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We consider the following system of differential equations u(m)
i (t) = Pi(t,u1(t),u2(t), . . . ,

un(t)), t ∈ [0,1], 1 ≤ i ≤ n together with Hermite boundary conditions u
( j)
i (tk) = 0, j =

0, . . . ,mk − 1, k = 1, . . . ,r, 1≤ i≤ n, where 0= t1 < t2 < ··· < tr = 1,mk ≥ 1 for k = 1, . . . ,r,
and

∑r
k=1mk =m. By using different fixed point theorems, we offer criteria for the exis-

tence of three solutions of the system which are of “prescribed signs” on the interval [0,1].

1. Introduction

Let tk, k = 1,2, . . . ,r be given such that 0 = t1 < t2 < ··· < tr = 1. In this paper, we will
consider a model comprising a system of differential equations subject to Hermite type
boundary conditions at multipoints tk, k = 1,2, . . . ,r. To be exact, our model is

u(m)
i (t)= Pi

(
t,u1(t),u2(t), . . . ,un(t)

)
, t ∈ [0,1],

u
( j)
i

(
tk
)= 0, j = 0, . . . ,mk − 1, k = 1, . . . ,r,

i= 1,2, . . . ,n,

(H)

where mk ≥ 1 for k = 1, . . . ,r and
∑r

k=1mk = m. Assume that for each 1 ≤ i ≤ n, Pi :
[0,1]×Rn→R is a L1-Carathéodory function (see Definition 2.6 later).

A solution u = (u1,u2, . . . ,un) of (H) will be sought in (C[0,1])n = C[0,1]× ··· ×
C[0,1] (n times). We say that u = (u1,u2, . . . ,un) is a solution of fixed sign if for each
1≤ i≤ n, we have

(−1)δkθiui(t)≥ 0 for t ∈ [tk, tk+1
]
, 1≤ k ≤ r− 1, (1.1)

where δk =mk+1 +mk+2 + ···+mr and θi ∈ {1,−1} is fixed. Note that in the practical
situation, with δk,1≤ k ≤ r − 1 already known, we can choose θi so that (−1)δkθi = 1. In
this way our fixed-sign solution u becomes a positive solution, that is,

ui(t)≥ 0 for t ∈ [0,1], 1≤ i≤ n. (1.2)
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We remark that in most practical problems, it is only meaningful to have positive solu-
tions. Nonetheless our definition of fixed-sign solution gives extra flexibility.

We will establish criteria so that the system (H) has at least triple fixed-sign solutions.
In addition, the criteria developed will also provide estimates on the norms of these so-
lutions.

The present work is motivated by the fact that multipoint boundary value problem
of the type (H) models various dynamic systems with m degrees of freedom in which m
states are observed atm times, see Meyer [25]. In fact, whenm= r = 2 the boundary value
problem (H) describes a vast spectrum of nonlinear phenomena which include gas diffu-
sion through porous media, nonlinear diffusion generated by nonlinear sources, thermal
self ignition of a chemically active mixture of gases in a vessel, catalysis theory, chemically
reacting systems, adiabatic tubular reactor processes, as well as concentration in chemical
or biological problems, for example, see [8, 14, 15, 16, 21, 22, 27]. It is important to note
that in most of these models, only positive solutions are meaningful. As boundary value
problems model many physical phenomena, it is not surprising that they have received
almost all the attention in the recent literature, see the monographs [1, 2, 4, 5] and the
references cited therein. Many papers have discussed single, double and triple positive so-
lutions of boundary value problems [3, 6, 7, 10, 9, 12, 13, 17, 18, 19, 20, 24, 28, 29, 31, 32,
33]. In dealing with single and double solutions, the main tool has been Krasnosel’skii’s
fixed point theorem, whereas in the case of triple solutions, either fixed point theorem
from Leggett and Williams [23] or that from Avery [11] has been employed.

In the present work, both fixed point theorems of Leggett and Williams as well as Avery
are used to derive criteria for the existence of triple fixed-sign solutions. Not only that new
results have been obtained, we have also generalized a single-dependent-variable bound-
ary value problem, the usual consideration in the literature, to a system of boundary value
problems, which is a much more appropriate model for many physical phenomena.

2. Preliminaries

In this section, we will state some necessary definitions and the relevant fixed point theo-
rems. Let B be a Banach space equipped with the norm ‖ · ‖.

Definition 2.1. Let C (⊂ B) be a nonempty closed convex set. We say that C is a cone
provided the following conditions are satisfied:

(a) if u∈ C and α≥ 0, then αu∈ C;
(b) if u∈ C and −u∈ C, then u= 0.

The cone C induces an ordering≤ on B. For y,z ∈ B, we write y ≤ z if and only if z− y ∈
C. If y,z ∈ B with y ≤ z, we let 〈y,z〉 denote the closed order interval given by

〈y,z〉 = {u∈ B | y ≤ u≤ z}. (2.1)

Definition 2.2. Let C (⊂ B) be a cone. A map ψ is a nonnegative continuous concave func-
tional on C if the following conditions are satisfied:

(a) ψ : C→ [0,∞) is continuous;
(b) ψ(ty + (1− t)z)≥ tψ(y) + (1− t)ψ(z) for all y,z ∈ C and 0≤ t ≤ 1.
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Definition 2.3. Let C (⊂ B) be a cone. A map β is a nonnegative continuous convex func-
tional on C if the following conditions are satisfied:

(a) β : C→ [0,∞) is continuous;
(b) β(ty + (1− t)z)≤ tβ(y) + (1− t)β(z) for all y,z ∈ C and 0≤ t ≤ 1.

Let γ,β,Θ be nonnegative continuous convex functionals onC and α,ψ be nonnegative
continuous concave functionals on C. For nonnegative numbers wi, 1 ≤ i ≤ 3, we will
introduce the following notations:

C
(
w1
)= {u∈ C | ‖u‖ < w1

}
,

C
(
ψ,w1,w2

)= {u∈ C | ψ(u)≥w1 and ‖u‖ ≤w2
}

,

P
(
γ,w1

)= {u∈ C | γ(u) < w1
}

,

P
(
γ,α,w1,w2

)= {u∈ C | α(u)≥w1 and γ(u)≤w2
}

,

Q
(
γ,β,w1,w2

)= {u∈ C | β(u)≤w1 and γ(u)≤w2
}

,

P
(
γ,Θ,α,w1,w2,w3

)= {u∈ C | α(u)≥w1, Θ(u)≤w2 and γ(u)≤w3
}

,

Q
(
γ,β,ψ,w1,w2,w3

)= {u∈ C | ψ(u)≥w1, β(u)≤w2 and γ(u)≤w3
}
.

(2.2)

The following fixed point theorems are needed later. The first is usually called Leggett-
Williams’ fixed point theorem, and the second is known as the five-functional fixed point
theorem.

Theorem 2.4 [23]. Let C (⊂ B) be a cone, and w4 > 0 be given. Assume that ψ is a nonneg-
ative continuous concave functional on C such that ψ(u) ≤ ‖u‖ for all u ∈ C(w4), and let
S : C(w4)→ C(w4) be a continuous and completely continuous operator. Suppose that there
exist numbers w1,w2,w3 where 0 < w1 < w2 < w3 ≤w4 such that

(a) {u∈ C(ψ,w2,w3) | ψ(u) > w2} 
=∅, and ψ(Su) > w2 for all u∈ C(ψ,w2,w3);
(b) ‖Su‖ < w1 for all u∈ C(w1);
(c) ψ(Su) > w2 for all u∈ C(ψ,w2,w4) with ‖Su‖ > w3.

