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We prove that a Jordan homomorphism from a Banach algebra into a semisimple com-
mutative Banach algebra is a ring homomorphism. Using a signum effectively, we can
give a simple proof of the Hyers-Ulam-Rassias stability of a Jordan homomorphism be-
tween Banach algebras. As a direct corollary, we show that to each approximate Jordan
homomorphism f from a Banach algebra into a semisimple commutative Banach algebra
there corresponds a unique ring homomorphism near to f .

1. Introduction and statement of results

It seems that the stability problem of functional equations had been first raised by Ulam
(cf. [11, Chapter VI] and [12]): For what metric groups G is it true that an ε-automor-
phism of G is necessarily near to a strict automorphism?

An answer to the above problem has been given as follows. Suppose E1 and E2 are two
real Banach spaces and f : E1 → E2 is a mapping. If there exist δ ≥ 0 and p ≥ 0, p �= 1 such
that

∥∥ f (x+ y)− f (x)− f (y)
∥∥≤ δ

(‖x‖p +‖y‖p) (1.1)

for all x, y ∈ E1, then there is a unique additive mapping T : E1 → E2 such that ‖ f (x)−
T(x)‖ ≤ 2δ‖x‖p/|2− 2p| for every x ∈ E1. This result is called the Hyers-Ulam-Rassias
stability of the additive Cauchy equation g(x + y) = g(x) + g(y). Indeed, Hyers [5] ob-
tained the result for p = 0. Then Rassias [8] generalized the above result of Hyers to the
case where 0≤ p < 1. Gajda [4] solved the problem for 1 < p, which was raised by Rassias;
In the same paper, Gajda also gave an example that a similar result to the above does not
hold for p = 1 (cf. [9]). If p < 0, then ‖x‖p is meaningless for x = 0; In this case, if we
assume that ‖0‖p means ∞, then the proof given in [8] also works for x �= 0. Moreover,
with minor changes in the proof, the result is also valid for p < 0. Thus, the Hyers-Ulam-
Rassias stability of the additive Cauchy equation holds for p ∈R \ {1}. Here and after, the
letter R denotes the real number field and C stands for the complex number field.
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Suppose A and B are two Banach algebras. We say that a mapping τ : A→ B is a Jordan
homomorphism if

τ(a+ b)= τ(a) + τ(b) (a,b ∈ A),

τ
(
a2)= τ(a)2 (a∈A).

(1.2)

If, in addition, τ is multiplicative, that is

τ(ab)= τ(a)τ(b) (a,b ∈A), (1.3)

we say that τ is a ring homomorphism. The study of ring homomorphisms between Ba-
nach algebras A and B is of interest even if A= B = C. For example, the zero mapping, the
identity and the complex conjugate are ring homomorphisms on C, which are all contin-
uous. On the other hand, the existence of a discontinuous ring homomorphism on C is
well-known (cf. [6]). More explicitly, if G is the set of all surjective ring homomorphisms
on C, then �G= 2�C, where �S denotes the cardinal number of a set S. In fact, Charnow
[3, Theorem 3] proved that there exist 2�k automorphisms for every algebraically closed
field k; It is also known that if � is a uniform algebra on a compact metric space, then
there are exactly 2�C complex-valued ring homomorphisms on � whose kernels are non-
maximal prime ideals (see [7, Corollary 2.4]).

By definition, it is obvious that ring homomorphisms are Jordan homomorphisms.
Conversely, under a certain condition, Jordan homomorphisms are ring homomor-
phisms. For example, each Jordan homomorphism τ from a commutative Banach algebra
� into C is a ring homomorphism: Fix a,b ∈� arbitrarily. Since τ((a+ b)2)= τ(a+ b)2,
a simple calculation shows that τ(ab+ ba)= 2τ(a)τ(b). The commutativity of � implies
τ(ab)= τ(a)τ(b), and hence τ is a ring homomorphism. This simple example leads us to
the following general result.

Theorem 1.1. Suppose A is a Banach algebra, which need not be commutative, and suppose
B is a semisimple commutative Banach algebra. If τ : A→ B is a Jordan homomorphism, then
τ(ab)= τ(a)τ(b) for all a,b ∈A, that is, τ is a ring homomorphism.

