HYERS-ULAM-RASSIAS STABILITY OF JORDAN HOMOMORPHISMS ON BANACH ALGEBRAS

TAKESHI MIURA, SIN-EI TAKAHASI, AND GO HIRASAWA
Received 18 July 2003

We prove that a Jordan homomorphism from a Banach algebra into a semisimple commutative Banach algebra is a ring homomorphism. Using a signum effectively, we can give a simple proof of the Hyers-Ulam-Rassias stability of a Jordan homomorphism between Banach algebras. As a direct corollary, we show that to each approximate Jordan homomorphism f from a Banach algebra into a semisimple commutative Banach algebra there corresponds a unique ring homomorphism near to f.

1. Introduction and statement of results

It seems that the stability problem of functional equations had been first raised by Ulam (cf. [11, Chapter VI] and [12]): For what metric groups G is it true that an ε-automorphism of G is necessarily near to a strict automorphism?

An answer to the above problem has been given as follows. Suppose E_{1} and E_{2} are two real Banach spaces and $f: E_{1} \rightarrow E_{2}$ is a mapping. If there exist $\delta \geq 0$ and $p \geq 0, p \neq 1$ such that

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \delta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E_{1}$, then there is a unique additive mapping $T: E_{1} \rightarrow E_{2}$ such that $\| f(x)-$ $T(x)\|\leq 2 \delta\| x \|^{P} /\left|2-2^{p}\right|$ for every $x \in E_{1}$. This result is called the Hyers-Ulam-Rassias stability of the additive Cauchy equation $g(x+y)=g(x)+g(y)$. Indeed, Hyers [5] obtained the result for $p=0$. Then Rassias [8] generalized the above result of Hyers to the case where $0 \leq p<1$. Gajda [4] solved the problem for $1<p$, which was raised by Rassias; In the same paper, Gajda also gave an example that a similar result to the above does not hold for $p=1$ (cf. [9]). If $p<0$, then $\|x\|^{p}$ is meaningless for $x=0$; In this case, if we assume that $\|0\|^{p}$ means ∞, then the proof given in [8] also works for $x \neq 0$. Moreover, with minor changes in the proof, the result is also valid for $p<0$. Thus, the Hyers-UlamRassias stability of the additive Cauchy equation holds for $p \in \mathbb{R} \backslash\{1\}$. Here and after, the letter \mathbb{R} denotes the real number field and \mathbb{C} stands for the complex number field.

Suppose A and B are two Banach algebras. We say that a mapping $\tau: A \rightarrow B$ is a Jordan homomorphism if

$$
\begin{gather*}
\tau(a+b)=\tau(a)+\tau(b) \quad(a, b \in A), \\
\tau\left(a^{2}\right)=\tau(a)^{2} \quad(a \in A) . \tag{1.2}
\end{gather*}
$$

If, in addition, τ is multiplicative, that is

$$
\begin{equation*}
\tau(a b)=\tau(a) \tau(b) \quad(a, b \in A), \tag{1.3}
\end{equation*}
$$

we say that τ is a ring homomorphism. The study of ring homomorphisms between Banach algebras A and B is of interest even if $A=B=\mathbb{C}$. For example, the zero mapping, the identity and the complex conjugate are ring homomorphisms on \mathbb{C}, which are all continuous. On the other hand, the existence of a discontinuous ring homomorphism on \mathbb{C} is well-known (cf. [6]). More explicitly, if G is the set of all surjective ring homomorphisms on \mathbb{C}, then $\# G=2^{\sharp \mathbb{C}}$, where $\# S$ denotes the cardinal number of a set S. In fact, Charnow [3, Theorem 3] proved that there exist $2^{\ddagger k}$ automorphisms for every algebraically closed field k; It is also known that if \mathscr{A} is a uniform algebra on a compact metric space, then there are exactly $2^{\ddagger \mathbb{C}}$ complex-valued ring homomorphisms on \mathscr{A} whose kernels are nonmaximal prime ideals (see [7, Corollary 2.4]).

By definition, it is obvious that ring homomorphisms are Jordan homomorphisms. Conversely, under a certain condition, Jordan homomorphisms are ring homomorphisms. For example, each Jordan homomorphism τ from a commutative Banach algebra \mathscr{B} into \mathbb{C} is a ring homomorphism: Fix $a, b \in \mathscr{B}$ arbitrarily. Since $\tau\left((a+b)^{2}\right)=\tau(a+b)^{2}$, a simple calculation shows that $\tau(a b+b a)=2 \tau(a) \tau(b)$. The commutativity of \mathscr{B} implies $\tau(a b)=\tau(a) \tau(b)$, and hence τ is a ring homomorphism. This simple example leads us to the following general result.