Then, S has (at least) three fixed points u1, u2, and u3 in C(w4). Furthermore, we have

u1 ∈ C(w1
)
, u2 ∈ {u∈ C(ψ,w2,w4

) | ψ(u) > w2
}

,

u3 ∈ C(w4
)\(C(ψ,w2,w4

)∪C(w1
))
.

(2.3)

Theorem 2.5 [11]. Let C (⊂ B) be a cone. Assume that there exist positive numbers w5,
M, nonnegative continuous convex functionals γ,β,Θ on C, and nonnegative continuous
concave functionals α,ψ on C, with

α(u)≤ β(u), ‖u‖ ≤Mγ(u) (2.4)

for all u∈ P(γ,w5). Let S : P(γ,w5)→ P(γ,w5) be a continuous and completely continuous
operator. Suppose that there exist nonnegative numbers wi, 1≤ i≤ 4 with 0 < w2 < w3 such
that

(a) {u ∈ P(γ,Θ,α,w3,w4,w5) | α(u) > w3} 
= ∅, and α(Su) > w3 for all u ∈ P(γ,Θ,α,
w3,w4,w5);
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(b) {u ∈ Q(γ,β,ψ,w1,w2,w5) | β(u) < w2} 
= ∅, and β(Su) < w2 for all u ∈ Q(γ,β,ψ,
w1,w2,w5);

(c) α(Su) > w3 for all u∈ P(γ,α,w3,w5) with Θ(Su) > w4;
(d) β(Su) < w2 for all u∈Q(γ,β,w2,w5) with ψ(Su) < w1.

Then, S has (at least) three fixed points u1, u2 and u3 in P(γ,w5). Furthermore, we have

β
(
u1) < w2, α

(
u2) > w3, β

(
u3) > w2 with α

(
u3) < w3. (2.5)

We also require the definition of a Lq-Carathéodory function.

Definition 2.6 [26]. A function P : [0,1]×Rn → R is a Lq-Carathéodory function if the
following conditions hold:

(a) The map t→ P(t,u) is measurable for all u∈Rn.
(b) The map u→ P(t,u) is continuous for almost all t ∈ [0,1].
(c) For any r > 0, there exists µr ∈ Lq[0,1] such that |u| ≤ r implies that |P(t,u)| ≤

µr(t) for almost all t ∈ [0,1].

3. Main results

For each k = 1, . . . ,r− 1, define the constant δk and the interval Ik by

δk =
r∑

j=k+1

mj , Ik =
[

3tk + tk+1

4
,
tk + 3tk+1

4

]
. (3.1)

Throughout we will denote u= (u1,u2, . . . ,un). Let the Banach space

B =
{
u | u∈ (C[0,1]

)n}
(3.2)

be equipped with norm

‖u‖ = max
1≤i≤n

sup
t∈[0,1]

∣∣ui(t)∣∣= max
1≤i≤n

∣∣ui∣∣0, (3.3)

where we let

∣∣ui∣∣0 = sup
t∈[0,1]

∣∣ui(t)∣∣= max
1≤k≤r−1

sup
t∈[tk ,tk+1]

∣∣ui(t)∣∣, 1≤ i≤ n. (3.4)

To apply the fixed point theorems in Section 2, we need to define an operator S : B→ B
so that a solution u of the system (H) is a fixed point of S, that is, u= Su. For this, letG(t,s)
be the Green’s function of the boundary value problem

y(m)(t)= 0, t ∈ [0,1]

y( j)(tk)= 0, j = 0, . . . ,mk − 1, k = 1, . . . ,r.
(3.5)

If u is a solution of (H), then it can be represented as

ui(t)=
∫ 1

0
G(t,s)Pi

(
s,u(s)

)
ds, t ∈ [0,1], 1≤ i≤ n. (3.6)
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Hence, we will define the operator S : B→ B by

Su(t)= (Su1(t),Su2(t), . . . ,Sun(t)
)
, t ∈ [0,1], (3.7)

where

Sui(t)=
∫ 1

0
G(t,s)Pi

(
s,u(s)

)
ds, t ∈ [0,1], 1≤ i≤ n. (3.8)

It is clear that a fixed point of the operator S is a solution of the system (H).
Our first lemma gives the properties of the Green’s function G(t,s) which will be used

later.

Lemma 3.1 [30]. It is known that
(a) G(t,s)∈C[0,1], t∈[0,1] and the map t→G(t,s) is continuous from [0,1] to C[0,1];
(b) (−1)δkG(t,s)≥ 0, (t,s)∈ [tk, tk+1]× [0,1], k = 1, . . . ,r− 1;
(c) (−1)δkG(t,s) > 0, (t,s)∈ (tk, tk+1)× (0,1), k = 1, . . . ,r− 1;
(d) for each k = 1, . . . ,r− 1,

(−1)δkG(t,s)≥ Lk
∥∥G(·,s)∥∥, (t,s)∈ Ik × [0,1], (3.9)

where

∥∥G(·,s)∥∥= sup
t∈[0,1]

∣∣G(t,s)
∣∣= max

1≤ j≤r−1
sup

t∈[t j ,t j+1]
(−1)δjG(t,s), (3.10)

the constant 0 < Lk < 1 is given by

Lk =min

{
min

{
R
(

3tk + tk+1

4

)
,R
(
tk + 3tk+1

4

)}/
max
t∈[0,1]

R(t),

min
{
Q
(

3tk + tk+1

4

)
,Q
(
tk + 3tk+1

4

)}/
max
t∈[0,1]

Q(t)

}
,

(3.11)

and the functions R and Q are defined as

R(t)=
r−1∏
j=1

∣∣t− t j∣∣mj (1− t)mr−1, Q(t)= tm1−1
r∏
j=2

∣∣t− t j∣∣mj ; (3.12)

(e) (−1)δkG(t,s)≤ ‖G(·,s)‖, (t,s)∈ [tk, tk+1]× [0,1], k = 1, . . . ,r− 1.

Lemma 3.2. The operator S defined in (3.7) is continuous and completely continuous.

Proof. From Lemma 3.1(a), we have G(t,s) ∈ C[0,1] ⊆ L∞[0,1], t ∈ [0,1] and the map
t→G(t,s) is continuous from [0,1] to C[0,1]. This together with Pi : [0,1]×Rn→R is a
L1-Carathéodory function ensures (as in [26, Theorem 4.2.2]) that S is continuous and
completely continuous. �
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For clarity, we will list the conditions that are needed later. Note that in these condi-
tions θi ∈ {1,−1}, 1≤ i≤ n are fixed, and the sets K̃ and K are given by

K̃ =
{
u∈ B | for each 1≤ i≤ n, (−1)δkθiui(t)≥ 0 for t ∈ [tk, tk+1

]
, k = 1,2, . . . ,r− 1

}
,

K =
{
u∈ K̃ | for some j ∈ {1,2, . . . ,n}, (−1)δkθjuj(t) > 0 for some t ∈ [0,1]

}
= K̃\{0}.