Next, we consider the stability, in the sense of Hyers-Ulam-Rassias, of Jordan homo-
morphisms. Bourgin [2] proved the following stability result of ring homomorphisms
between two unital Banach algebras.

Theorem 1.2. Suppose A and B are unital Banach algebras. If f : A→ B is a surjective
mapping such that

∥∥ f (a+ b)− f (a)− f (b)
∥∥≤ ε (a,b ∈ A),

∥∥ f (ab)− f (a) f (b)
∥∥≤ δ (a,b ∈ A)

(1.4)

for some ε ≥ 0 and δ ≥ 0, then f is a ring homomorphism.

Applying a theorem of Hyers [5], Rassias [8] and Gajda [4], Badora [1] proved the
Hyers-Ulam-Rassias stability of ring homomorphisms, which generalizes the above result
of Bourgin. We will prove the Hyers-Ulam-Rassias stability of Jordan homomorphisms.



Takeshi Miura et al. 437

We emphasize that the introduction of the signum s= |1− p|/(1− p) made it possible to
give a simple proof of our stability results.

Theorem 1.3. Suppose A and B are Banach algebras. If f : A→ B is a mapping such that

∥∥ f (a+ b)− f (a)− f (b)
∥∥≤ δ

(∥∥a
∥∥p +

∥∥b
∥∥p) (a,b ∈ A), (1.5)

∥∥ f (a2)− f (a)2
∥∥≤ δ‖a‖2p (a∈ A) (1.6)

for some δ ≥ 0 and p ≥ 0, p �= 1, then there is a unique Jordan homomorphism τ : A→ B
such that

∥∥ f (a)− τ(a)
∥∥≤ 2δ∣∣2− 2p

∣∣‖a‖p (a∈A). (1.7)

For p < 0, we can also give a similar result to Theorem 1.3, under an additional con-
dition that f (0) = 0. The hypothesis f (0) = 0 seems to be natural. It follows from (1.5)
that f (0)= 0 whenever p > 0; On the other hand, if p < 0 then the inequalities (1.5) and
(1.6) give no information for f (0).

Theorem 1.4. SupposeA and B are Banach algebras. If f : A→ B is a mapping, with f (0)=
0, such that the inequalities (1.5) and (1.6) are valid for some δ ≥ 0 and p < 0, then there is
a unique Jordan homomorphism τ : A→ B such that

∥∥ f (a)− τ(a)
∥∥≤ 2δ∣∣2− 2p

∣∣‖a‖p (a∈A). (1.8)

As an easy corollary to Theorems 1.1, 1.3, and 1.4, we obtain the following stability
result.

Corollary 1.5. Suppose A is a Banach algebra and suppose B is a semisimple commutative
Banach algebra. If f : A→ B is a mapping such that

∥∥ f (a+ b)− f (a)− f (b)
∥∥≤ δ

(‖a‖p +‖b‖p) (a,b ∈A),
∥∥ f (a2)− f (a)2

∥∥≤ δ‖a‖2p (a∈ A)
(1.9)

for some δ ≥ 0 and p ∈R. If p ≥ 0 and p �= 1, or p < 0 and f (0)= 0, then there is a unique
ring homomorphism τ : A→ B such that

∥∥ f (a)− τ(a)
∥∥≤ 2δ∣∣2− 2p

∣∣‖a‖p (a∈A). (1.10)

2. Proof of results

Before we turn to the proof of Theorem 1.1, we need the following lemma. It should be
mentioned that the following proof is just a slight modification of [13, Proof of Theorem
1] by Żelazko.