Theorem 1.1. Suppose A is a Banach algebra, which need not be commutative, and suppose B is a semisimple commutative Banach algebra. If $\tau: A \rightarrow B$ is a Jordan homomorphism, then $\tau(a b)=\tau(a) \tau(b)$ for all $a, b \in A$, that is, τ is a ring homomorphism.

Next, we consider the stability, in the sense of Hyers-Ulam-Rassias, of Jordan homomorphisms. Bourgin [2] proved the following stability result of ring homomorphisms between two unital Banach algebras.

Theorem 1.2. Suppose A and B are unital Banach algebras. If $f: A \rightarrow B$ is a surjective mapping such that

$$
\begin{gather*}
\|f(a+b)-f(a)-f(b)\| \leq \varepsilon \quad(a, b \in A) \\
\|f(a b)-f(a) f(b)\| \leq \delta \quad(a, b \in A) \tag{1.4}
\end{gather*}
$$

for some $\varepsilon \geq 0$ and $\delta \geq 0$, then f is a ring homomorphism.
Applying a theorem of Hyers [5], Rassias [8] and Gajda [4], Badora [1] proved the Hyers-Ulam-Rassias stability of ring homomorphisms, which generalizes the above result of Bourgin. We will prove the Hyers-Ulam-Rassias stability of Jordan homomorphisms.

We emphasize that the introduction of the signum $s=|1-p| /(1-p)$ made it possible to give a simple proof of our stability results.

Theorem 1.3. Suppose A and B are Banach algebras. If $f: A \rightarrow B$ is a mapping such that

$$
\begin{gather*}
\|f(a+b)-f(a)-f(b)\| \leq \delta\left(\|a\|^{p}+\|b\|^{p}\right) \quad(a, b \in A), \tag{1.5}\\
\left\|f\left(a^{2}\right)-f(a)^{2}\right\| \leq \delta\|a\|^{2 p} \quad(a \in A) \tag{1.6}
\end{gather*}
$$

for some $\delta \geq 0$ and $p \geq 0, p \neq 1$, then there is a unique Jordan homomorphism $\tau: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(a)-\tau(a)\| \leq \frac{2 \delta}{\left|2-2^{p}\right|}\|a\|^{p} \quad(a \in A) \tag{1.7}
\end{equation*}
$$

For $p<0$, we can also give a similar result to Theorem 1.3, under an additional condition that $f(0)=0$. The hypothesis $f(0)=0$ seems to be natural. It follows from (1.5) that $f(0)=0$ whenever $p>0$; On the other hand, if $p<0$ then the inequalities (1.5) and (1.6) give no information for $f(0)$.

Theorem 1.4. Suppose A and B are Banach algebras. If $f: A \rightarrow B$ is a mapping, with $f(0)=$ 0 , such that the inequalities (1.5) and (1.6) are valid for some $\delta \geq 0$ and $p<0$, then there is a unique Jordan homomorphism $\tau: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(a)-\tau(a)\| \leq \frac{2 \delta}{\left|2-2^{p}\right|}\|a\|^{p} \quad(a \in A) . \tag{1.8}
\end{equation*}
$$

As an easy corollary to Theorems 1.1, 1.3, and 1.4, we obtain the following stability result.

Corollary 1.5. Suppose A is a Banach algebra and suppose B is a semisimple commutative Banach algebra. If $f: A \rightarrow B$ is a mapping such that

$$
\begin{gather*}
\|f(a+b)-f(a)-f(b)\| \leq \delta\left(\|a\|^{p}+\|b\|^{p}\right) \quad(a, b \in A), \\
\left\|f\left(a^{2}\right)-f(a)^{2}\right\| \leq \delta\|a\|^{2 p} \quad(a \in A) \tag{1.9}
\end{gather*}
$$

for some $\delta \geq 0$ and $p \in \mathbb{R}$. If $p \geq 0$ and $p \neq 1$, or $p<0$ and $f(0)=0$, then there is a unique ring homomorphism $\tau: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(a)-\tau(a)\| \leq \frac{2 \delta}{\left|2-2^{p}\right|}\|a\|^{p} \quad(a \in A) \tag{1.10}
\end{equation*}
$$

2. Proof of results

Before we turn to the proof of Theorem 1.1, we need the following lemma. It should be mentioned that the following proof is just a slight modification of [13, Proof of Theorem 1] by Żelazko.

Lemma 2.1. Suppose A is a Banach algebra, which need not be commutative. Then each Jordan homomorphism $\phi: A \rightarrow \mathbb{C}$ is a ring homomorphism.