(3.13)

(C1) For each 1≤ i≤ n, assume that

θiPi(t,u)≥ 0, u∈ K̃ , a.e. t ∈ (0,1),

θiPi(t,u) > 0, u∈ K , a.e. t ∈ (0,1).
(3.14)

(C2) There exist continuous functions f , b and ai, 1≤ i≤ n with f :Rn → [0,∞) and
b,ai : (0,1)→ [0,∞) such that for each 1≤ i≤ n,

ai(t)≤ θiPi(t,u)
f (u)

≤ b(t), u∈ K̃ , a.e. t ∈ (0,1). (3.15)

(C3) For each 1≤ i≤ n, there exists a number 0 < ρi ≤ 1 such that

ai(t)≥ ρib(t), a.e. t ∈ (0,1). (3.16)

Next, we define a cone in B as

C =
{
u∈ B | for each 1≤ i≤ n, (−1)δkθiui(t)≥ 0 for t ∈ [tk, tk+1

]
, k = 1,2, . . . ,r− 1

and min
t∈Ik

(−1)δkθiui(t)≥ Lkρi
∣∣ui∣∣0, k = 1,2, . . . ,r− 1

}
,

(3.17)

where Lk and ρi are defined in Lemma 3.1(d) and (C3), respectively. Note that C ⊆ K̃ .
Moreover, a fixed point of S obtained in C will be a fixed-sign solution of the system (H).

If (C1) and (C2) hold, then it follows from (3.8) and Lemma 3.1(b) that for u∈ K̃ and
t ∈ [tk, tk+1], 1≤ k ≤ r− 1,

∫ 1

0
(−1)δkG(t,s)ai(s) f

(
u(s)

)
ds

≤ (−1)δkθiSui(t)≤
∫ 1

0
(−1)δkG(t,s)b(s) f

(
u(s)

)
ds, 1≤ i≤ n.

(3.18)

Lemma 3.3. Let (C1)–(C3) hold. Then, the operator S maps C into itself.

Proof. Let u∈ C. From (3.18) we have for 1≤ i≤ n and t ∈ [tk, tk+1], 1≤ k ≤ r− 1,

(−1)δkθiSui(t)≥
∫ 1

0
(−1)δkG(t,s)ai(s) f

(
u(s)

)
ds≥ 0. (3.19)
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Next, using (3.19), (3.18) and Lemma 3.1(e), we obtain for 1≤ i≤ n and t ∈ [tk, tk+1],
1≤ k ≤ r− 1,

∣∣Sui(t)∣∣= (−1)δkθiSui(t)≤
∫ 1

0
(−1)δkG(t,s)b(s) f

(
u(s)

)
ds≤

∫ 1

0

∥∥G(·,s)∥∥b(s) f
(
u(s)

)
ds.

(3.20)

Therefore, we have

∣∣Sui∣∣0 = max
1≤k≤r−1

sup
t∈[tk ,tk+1]

∣∣Sui(t)∣∣≤
∫ 1

0

∥∥G(·,s)∥∥b(s) f
(
u(s)

)
ds, 1≤ i≤ n (3.21)

which immediately gives

‖Su‖ = max
1≤i≤n

∣∣Sui∣∣0 ≤
∫ 1

0

∥∥G(·,s)∥∥b(s) f
(
u(s)

)
ds. (3.22)

Now, applying (3.18), Lemma 3.1(d), (C3) and (3.21), we find for 1≤ i≤ n and t ∈ Ik,
1≤ k ≤ r− 1,

(−1)δkθiSui(t)≥
∫ 1

0
(−1)δkG(t,s)ai(s) f

(
u(s)

)
ds

≥
∫ 1

0
Lk
∥∥G(·,s)∥∥ρib(s) f

(
u(s)

)
ds

≥ Lkρi
∣∣Sui∣∣0.

(3.23)

This leads to

min
t∈Ik

(−1)δkθiSui(t)≥ Lkρi
∣∣Sui∣∣0, 1≤ i≤ n, 1≤ k ≤ r− 1. (3.24)

With (3.19) and (3.24) established, we have shown that Su∈ C. �

Remark 3.4. From the proof of Lemma 3.3, we see that it is possible to use another cone
C′ (⊂ C) given by

C′ =
{
u∈ B | for each 1≤ i≤ n, (−1)δkθiui(t)≥ 0 for t ∈ [tk, tk+1

]
, k = 1,2, . . . ,r− 1

and min
t∈Ik

(−1)δkθiui(t)≥ Lkρi‖u‖, k = 1,2, . . . ,r− 1
}
.

(3.25)

The arguments used will be similar.
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For subsequent results, we define the following constants for each 1≤ i≤ n and fixed
numbers τ1,k,τ2,k,τ3,k,τ4,k ∈ [0,1], 1≤ k ≤ r− 1:

q = max
1≤k≤r−1

max
t∈[tk ,tk+1]

∫ 1

0
(−1)δkG(t,s)b(s)ds,

ri = min
1≤k≤r−1

min
t∈Ik

∫
Ik

(−1)δkG(t,s)ai(s)ds,

d1,i = min
1≤k≤r−1

min
t∈[τ2,k ,τ3,k]

∫ τ3,k

τ2,k

(−1)δkG(t,s)ai(s)ds,

d2 = max
1≤k≤r−1

max
1≤ j≤r−1

max
t∈[τ1,k ,τ4,k]∩[t j ,t j+1]

∫ τ4,k

τ1,k

(−1)δjG(t,s)b(s)ds,

d3 = max
1≤k≤r−1

max
1≤ j≤r−1

max
t∈[τ1,k ,τ4,k]∩[t j ,t j+1]

[∫ τ1,k

0
(−1)δjG(t,s)b(s)ds+

∫ 1

τ4,k

(−1)δjG(t,s)b(s)ds
]

,

d4 = max
1≤k≤r−1

max
t∈[τ1,k ,τ4,k]

∫ τ4,k

τ1,k

(−1)δkG(t,s)b(s)ds,

d5 = max
1≤k≤r−1

max
t∈[τ1,k ,τ4,k]

[∫ τ1,k

0
(−1)δkG(t,s)b(s)ds+

∫ 1

τ4,k

(−1)δkG(t,s)b(s)ds
]

,

A= sup
t∈[0,1]

∣∣∣∣∣
r∏
j=1

(
t− t j

)mj

∣∣∣∣∣, Ak = max
t∈[τ1,k ,τ4,k]

∣∣∣∣∣
r∏
j=1

(
t− t j

)mj

∣∣∣∣∣,

Bk = max
t∈[τ2,k ,τ3,k]

∣∣∣∣∣
r∏
j=1

(
t− t j

)mj

∣∣∣∣∣.
(3.26)

Lemma 3.5. Let (C1)–(C3) hold, and assume
(C4) for each 1≤ k ≤ r − 1 and each t ∈ [tk, tk+1], the function G(t,s)b(s) is nonzero on a

subset of [0,1] of positive measure.
Suppose that there exists a number d > 0 such that for |uj| ∈ [0,d], 1≤ j ≤ n,

f
(
u1,u2, . . . ,un

)
<
d

q
. (3.27)

Then,

S
(
C(d)

)⊆ C(d)⊂ C(d). (3.28)

Proof. Let u∈ C(d). Then, it is clear that |uj| ∈ [0,d], 1≤ j ≤ n. Applying (3.18), (C4),
(3.27) and (3.26), we find for 1≤ i≤ n and t ∈ [tk, tk+1], 1≤ k ≤ r− 1,

∣∣Sui(t)∣∣= (−1)δkθiSui(t)≤
∫ 1

0
(−1)δkG(t,s)b(s) f

(
u(s)

)
ds

<
∫ 1

0
(−1)δkG(t,s)b(s)

d

q
ds

≤ qd
q
= d.