Lemma 2.1. Suppose A is a Banach algebra, which need not be commutative. Then each
Jordan homomorphism φ : A→ C is a ring homomorphism.
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Proof. Recall that φ is an additive mapping such that φ(a2)= φ(a)2 for all a∈A. Replace-
ment of a by x+ y results in

φ(xy + yx)= 2φ(x)φ(y) (x ∈A, y ∈A). (2.1)

Then (2.1), with x = x2, implies

φ
(
x2y + yx2)= 2φ(x)2φ(y). (2.2)

Taking y = xy + yx in (2.1), we see that

φ
(
x(xy + yx) + (xy + yx)x

)= 2φ(x)φ(xy + yx), (2.3)

and hence, by (2.1)

φ
(
x2y + 2xyx+ yx2)= 4φ(x)2φ(y) (x ∈ A, y ∈ A). (2.4)

Subtraction (2.4) from (2.2) gives

φ(xyx)= φ(x)2φ(y) if x ∈ A, y ∈A. (2.5)

Fix a∈A and b ∈A arbitrarily, and put

2t = φ(ab− ba). (2.6)

It follows from (2.1) and (2.6) that

φ(ab)= φ(a)φ(b) + t, φ(ba)= φ(a)φ(b)− t. (2.7)

By (2.5), (2.6), (2.7),

4t2 = φ
(
(ab− ba)2)

= φ(ab)2−φ
(
ab2a

)−φ
(
ba2b

)
+φ(ba)2

= {φ(a)φ(b) + t
}2− 2φ(a)2φ(b)2 +

{
φ(a)φ(b)− t

}2

= 2t2;

(2.8)

hence t = 0, which proves φ(ab) = φ(ba). It follows from (2.1) that φ(ab) = φ(a)φ(b),
and the proof is complete. �

Proof of Theorem 1.1. We show that τ is multiplicative. Let MB be the maximal ideal space
of B. We associate to each ϕ∈MB a function τϕ : A→ C defined by

τϕ(a)= ϕ
(
τ(a)

)
(a∈A). (2.9)

Pick ϕ ∈MB arbitrarily. We see that τϕ(a2) = τϕ(a)2 for all a ∈ A, and so Lemma 2.1,
applied to τϕ, implies that τϕ is multiplicative. By the definition of τϕ, we get ϕ(τ(ab))=
ϕ(τ(a)τ(b)) for all a,b ∈ A. Since ϕ ∈MB was arbitrary and since B is assumed to be
semisimple, we obtain τ(ab)= τ(a)τ(b) for all a,b ∈A. We thus conclude that τ is a ring
homomorphism, and the proof is complete. �
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Proof of Theorem 1.3. It follows from [8] and [4] (cf. [5]) that there is an additive map-
ping τ : A→ B such that

∥∥ f (a)− τ(a)
∥∥≤ 2δ∣∣2− 2p

∣∣‖a‖p (a∈A). (2.10)

We first show that τ(a2) = τ(a)2 for all a ∈ A. Pick a ∈ A arbitrarily, and put s = |1−
p|/(1− p). Note that s = 1 if 0 ≤ p < 1 and that s = −1 if p > 1. Since τ is additive, it
follows from (2.10) that

∥∥n−2s f
(
n2sa2)− τ

(
a2)∥∥= ∥∥n−2s f

(
n2sa2)−n−2sτ

(
n2sa2)∥∥

≤ n−2s 2δ∣∣2− 2p
∣∣
∥∥n2sa2

∥∥p (2.11)

for all n∈N, and hence

∥∥n−2s f
(
n2sa2)− τ

(
a2)∥∥≤ n2s(p−1) 2δ∣∣2− 2p

∣∣
∥∥a2
∥∥p (2.12)

for all n∈N. A similar argument to the above shows for each n∈N that

∥∥n−s f (nsa)− τ(a)
∥∥≤ ns(p−1) 2δ∣∣2− 2p

∣∣‖a‖p. (2.13)

Since s(p− 1) < 0, it follows from (2.12) and (2.13) that

τ
(
a2)= lim

n→∞n
−2s f

(
n2sa2), τ(a)= lim

n→∞n
−s f
(
nsa
)
. (2.14)

By (1.6), we get ‖ f (n2sa2)− f (nsa)2‖ ≤ δ‖nsa‖2p for all n∈N. So,

lim
n→∞n

−2s
(
f
(
n2sa2)− f

(
nsa
)2
)
≤ lim

n→∞n
2s(p−1)δ‖a‖2p = 0, (2.15)

since s(p− 1) < 0. Now it follows from (2.14) and (2.15) that

τ
(
a2)= lim

n→∞n
−2s f

(
n2sa2)

= lim
n→∞

{
n−2s f

(
n2sa2)−n−2s

(
f
(
n2sa2)− f

(
nsa
)2
)}

=
{

lim
n→∞n

−s f
(
nsa
)}2 = τ(a)2.