Proof. Recall that ϕ is an additive mapping such that $\phi\left(a^{2}\right)=\phi(a)^{2}$ for all $a \in A$. Replacement of a by $x+y$ results in

$$
\begin{equation*}
\phi(x y+y x)=2 \phi(x) \phi(y) \quad(x \in A, y \in A) . \tag{2.1}
\end{equation*}
$$

Then (2.1), with $x=x^{2}$, implies

$$
\begin{equation*}
\phi\left(x^{2} y+y x^{2}\right)=2 \phi(x)^{2} \phi(y) \tag{2.2}
\end{equation*}
$$

Taking $y=x y+y x$ in (2.1), we see that

$$
\begin{equation*}
\phi(x(x y+y x)+(x y+y x) x)=2 \phi(x) \phi(x y+y x), \tag{2.3}
\end{equation*}
$$

and hence, by (2.1)

$$
\begin{equation*}
\phi\left(x^{2} y+2 x y x+y x^{2}\right)=4 \phi(x)^{2} \phi(y) \quad(x \in A, y \in A) . \tag{2.4}
\end{equation*}
$$

Subtraction (2.4) from (2.2) gives

$$
\begin{equation*}
\phi(x y x)=\phi(x)^{2} \phi(y) \quad \text { if } x \in A, y \in A . \tag{2.5}
\end{equation*}
$$

Fix $a \in A$ and $b \in A$ arbitrarily, and put

$$
\begin{equation*}
2 t=\phi(a b-b a) . \tag{2.6}
\end{equation*}
$$

It follows from (2.1) and (2.6) that

$$
\begin{equation*}
\phi(a b)=\phi(a) \phi(b)+t, \quad \phi(b a)=\phi(a) \phi(b)-t . \tag{2.7}
\end{equation*}
$$

By (2.5), (2.6), (2.7),

$$
\begin{align*}
4 t^{2} & =\phi\left((a b-b a)^{2}\right) \\
& =\phi(a b)^{2}-\phi\left(a b^{2} a\right)-\phi\left(b a^{2} b\right)+\phi(b a)^{2} \\
& =\{\phi(a) \phi(b)+t\}^{2}-2 \phi(a)^{2} \phi(b)^{2}+\{\phi(a) \phi(b)-t\}^{2} \tag{2.8}\\
& =2 t^{2} ;
\end{align*}
$$

hence $t=0$, which proves $\phi(a b)=\phi(b a)$. It follows from (2.1) that $\phi(a b)=\phi(a) \phi(b)$, and the proof is complete.

Proof of Theorem 1.1. We show that τ is multiplicative. Let M_{B} be the maximal ideal space of B. We associate to each $\varphi \in M_{B}$ a function $\tau_{\varphi}: A \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
\tau_{\varphi}(a)=\varphi(\tau(a)) \quad(a \in A) . \tag{2.9}
\end{equation*}
$$

Pick $\varphi \in M_{B}$ arbitrarily. We see that $\tau_{\varphi}\left(a^{2}\right)=\tau_{\varphi}(a)^{2}$ for all $a \in A$, and so Lemma 2.1, applied to τ_{φ}, implies that τ_{φ} is multiplicative. By the definition of τ_{φ}, we get $\varphi(\tau(a b))=$ $\varphi(\tau(a) \tau(b))$ for all $a, b \in A$. Since $\varphi \in M_{B}$ was arbitrary and since B is assumed to be semisimple, we obtain $\tau(a b)=\tau(a) \tau(b)$ for all $a, b \in A$. We thus conclude that τ is a ring homomorphism, and the proof is complete.

Proof of Theorem 1.3. It follows from [8] and [4] (cf. [5]) that there is an additive mapping $\tau: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(a)-\tau(a)\| \leq \frac{2 \delta}{\left|2-2^{p}\right|}\|a\|^{p} \quad(a \in A) \tag{2.10}
\end{equation*}
$$