(3.29)
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This implies |Sui|0 < d,1 ≤ i ≤ n and so ‖Su‖ < d. Coupling with the fact that Su ∈ C
(Lemma 3.3), we have Su∈ C(d). The conclusion (3.28) is now immediate. �

The next lemma is similar to Lemma 3.5 and its proof is omitted.

Lemma 3.6. Let (C1)–(C3) hold. Suppose that there exists a number d > 0 such that for
|uj| ∈ [0,d],1≤ j ≤ n,

f
(
u1,u2, . . . ,un

)≤ d

q
. (3.30)

Then,

S
(
C(d)

)⊆ C(d). (3.31)

We are now ready to establish existence criteria for three fixed-sign solutions. Our first
result employs Theorem 2.4.

Theorem 3.7. Let (C1)–(C4) hold, and assume
(C5) for each 1 ≤ i ≤ n, each 1 ≤ k ≤ r − 1, and each t ∈ Ik, the function G(t,s)ai(s) is

nonzero on a subset of Ik of positive measure.
Suppose that there exist numbers w1,w2,w3 with

0 < w1 < w2 <
w2

min1≤i≤nmin1≤k≤r−1Lkρi
< w3 (3.32)

such that the following hold:
(P) f (u1,u2, . . . ,un) < w1/q for |uj| ∈ [0,w1], 1≤ j ≤ n;
(Q) one of the following holds:

(Q1) limsup|u1|,|u2|,...,|un|→∞ f (u1,u2, . . . ,un)/|uj| < 1/q for some j ∈ {1,2, . . . ,n};
(Q2) there exists a number η (≥ w3) such that f (u1,u2, . . . ,un) ≤ η/q for |uj| ∈

[0,η], 1≤ j ≤ n;
(R) for each 1≤ i≤ n, f (u1,u2, . . . ,un) > w2/ri for |uj| ∈ [w2,w3], 1≤ j ≤ n.

Then, the system (H) has (at least) three fixed-sign solutions u1,u2,u3 ∈ C such that
∥∥u1

∥∥ < w1;
∣∣u2

i (t)
∣∣ > w2, t ∈ Ik, 1≤ k ≤ r− 1, 1≤ i≤ n;∥∥u3

∥∥ > w1; min
1≤i≤n

min
1≤k≤r−1

min
t∈Ik

∣∣u3
i (t)

∣∣ < w2.
(3.33)

Proof. We will employ Theorem 2.4. First, we will prove that condition (Q) implies the
existence of a number w4 where w4 ≥w3 such that

S
(
C
(
w4
))⊆ C(w4

)
. (3.34)

Suppose that (Q2) holds. Then, by Lemma 3.6 we immediately have (3.34) where we pick
w4 = η. Suppose now that (Q1) is satisfied. Then, there exist N > 0 and ε < 1/q such that
for some j ∈ {1,2, . . . ,n},

f
(
u1,u2, . . . ,un

)
∣∣uj∣∣ < ε,

∣∣u1
∣∣,
∣∣u2

∣∣, . . . ,
∣∣un∣∣ > N. (3.35)
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Define

M = max
|ui|∈[0,N], 1≤i≤n

f
(
u1,u2, . . . ,un

)
. (3.36)

In view of (3.35), it is clear that for some j ∈ {1,2, . . . ,n}, the following holds for all
(u1,u2, . . . ,un)∈Rn,

f
(
u1,u2, . . . ,un

)≤M + ε
∣∣uj∣∣. (3.37)

Now, pick the number w4 so that

w4 >max

{
w3,M

(
1
q
− ε
)−1

}
. (3.38)

Let u∈ C(w4). Then, using (3.18), (3.37) and (3.38) we find for 1≤ i≤ n and t ∈ [tk, tk+1],
1≤ k ≤ r− 1, ∣∣Sui(t)∣∣= (−1)δkθiSui(t)

≤
∫ 1

0
(−1)δkG(t,s)b(s) f

(
u(s)

)
ds

≤
∫ 1

0
(−1)δkG(t,s)b(s)

[
M + ε

∣∣uj(s)∣∣]ds
≤
∫ 1

0
(−1)δkG(t,s)b(s)

(
M + εw4

)
ds

≤ q(M + εw4
)
< q
[
w4

(
1
q
− ε
)

+ εw4

]
=w4.

(3.39)

This leads to |Sui|0 < w4, 1≤ i≤ n. Hence, ‖Su‖ < w4 and so Su∈ C(w4)⊂ C(w4). Thus,
(3.34) follows immediately.

Let ψ : C→ [0,∞) be defined by

ψ(u)= min
1≤i≤n

min
1≤k≤r−1

min
t∈Ik

(−1)δkθiui(t). (3.40)

Clearly, ψ is a nonnegative continuous concave functional on C and ψ(u) ≤ ‖u‖ for all
u∈ C.

We will verify that condition (a) of Theorem 2.4 is satisfied. First, we claim that

u∗ = (u∗1 ,u∗2 , . . . ,u∗n
)∈ {u∈ C(ψ,w2,w3

)∣∣ψ(u) > w2
}

, (3.41)

where

u∗i (t)= θi w2 + ε
min1≤
≤nmin1≤z≤r−1Lzρ
A

r∏
j=1

(
t− t j

)mj , 1≤ i≤ n (3.42)

and ε > 0 is chosen such that

w2 + ε
min1≤
≤nmin1≤z≤r−1Lzρ


≤w3. (3.43)
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Note that it is possible to pick such an ε since w2 (min1≤
≤nmin1≤z≤r−1Lzρ
)−1 < w3.
From [30] it is known that for k = 1,2, . . . ,r− 1,

(−1)δk
r∏
j=1

(
t− t j

)mj ≥ 0, t ∈ [tk, tk+1
]
, min

t∈Ik
(−1)δk

r∏
j=1

(
t− t j

)mj ≥ LkA. (3.44)

Hence, it can be easily seen that u∗(t)∈ C. We also have

∥∥u∗∥∥= A w2 + ε
min1≤
≤nmin1≤z≤r−1Lzρ
A

= w2 + ε
min1≤
≤nmin1≤z≤r−1Lzρ


≤w3,

ψ
(
u∗
)= min

1≤i≤n
min

1≤k≤r−1
min
t∈Ik

(−1)δkθiu∗i (t)

= w2 + ε
min1≤
≤nmin1≤z≤r−1Lzρ
A

min
1≤k≤r−1

min
t∈Ik

(−1)δk
r∏
j=1

(
t− t j

)mj

≥ w2 + ε
min1≤
≤nmin1≤z≤r−1Lzρ
A

min
1≤k≤r−1

LkA > w2.

