equation*}
\left\|x-x_{0}\right\|^{2} \leq r^{2}+f^{2}(r-1,1)=2 r \tag{2.60}
\end{equation*}
$$

which completes the proof.

Theorem 2.11. Let X be a Hilbert space, $\operatorname{dim} X \geq 2$, and let $\varepsilon \in(0,2]$. Then

$$
\begin{equation*}
\rho(\varepsilon)=\frac{\varepsilon^{2}}{2} \tag{2.61}
\end{equation*}
$$

and, for each $x \in X$ of norm one,

$$
\begin{equation*}
\rho(x, \varepsilon)=\frac{\varepsilon^{2}}{2} . \tag{2.62}
\end{equation*}
$$

Proof. The assertion follows immediately from Lemma 2.8, Theorem 2.10, and the definition of $\rho(\varepsilon)$.

We note that since for one-dimensional space we have $\rho(\varepsilon)=\varepsilon$ for any $\varepsilon \in(0,2]$, the restriction $\operatorname{dim} X \geq 2$ in Theorem 2.11 is essential.

References

[1] J. Daneš, On local and global moduli of convexity, Comment. Math. Univ. Carolinae 17 (1976), no. 3, 413-420.
[2] O. Hanner, On the uniform convexity of L^{p} and l^{p}, Ark. Mat. 3 (1956), 239-244.
[3] J. Reif, A characterization of (locally) uniformly convex spaces in terms of relative openness of quotient maps on the unit ball, J. Funct. Anal. 177 (2000), no. 1, 1-15.

Jiǐí Reif: Department of Mathematics, Faculty of Applied Sciences, University of West Bohemia, 30614 Plzeň, Czech Republic

E-mail address: reif@kma.zcu.cz