We first show that $\tau\left(a^{2}\right)=\tau(a)^{2}$ for all $a \in A$. Pick $a \in A$ arbitrarily, and put $s=\mid 1-$ $p \mid /(1-p)$. Note that $s=1$ if $0 \leq p<1$ and that $s=-1$ if $p>1$. Since τ is additive, it follows from (2.10) that

$$
\begin{align*}
\left\|n^{-2 s} f\left(n^{2 s} a^{2}\right)-\tau\left(a^{2}\right)\right\| & =\left\|n^{-2 s} f\left(n^{2 s} a^{2}\right)-n^{-2 s} \tau\left(n^{2 s} a^{2}\right)\right\| \\
& \leq n^{-2 s} \frac{2 \delta}{\left|2-2^{p}\right|}\left\|n^{2 s} a^{2}\right\|^{p} \tag{2.11}
\end{align*}
$$

for all $n \in \mathbb{N}$, and hence

$$
\begin{equation*}
\left\|n^{-2 s} f\left(n^{2 s} a^{2}\right)-\tau\left(a^{2}\right)\right\| \leq n^{2 s(p-1)} \frac{2 \delta}{\left|2-2^{p}\right|}\left\|a^{2}\right\|^{p} \tag{2.12}
\end{equation*}
$$

for all $n \in \mathbb{N}$. A similar argument to the above shows for each $n \in \mathbb{N}$ that

$$
\begin{equation*}
\left\|n^{-s} f\left(n^{s} a\right)-\tau(a)\right\| \leq n^{s(p-1)} \frac{2 \delta}{\left|2-2^{p}\right|}\|a\|^{p} . \tag{2.13}
\end{equation*}
$$

Since $s(p-1)<0$, it follows from (2.12) and (2.13) that

$$
\begin{equation*}
\tau\left(a^{2}\right)=\lim _{n \rightarrow \infty} n^{-2 s} f\left(n^{2 s} a^{2}\right), \quad \tau(a)=\lim _{n \rightarrow \infty} n^{-s} f\left(n^{s} a\right) \tag{2.14}
\end{equation*}
$$

By (1.6), we get $\left\|f\left(n^{2 s} a^{2}\right)-f\left(n^{s} a\right)^{2}\right\| \leq \delta\left\|n^{s} a\right\|^{2 p}$ for all $n \in \mathbb{N}$. So,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-2 s}\left(f\left(n^{2 s} a^{2}\right)-f\left(n^{s} a\right)^{2}\right) \leq \lim _{n \rightarrow \infty} n^{2 s(p-1)} \delta\|a\|^{2 p}=0 \tag{2.15}
\end{equation*}
$$

since $s(p-1)<0$. Now it follows from (2.14) and (2.15) that

$$
\begin{align*}
\tau\left(a^{2}\right) & =\lim _{n \rightarrow \infty} n^{-2 s} f\left(n^{2 s} a^{2}\right) \\
& =\lim _{n \rightarrow \infty}\left\{n^{-2 s} f\left(n^{2 s} a^{2}\right)-n^{-2 s}\left(f\left(n^{2 s} a^{2}\right)-f\left(n^{s} a\right)^{2}\right)\right\} \tag{2.16}\\
& =\left\{\lim _{n \rightarrow \infty} n^{-s} f\left(n^{s} a\right)\right\}^{2}=\tau(a)^{2} .
\end{align*}
$$

Since $a \in A$ was arbitrary, we obtain $\tau\left(a^{2}\right)=\tau(a)^{2}$ for all $a \in A$, and hence τ is a Jordan homomorphism.

Finally, suppose that $\tau^{*}: A \rightarrow B$ is another Jordan homomorphism such that $\| f(a)-$ $\tau^{*}(a)\|\leq 2 \delta\| a \|^{p} /\left|2-2^{p}\right|$ for all $a \in A$. Then (2.13), with $\tau=\tau^{*}$, is also valid. We thus obtain

$$
\begin{align*}
\left\|\tau(a)-\tau^{*}(a)\right\| & \leq\left\|\tau(a)-n^{-s} f\left(n^{s} a\right)\right\|+\left\|n^{-s} f\left(n^{s} a\right)-\tau^{*}(a)\right\| \\
& \leq n^{s(p-1)} \frac{4 \delta}{\left|2-2^{p}\right|}\|a\|^{p} \tag{2.17}
\end{align*}
$$

for all $a \in A$ and $n \in \mathbb{N}$. Since $s(p-1)<0$, it follows that $\tau=\tau^{*}$, and hence the uniqueness have been proved.

Proof of Theorem 1.4. It follows from [8] that there exists an additive mapping $\tau: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(a)-\tau(a)\| \leq \frac{2 \delta}{\left|2-2^{p}\right|}\|a\|^{p} \quad(a \in A) \tag{2.18}
\end{equation*}
$$

where we assume $\|0\|^{p}=\infty$. It suffices to show that $\tau\left(a^{2}\right)=\tau(a)^{2}$ for all $a \in A$. Since τ is additive, we obtain $\tau(0)=0$, and so the case $a=0$ is omitted. Pick $a \in A \backslash\{0\}$ arbitrarily. There are now two possibilities. Either $a^{2}=0$ or $a^{2} \neq 0$, in which case the proof of Theorem 1.3 works well, and so $\tau\left(a^{2}\right)=\tau(a)^{2}$. Thus we need consider only the case $a^{2}=0$ (In this case, we cannot apply the proof of Theorem 1.3. In fact, if $a^{2}=0$, then $\left\|a^{2}\right\|^{p}=\infty$ and hence (2.13), with $a=a^{2}$, is meaningless). We will show that $\tau(a)^{2}=0$ whenever $a^{2}=0$.