(3.45)

Thus, u∗ ∈ {u ∈ C(ψ,w2,w3) | ψ(u) > w2} 
= ∅. Next, let u ∈ C(ψ,w2,w3). Then, w2 ≤
ψ(u)≤ ‖u‖ ≤w3 provides

(−1)δkθjuj(s)=
∣∣uj(s)∣∣∈ [w2,w3

]
, s∈ Ik, 1≤ k ≤ r− 1, 1≤ j ≤ n. (3.46)

Applying (3.18), (3.46), (C5), (R) and (3.26), we find

ψ(Su)= min
1≤i≤n

min
1≤k≤r−1

min
t∈Ik

(−1)δkθi
(
Sui
)
(t)

≥ min
1≤i≤n

min
1≤k≤r−1

min
t∈Ik

∫ 1

0
(−1)δkG(t,s)ai(s) f

(
u(s)

)
ds

≥ min
1≤i≤n

min
1≤k≤r−1

min
t∈Ik

∫
Ik

(−1)δkG(t,s)ai(s) f
(
u(s)

)
ds

> min
1≤i≤n

min
1≤k≤r−1

min
t∈Ik

∫
Ik

(−1)δkG(t,s)ai(s)
w2

ri
ds

= min
1≤i≤n

ri
w2

ri
=w2.

(3.47)

Therefore, we have shown that ψ(Su) > w2 for all u∈ C(ψ,w2,w3).
Next, condition (b) of Theorem 2.4 is fulfilled since by Lemma 3.5 and condition (P),

we have S(C(w1))⊆ C(w1).
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Finally, we will show that condition (c) of Theorem 2.4 holds. Let u ∈ C(ψ,w2,w4)
with ‖Su‖ > w3. Using (3.18), Lemma 3.1(d), (C3) and (3.22), we get

ψ(Su)= min
1≤i≤n

min
1≤k≤r−1

min
t∈Ik

(−1)δkθi
(
Sui
)
(t)

≥ min
1≤i≤n

min
1≤k≤r−1

min
t∈Ik

∫ 1

0
(−1)δkG(t,s)ai(s) f

(
u(s)

)
ds

≥ min
1≤i≤n

min
1≤k≤r−1

∫ 1

0
Lk
∥∥G(·,s)∥∥ρib(s) f

(
u(s)

)
ds

≥ min
1≤i≤n

min
1≤k≤r−1

Lkρi‖Su‖ > min
1≤i≤n

min
1≤k≤r−1

Lkρiw3

> min
1≤i≤n

min
1≤k≤r−1

Lkρi
w2

min1≤i≤nmin1≤k≤r−1Lkρi
=w2.

(3.48)

Hence, we have proved that ψ(Su) > w2 for all u∈ C(ψ,w2,w4) with ‖Su‖ > w3.
It now follows from Theorem 2.4 that the system (H) has (at least) three fixed-sign

solutions u1,u2,u3 ∈ C(w4) satisfying (2.3). It is easy to see that here (2.3) reduces to
(3.33). �

We will now employ Theorem 2.5 to give other existence criteria. In applying Theorem
2.5 it is possible to choose the functionals and constants in many different ways. We will
present two results to show the arguments involved. In particular the first result is a gen-
eralization of Theorem 3.7.

Theorem 3.8. Let (C1)–(C3) hold. Assume there exist numbers τ1,k,τ2,k,τ3,k,τ4,k, 1≤ k ≤
r− 1, with

0≤ τ1,k ≤ 3tk + tk+1

4
≤ τ2,k < τ3,k ≤ tk + 3tk+1

4
≤ τ4,k ≤ 1 (3.49)

such that
(C6) for each 1 ≤ i ≤ n, each 1 ≤ k ≤ r − 1, and each t ∈ [τ2,k,τ3,k], the function

G(t,s)ai(s) is nonzero on a subset of [τ2,k,τ3,k] of positive measure;
(C7) for each j,k ∈ {1,2, . . . ,r − 1} such that [τ1,k,τ4,k]∩ [t j , t j+1] 
= ∅, and each t ∈

[τ1,k,τ4,k]∩ [t j , t j+1], the function G(t,s)b(s) is nonzero on a subset of [τ1,k,τ4,k] of
positive measure.

Suppose that there exist numbers wi, 2≤ i≤ 5, with

0 < w2 < w3 <
w3

min1≤i≤nmin1≤k≤r−1Lkρi
< w4 ≤w5 (3.50)

such that the following hold:
(P) f (u1,u2, . . . ,un) < (1/d2)(w2−w5d3/q) for |uj| ∈ [0,w2], 1≤ j ≤ n;
(Q) f (u1,u2, . . . ,un)≤w5/q for |uj| ∈ [0,w5], 1≤ j ≤ n;
(R) for each 1≤ i≤ n, f (u1,u2, . . . ,un) > w3/d1,i for |uj| ∈ [w3,w4], 1≤ j ≤ n.
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Then, the system (H) has (at least) three fixed-sign solutions u1,u2,u3 ∈ C(w5) such that

∣∣u1
i (t)

∣∣ < w2, t ∈ [τ1,k,τ4,k
]
, 1≤ k ≤ r− 1, 1≤ i≤ n;∣∣u2

i (t)
∣∣ > w3, t ∈ [τ2,k,τ3,k

]
, 1≤ k ≤ r− 1, 1≤ i≤ n;

max
1≤i≤n

max
1≤k≤r−1

max
t∈[τ1,k ,τ4,k]

∣∣u3
i (t)

∣∣ > w2; min
1≤i≤n

min
1≤k≤r−1

min
t∈[τ2,k ,τ3,k]

∣∣u3
i (t)

∣∣ < w3.

(3.51)

Proof. In the context of Theorem 2.5, we define the following functionals on C:

γ(u)= ‖u‖,

ψ(u)= min
1≤i≤n

min
1≤k≤r−1

min
t∈Ik

∣∣ui(t)∣∣,

β(u)=Θ(u)= max
1≤i≤n

max
1≤k≤r−1

max
t∈[τ1,k ,τ4,k]

∣∣ui(t)∣∣,

α(u)= min
1≤i≤n

min
1≤k≤r−1

min
t∈[τ2,k ,τ3,k]

∣∣ui(t)∣∣.
(3.52)

First, we will show that the operator S maps P(γ,w5) into P(γ,w5). Let u ∈ P(γ,w5).
Then, we have |uj| ∈ [0,w5], 1≤ j ≤ n. Using (3.18), (Q) and (3.26), we find for 1≤ i≤ n
and t ∈ [tk, tk+1], 1≤ k ≤ r− 1,

∣∣Sui(t)∣∣= (−1)δkθiSui(t)≤
∫ 1

0
(−1)δkG(t,s)b(s) f

(
u(s)

)
ds

≤
∫ 1

0
(−1)δkG(t,s)b(s)

w5

q
ds

≤ qw5

q
=w5.

(3.53)

This implies |Sui|0 ≤ w5, 1 ≤ i ≤ n and so γ(Su) = ‖Su‖ ≤ w5. Coupling with Su ∈ C
(Lemma 3.3), it follows that Su ∈ P(γ,w5). Hence, we have shown that S : P(γ,w5) →
P(γ,w5).