(2.16)

Since a∈ A was arbitrary, we obtain τ(a2)= τ(a)2 for all a∈ A, and hence τ is a Jordan
homomorphism.

Finally, suppose that τ∗ : A→ B is another Jordan homomorphism such that ‖ f (a)−
τ∗(a)‖ ≤ 2δ‖a‖p/|2− 2p| for all a ∈ A. Then (2.13), with τ = τ∗, is also valid. We thus
obtain

∥∥τ(a)− τ∗(a)
∥∥≤ ∥∥τ(a)−n−s f

(
nsa
)∥∥+

∥∥n−s f (nsa)− τ∗(a)
∥∥

≤ ns(p−1) 4δ∣∣2− 2p
∣∣‖a‖p

(2.17)
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for all a∈ A and n∈N. Since s(p− 1) < 0, it follows that τ = τ∗, and hence the unique-
ness have been proved. �

Proof of Theorem 1.4. It follows from [8] that there exists an additive mapping τ : A→ B
such that

∥∥ f (a)− τ(a)
∥∥≤ 2δ∣∣2− 2p

∣∣‖a‖p (a∈ A), (2.18)

where we assume ‖0‖p =∞. It suffices to show that τ(a2) = τ(a)2 for all a ∈ A. Since τ
is additive, we obtain τ(0) = 0, and so the case a = 0 is omitted. Pick a ∈ A \ {0} arbi-
trarily. There are now two possibilities. Either a2 = 0 or a2 �= 0, in which case the proof
of Theorem 1.3 works well, and so τ(a2) = τ(a)2. Thus we need consider only the case
a2 = 0 (In this case, we cannot apply the proof of Theorem 1.3. In fact, if a2 = 0, then
‖a2‖p =∞ and hence (2.13), with a = a2, is meaningless). We will show that τ(a)2 = 0
whenever a2 = 0.

Pick a∈ A \ {0} such that a2 = 0. It follows from (1.6), with the hypothesis f (0)= 0,
that

∥∥n−2 f (na)2
∥∥≤ n−2δ‖na‖2p = n2(p−1)δ‖a‖2p. (2.19)

Since a �= 0 and since p− 1 < 0, we obtain

lim
n→∞n

−2 f (na)2 = 0. (2.20)

Note also that

∥∥n−1 f (na)− τ(a)
∥∥≤ n−1 2δ∣∣2− 2p

∣∣‖na‖p = np−1 2δ∣∣2− 2p
∣∣‖a‖p (2.21)

for all n∈N, and hence

τ(a)= lim
n→∞n

−1 f (na). (2.22)

It follows from (2.20) and (2.22) that

τ(a)2 = lim
n→∞n

−2 f (na)2 = 0, (2.23)

which proves τ(a2)= 0= τ(a)2 whenever a2 = 0. This completes the proof. �

In this paper, we have proved the Hyers-Ulam-Rassias stability of Jordan homomor-
phisms for p ∈R \ {1}. On the other hand, Šemrl [10] gave an example that the stability
result fails for p = 1: In fact, to each δ > 0 there corresponds a multiplicative continuous
function f : C→ C satisfying f (ia)= i f (a) for all a∈ C such that

∣∣ f (a+ b)− f (a)− f (b)
∣∣≤ δ

(|a|+ |b|) (a,b ∈ C) (2.24)
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and that

sup
a∈C\{0}

∣∣ f (a)− τ(a)
∣∣

|a| ≥ 1 (2.25)

for all ring homomorphism τ : C→ C.
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[9] T. M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy Hyers-Ulam stabil-

ity, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989–993.
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