Pick $a \in A \backslash\{0\}$ such that $a^{2}=0$. It follows from (1.6), with the hypothesis $f(0)=0$, that

$$
\begin{equation*}
\left\|n^{-2} f(n a)^{2}\right\| \leq n^{-2} \delta\|n a\|^{2 p}=n^{2(p-1)} \delta\|a\|^{2 p} \tag{2.19}
\end{equation*}
$$

Since $a \neq 0$ and since $p-1<0$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-2} f(n a)^{2}=0 \tag{2.20}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
\left\|n^{-1} f(n a)-\tau(a)\right\| \leq n^{-1} \frac{2 \delta}{\left|2-2^{p}\right|}\|n a\|^{p}=n^{p-1} \frac{2 \delta}{\left|2-2^{p}\right|}\|a\|^{p} \tag{2.21}
\end{equation*}
$$

for all $n \in \mathbb{N}$, and hence

$$
\begin{equation*}
\tau(a)=\lim _{n \rightarrow \infty} n^{-1} f(n a) . \tag{2.22}
\end{equation*}
$$

It follows from (2.20) and (2.22) that

$$
\begin{equation*}
\tau(a)^{2}=\lim _{n \rightarrow \infty} n^{-2} f(n a)^{2}=0 \tag{2.23}
\end{equation*}
$$

which proves $\tau\left(a^{2}\right)=0=\tau(a)^{2}$ whenever $a^{2}=0$. This completes the proof.
In this paper, we have proved the Hyers-Ulam-Rassias stability of Jordan homomorphisms for $p \in \mathbb{R} \backslash\{1\}$. On the other hand, Šemrl [10] gave an example that the stability result fails for $p=1$: In fact, to each $\delta>0$ there corresponds a multiplicative continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$ satisfying $f(i a)=i f(a)$ for all $a \in \mathbb{C}$ such that

$$
\begin{equation*}
|f(a+b)-f(a)-f(b)| \leq \delta(|a|+|b|) \quad(a, b \in \mathbb{C}) \tag{2.24}
\end{equation*}
$$

and that

$$
\begin{equation*}
\sup _{a \in \mathbb{C} \backslash\{0\}} \frac{|f(a)-\tau(a)|}{|a|} \geq 1 \tag{2.25}
\end{equation*}
$$

for all ring homomorphism $\tau: \mathbb{C} \rightarrow \mathbb{C}$.

Acknowledgment

The first and second authors are partly supported by the Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

References

[1] R. Badora, On approximate ring homomorphisms, J. Math. Anal. Appl. 276 (2002), no. 2, 589597.
[2] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385-397.
[3] A. Charnow, The automorphisms of an algebraically closed field, Canad. Math. Bull. 13 (1970), 95-97.
[4] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991), no. 3, 431-434.
[5] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[6] H. Kestelman, Automorphisms of the field of complex numbers, Proc. London Math. Soc. (2) 53 (1951), 1-12.
[7] T. Miura, S.-E. Takahasi, and N. Niwa, Prime ideal which is the kernel of some complex ring homomorphism on a commutative complex algebra, preprint.
[8] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
[9] T. M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993.
[10] P. Šemrl, Nonlinear perturbations of homomorphisms on $C(X)$, Quart. J. Math. Oxford Ser. (2) 50 (1999), no. 197, 87-109.
[11] S. M. Ulam, A collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York, 1960.
[12] , Sets, Numbers, and Universes: Selected Works, Mathematicians of Our Time, vol. 9, MIT Press, Massachusetts, 1974.
[13] W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83-85.

Takeshi Miura: Department of Basic Technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510, Japan

E-mail address: miura@yz.yamagata-u.ac.jp
Sin-Ei Takahasi: Department of Basic Technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510, Japan

E-mail address: sin-ei@emperor.yz.yamagata-u.ac.jp
Go Hirasawa: Department of Mathematics, Nippon Institute of Technology, Miyashiro, Saitama 345-8501, Japan

E-mail address: hirasawa1@muh.biglobe.ne.jp