Next, we will prove that condition (a) of Theorem 2.5 is fulfilled. We claim that

u∗ = (u∗1 ,u∗2 , . . . ,u∗n
)∈ {u∈ P(γ,Θ,α,w3,w4,w5

) | α(u) > w3
}

, (3.54)

where

u∗i (t)= θi w3 + ε
min1≤
≤nmin1≤z≤r−1Lzρ
A

r∏
j=1

(
t− t j

)mj , 1≤ i≤ n, (3.55)

and ε > 0 is chosen such that

w3 + ε
min1≤
≤nmin1≤z≤r−1Lzρ


≤w4. (3.56)

Such an ε exists since w3 (min1≤
≤nmin1≤z≤r−1Lzρ
)−1 < w4. It is clear from (3.44) that
u∗ ∈ C. Further, in view of the assumptions onw3,w4,w5, and the fact that [τ2,k,τ3,k]⊆ Ik,
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1≤ k ≤ r− 1, we obtain the following:

γ
(
u∗
)= A w3 + ε

min1≤
≤nmin1≤z≤r−1Lzρ
A
= w3 + ε

min1≤
≤nmin1≤z≤r−1Lzρ

≤w5,

α
(
u∗
)= min

1≤i≤n
min

1≤k≤r−1
min

t∈[τ2,k ,τ3,k]
(−1)δkθiu∗i (t)

= w3 + ε
min1≤
≤nmin1≤z≤r−1Lzρ
A

min
1≤k≤r−1

min
t∈[τ2,k ,τ3,k]

(−1)δk
r∏
j=1

(
t− t j

)mj

≥ w3 + ε
min1≤
≤nmin1≤z≤r−1Lzρ
A

min
1≤k≤r−1

min
t∈Ik

(−1)δk
r∏
j=1

(
t− t j

)mj

≥ w3 + ε
min1≤
≤nmin1≤z≤r−1Lzρ
A

min
1≤k≤r−1

LkA > w3,

Θ(u∗)= max
1≤i≤n

max
1≤k≤r−1

max
t∈[τ1,k ,τ4,k]

(−1)δkθiu∗i (t)

= w3 + ε
min1≤
≤nmin1≤z≤r−1Lzρ
A

max
1≤k≤r−1

max
t∈[τ1,k ,τ4,k]

(−1)δk
r∏
j=1

(
t− t j

)mj

= w3 + ε
min1≤
≤nmin1≤z≤r−1Lzρ
A

max
1≤k≤r−1

Ak

≤ w3 + ε
min1≤
≤nmin1≤z≤r−1Lzρ


≤w4.

(3.57)

Hence, u∗ ∈ {u ∈ P(γ,Θ,α,w3,w4,w5) | α(u) > w3} 
= ∅. Now, let u ∈ P(γ,Θ,α,w3,
w4,w5). Then, by definition we have α(u)≥w3 and Θ(u)≤w4 which imply

(−1)δkθjuj(s)=
∣∣uj(s)∣∣∈ [w3,w4

]
, s∈ [τ2,k,τ3,k

]
, 1≤ k ≤ r− 1, 1≤ j ≤ n. (3.58)

Applying (3.18), (3.58), (C6), (R) and (3.26), we obtain

α(Su)= min
1≤i≤n

min
1≤k≤r−1

min
t∈[τ2,k ,τ3,k]

(−1)δkθi
(
Sui
)
(t)

≥ min
1≤i≤n

min
1≤k≤r−1

min
t∈[τ2,k ,τ3,k]

∫ 1

0
(−1)δkG(t,s)ai(s) f

(
u(s)

)
ds

≥ min
1≤i≤n

min
1≤k≤r−1

min
t∈[τ2,k ,τ3,k]

∫ τ3,k

τ2,k

(−1)δkG(t,s)ai(s) f
(
u(s)

)
ds

> min
1≤i≤n

min
1≤k≤r−1

min
t∈[τ2,k ,τ3,k]

∫ τ3,k

τ2,k

(−1)δkG(t,s)ai(s)
w3

d1,i
ds

= min
1≤i≤n

d1,i
w3

d1,i
=w3.

(3.59)

Hence, α(Su) > w3 for all u∈ P(γ,Θ,α,w3,w4,w5).
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We will now verify that condition (b) of Theorem 2.5 is satisfied. Let w1 be such that

0 < w1 < w2 · min
1≤
≤n

min
1≤z≤r−1

Lzρ
. (3.60)

We claim that

u∗ = (u∗1 ,u∗2 , . . . ,u∗n
)∈ {u∈Q(γ,β,ψ,w1,w2,w5

) | β(u) < w2
}

, (3.61)

where

u∗i (t)= θi w1

min1≤
≤nmin1≤z≤r−1Lzρ
A

r∏
j=1

(
t− t j

)mj , 1≤ i≤ n. (3.62)

As before, we have u∗ ∈ C. Moreover, using (3.44) and the assumptions on w1,w2,w5, we
obtain the following:

γ
(
u∗
)= A w1

min1≤
≤nmin1≤z≤r−1Lzρ
A
= w1

min1≤
≤nmin1≤z≤r−1Lzρ

≤w5,

ψ
(
u∗
)= min

1≤i≤n
min

1≤k≤r−1
min
t∈Ik

(−1)δkθiu∗i (t)

= w1

min1≤
≤nmin1≤z≤r−1Lzρ
A
min

1≤k≤r−1
min
t∈Ik

(−1)δk
r∏
j=1

(
t− t j

)mj

≥ w1

min1≤
≤nmin1≤z≤r−1Lzρ
A
min

1≤k≤r−1
LkA≥w1,

β
(
u∗
)= max

1≤i≤n
max

1≤k≤r−1
max

t∈[τ1,k ,τ4,k]
(−1)δkθiu∗i (t)

= w1

min1≤
≤nmin1≤z≤r−1Lzρ
A
max

1≤k≤r−1
max

t∈[τ1,k ,τ4,k]
(−1)δk

r∏
j=1

(
t− t j

)mj

= w1

min1≤
≤nmin1≤z≤r−1Lzρ
A
max

1≤k≤r−1
Ak

≤ w1

min1≤
≤nmin1≤z≤r−1Lzρ

< w2.

(3.63)

Hence, u∗ ∈ {u ∈ Q(γ,β,ψ,w1,w2,w5) | β(u) < w2} 
= ∅. Next, let u ∈ Q(γ,β,ψ,w1,
w2,w5). Then, we have β(u)≤w2 and γ(u)≤w5 which imply

(−1)δkθjuj(s)=
∣∣uj(s)∣∣∈ [0,w2

]
, s∈ [τ1,k,τ4,k

]
, 1≤ k ≤ r− 1, 1≤ j ≤ n;

(−1)δkθjuj(s)=
∣∣uj(s)∣∣∈ [0,w5

]
, s∈ [0,1], 1≤ j ≤ n.

(3.64)
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Noting (3.18), (3.64), (C7), (P), (Q) and (3.26), we find

β(Su)= max
1≤i≤n

max
1≤k≤r−1

max
t∈[τ1,k ,τ4,k]

∣∣(Sui)(t)∣∣
= max

1≤i≤n
max

1≤k≤r−1
max

1≤ j≤r−1
max

t∈[τ1,k ,τ4,k]∩[t j ,t j+1]
(−1)δj θi

(
Sui
)
(t)

≤ max
1≤i≤n

max
1≤k≤r−1

max
1≤ j≤r−1

max
t∈[τ1,k ,τ4,k]∩[t j ,t j+1]

∫ 1

0
(−1)δjG(t,s)b(s) f

(
u(s)

)
ds

= max
1≤k≤r−1

max
1≤ j≤r−1

max
t∈[τ1,k ,τ4,k]∩[t j ,t j+1]

[∫ τ4,k

τ1,k

(−1)δjG(t,s)b(s) f
(
u(s)

)
ds

+
∫ τ1,k

0
(−1)δjG(t,s)b(s) f

(
u(s)

)
ds

+
∫ 1

τ4,k

(−1)δjG(t,s)b(s) f
(
u(s)

)
ds
]

< max
1≤k≤r−1

max
1≤ j≤r−1

max
t∈[τ1,k ,τ4,k]∩[t j ,t j+1]

∫ τ4,k

τ1,k

(−1)δjG(t,s)b(s)ds · 1
d2

(
w2− w5d3

q

)

+ max
1≤k≤r−1

max
1≤ j≤r−1

max
t∈[τ1,k ,τ4,k]∩[t j ,t j+1]

[∫ τ1,k

0
(−1)δjG(t,s)b(s)ds

+
∫ 1

τ4,k

(−1)δjG(t,s)b(s)ds
]
w5

q

= d2
1
d2

(
w2− w5d3

q

)
+d3

w5

q
=w2.

(3.65)

Therefore, β(Su) < w2 for all u∈Q(γ,β,ψ,w1,w2,w5).
Next, we will show that condition (c) of Theorem 2.5 is met. Using Lemma 3.1(e), we

observe that for u∈ C,

Θ(Su)= max
1≤i≤n

max
1≤k≤r−1

max
t∈[τ1,k ,τ4,k]

∣∣(Sui)(t)∣∣
= max

1≤i≤n
max

1≤k≤r−1
max

1≤ j≤r−1
max

t∈[τ1,k ,τ4,k]∩[t j ,t j+1]
(−1)δj θi

(
Sui
)
(t)

≤ max
1≤i≤n

max
1≤k≤r−1

max
1≤ j≤r−1

max
t∈[τ1,k ,τ4,k]∩[t j ,t j+1]

∫ 1

0
(−1)δjG(t,s)b(s) f

(
u(s)

)
ds

≤ max
1≤i≤n

max
1≤k≤r−1

max
1≤ j≤r−1

max
t∈[τ1,k ,τ4,k]∩[t j ,t j+1]

∫ 1

0

∥∥G(·,s)∥∥b(s) f
(
u(s)

)
ds

=
∫ 1

0

∥∥G(·,s)∥∥b(s) f
(
u(s)

)
ds.

(3.66)



P. J. Y. Wong and Y. C. Soh 379

Moreover, (C3) and Lemma 3.1(d) yield for u∈ C,

α(Su)= min
1≤i≤n

min
1≤k≤r−1

min
t∈[τ2,k ,τ3,k]

(−1)δkθi
(
Sui
)
(t)

≥ min
1≤i≤n

min
1≤k≤r−1

min
t∈[τ2,k ,τ3,k]

∫ 1

0
(−1)δkG(t,s)ai(s) f

(
u(s)

)
ds

≥ min
1≤i≤n

min
1≤k≤r−1

min
t∈Ik

∫ 1

0
(−1)δkG(t,s)ρib(s) f

(
u(s)

)
ds

≥ min
1≤i≤n

min
1≤k≤r−1

Lkρi

∫ 1

0

∥∥G(·,s)∥∥b(s) f
(
u(s)

)
ds.

(3.67)

A combination of (3.66) and (3.67) gives

α(Su)≥ min
1≤i≤n

min
1≤k≤r−1

LkρiΘ(Su), u∈ C. (3.68)

Let u∈ P(γ,α,w3,w5) with Θ(Su) > w4. Then, it follows from (3.68) that

α(Su)≥ min
1≤i≤n

min
1≤k≤r−1

LkρiΘ(Su) > min
1≤i≤n

min
1≤k≤r−1

Lkρiw4

> min
1≤i≤n

min
1≤k≤r−1

Lkρi
w3

min1≤i≤nmin1≤k≤r−1Lkρi
=w3.

(3.69)

Thus, α(Su) > w3 for all u∈ P(γ,α,w3,w5) with Θ(Su) > w4.
Finally, we will prove that condition (d) of Theorem 2.5 is fulfilled. Let u ∈ Q(γ,β,

w2,w5) with ψ(Su) < w1. Then, we have β(u)≤w2 and γ(u)≤w5 which give (3.64). Using
(3.18), (3.64), (C7), (P), (Q) and (3.26), we get as in an earlier part β(Su) < w2 for all
u∈Q(γ,β,w2,w5) with ψ(Su) < w1.

It now follows from Theorem 2.5 that the system (H) has (at least) three fixed-sign
solutions u1,u2,u3 ∈ P(γ,w5) = C(w5) satisfying (2.5). It is clear that (2.5) reduces to
(3.51) immediately. �

For each 1≤ k ≤ r− 1, if

τ1,k = 0, τ4,k = 1, τ2,k = 3tk + tk+1

4
, τ3,k = tk + 3tk+1

4
, (3.70)

then

d1,i = ri, 1≤ i≤ n, d2 = q, d3 = 0. (3.71)

In this case Theorem 3.8 yields the following corollary.

Corollary 3.9. Let (C1)–(C3) hold, and assume
(C6)′ for each 1 ≤ i ≤ n, each 1 ≤ k ≤ r − 1, and each t ∈ Ik, the function G(t,s)ai(s) is

nonzero on a subset of Ik of positive measure;
(C7)′ for each 1≤ k ≤ r − 1 and each t ∈ [tk, tk+1], the function G(t,s)b(s) is nonzero on a

subset of [0,1] of positive measure.
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Suppose that there exist numbers wi, 2≤ i≤ 5 with

0 < w2 < w3 <
w3

min1≤i≤nmin1≤k≤r−1Lkρi
< w4 ≤w5 (3.72)

such that the following hold:
(P) f (u1,u2, . . . ,un) < w2/q for |uj| ∈ [0,w2], 1≤ j ≤ n;
(Q) f (u1,u2, . . . ,un)≤w5/q for |uj| ∈ [0,w5], 1≤ j ≤ n;
(R) for each 1≤ i≤ n, f (u1,u2, . . . ,un) > w3/ri for |uj| ∈ [w3,w4], 1≤ j ≤ n.

Then, the system (H) has (at least) three fixed-sign solutions u1,u2,u3 ∈ C(w5) such that

∥∥u1
∥∥ < w2;

∣∣u2
i (t)

∣∣ > w3, t ∈ Ik, 1≤ k ≤ r− 1, 1≤ i≤ n;∥∥u3
∥∥ > w2; min

1≤i≤n
min

1≤k≤r−1
min
t∈Ik

∣∣u3
i (t)

∣∣ < w3.
(3.73)

Remark 3.10. Corollary 3.9 is actually Theorem 3.7. Hence, Theorem 3.8 is more general
than Theorem 3.7.

The next result illustrates another application of Theorem 2.5.

Theorem 3.11. Let (C1)–(C3) hold. Assume there exist numbers τ1,k,τ2,k,τ3,k,τ4,k 1≤ k ≤
r− 1 with

3tk + tk+1

4
≤ τ1,k < τ2,k < τ3,k < τ4,k ≤ tk + 3tk+1

4
(3.74)

such that (C6) holds and
(C8) for each 1≤ k ≤ r − 1 and each t ∈ [τ1,k,τ4,k], the function G(t,s)b(s) is nonzero on

a subset of [τ1,k,τ4,k] of positive measure.
Suppose that there exist numbers wi, 1≤ i≤ 5 with

0 < w1 < w2 · min
1≤i≤n

min
1≤k≤r−1

Lkρi < w2 < w3 <
w3

min1≤i≤nmin1≤k≤r−1Lkρi
< w4 ≤w5

(3.75)

such that the following hold:
(P) f (u1,u2, . . . ,un) < (1/d4)(w2−w5d5/q) for |uj| ∈ [w1,w2], 1≤ j ≤ n;
(Q) f (u1,u2, . . . ,un)≤w5/q for |uj| ∈ [0,w5], 1≤ j ≤ n;
(R) for each 1≤ i≤ n, f (u1,u2, . . . ,un) > w3/d1,i for |uj| ∈ [w3,w4], 1≤ j ≤ n.

Then, the system (H) has (at least) three fixed-sign solutions u1,u2,u3 ∈ C(w5) such that

∣∣u1
i (t)

∣∣ < w2, t ∈ [τ1,k,τ4,k
]
, 1≤ k ≤ r− 1, 1≤ i≤ n;∣∣u2

i (t)
∣∣ > w3, t ∈ [τ2,k,τ3,k

]
, 1≤ k ≤ r− 1, 1≤ i≤ n;

max
1≤i≤n

max
1≤k≤r−1

max
t∈[τ1,k ,τ4,k]

∣∣u3
i (t)

∣∣ > w2; min
1≤i≤n

min
1≤k≤r−1

min
t∈[τ2,k ,τ3,k]

∣∣u3
i (t)

∣∣ < w3.

(3.76)
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Proof. In the context of Theorem 2.5, we define the following functionals on C:

γ(u)= ‖u‖,

ψ(u)= min
1≤i≤n

min
1≤k≤r−1

min
t∈[τ1,k ,τ4,k]

(−1)δkθiui(t),

β(u)= max
1≤i≤n

max
1≤k≤r−1

max
t∈[τ1,k ,τ4,k]

(−1)δkθiui(t),

α(u)= min
1≤i≤n

min
1≤k≤r−1

min
t∈[τ2,k ,τ3,k]

(−1)δkθiui(t),

Θ(u)= max
1≤i≤n

max
1≤k≤r−1

max
t∈[τ2,k ,τ3,k]

(−1)δkθiui(t).

(3.77)

First, using (Q), as in the proof of Theorem 3.8, we can show that S : P(γ,w5)→ P(γ,w5).
Next, we will verify that condition (a) of Theorem 2.5 is fulfilled. We claim that

u∗ = (u∗1 ,u∗2 , . . . ,u∗n
)∈ {u∈ P(γ,Θ,α,w3,w4,w5

) | α(u) > w3
}

, (3.78)

where

u∗i (t)= θi w3 + ε
min1≤
≤nmin1≤z≤r−1Lzρ
A

r∏
j=1

(
t− t j

)mj , 1≤ i≤ n, (3.79)

and ε > 0 is chosen such that

w3 + ε
min1≤
≤nmin1≤z≤r−1Lzρ


≤w4. (3.80)

Such an ε exists since w3 (min1≤
≤nmin1≤z≤r−1Lzρ
)−1 < w4. As in the proof of Theorem
3.8, we can show that u∗ ∈ C, γ(u∗) ≤ w5 and α(u∗) > w3. Further, in view of the as-
sumptions on w3 and w4, we have

Θ
(
u∗
)= max

1≤i≤n
max

1≤k≤r−1
max

t∈[τ2,k ,τ3,k]
(−1)δkθiu∗i (t)

= w3 + ε
min1≤
≤nmin1≤z≤r−1Lzρ
A

max
1≤k≤r−1

max
t∈[τ2,k ,τ3,k]

(−1)δk
r∏
j=1

(
t− t j

)mj

= w3 + ε
min1≤
≤nmin1≤z≤r−1Lzρ
A

max
1≤k≤r−1

Bk

≤ w3 + ε
min1≤
≤nmin1≤z≤r−1Lzρ


≤w4.

(3.81)

Hence, u∗ ∈ {u ∈ P(γ,Θ,α,w3,w4,w5) | α(u) > w3} 
= ∅. Using (R) and a similar argu-
ment as in the proof of Theorem 3.8, we can show that α(Su) > w3 for all u ∈ P(γ,Θ,α,
w3,w4,w5).



382 Triple fixed-sign solutions

Now, we will check that condition (b) of Theorem 2.5 is satisfied. We claim that

u∗ = (u∗1 ,u∗2 , . . . ,u∗n
)∈ {u∈Q(γ,β,ψ,w1,w2,w5

) | β(u) < w2
}

, (3.82)

where

u∗i (t)= θi w1

min1≤
≤nmin1≤z≤r−1Lzρ
A

r∏
j=1

(
t− t j

)mj , 1≤ i≤ n. (3.83)

As in the proof of Theorem 3.8, we see that u∗ ∈ C, γ(u∗)≤w5 and β(u∗) < w2. Further,
we have

ψ
(
u∗
)= min

1≤i≤n
min

1≤k≤r−1
min

t∈[τ1,k ,τ4,k]
(−1)δkθiu∗i (t)

= w1

min1≤
≤nmin1≤z≤r−1Lzρ
A
min

1≤k≤r−1
min

t∈[τ1,k ,τ4,k]
(−1)δk

r∏
j=1

(
t− t j

)mj

≥ w1

min1≤
≤nmin1≤z≤r−1Lzρ
A
min

1≤k≤r−1
min
t∈Ik

(−1)δk
r∏
j=1

(
t− t j

)mj

≥ w1

min1≤
≤nmin1≤z≤r−1Lzρ
A
min

1≤k≤r−1
LkA≥w1.

(3.84)

Thus, u∗ ∈ {u ∈ Q(γ,β,ψ,w1,w2,w5) | β(u) < w2} 
= ∅. Let u ∈ Q(γ,β,ψ,w1,w2,w5).
Then, we have ψ(u)≥w1, β(u)≤w2 and γ(u)≤w5 which imply

(−1)δkθjuj(s)=
∣∣uj(s)∣∣∈ [w1,w2

]
, s∈ [τ1,k,τ4,k], 1≤ k ≤ r− 1, 1≤ j ≤ n;

(−1)δkθjuj(s)=
∣∣uj(s)∣∣∈ [0,w5

]
, s∈ [0,1], 1≤ j ≤ n. (3.85)

Using (3.18), (3.85), (C8), (P), (Q), and (3.26), we find by a similar technique as in the
proof of Theorem 3.8 that β(Su) < w2 for all u∈Q(γ,β,ψ,w1,w2,w5).

Next, we will show that condition (c) of Theorem 2.5 is met. We observe that, by (3.18)
and Lemma 3.1(e), for u∈ C,

Θ(Su)= max
1≤i≤n

max
1≤k≤r−1

max
t∈[τ2,k ,τ3,k]

(−1)δkθi
(
Sui
)
(t)

≤ max
1≤i≤n

max
1≤k≤r−1

max
t∈[τ2,k ,τ3,k]

∫ 1

0
(−1)δkG(t,s)b(s) f

(
u(s)

)
ds

≤ max
1≤i≤n

max
1≤k≤r−1

max
t∈[τ2,k ,τ3,k]

∫ 1

0

∥∥G(·,s)∥∥b(s) f
(
u(s)

)
ds

=
∫ 1

0

∥∥G(·,s)∥∥b(s) f
(
u(s)

)
ds.

(3.86)

Moreover, using (3.18), (C3) and Lemma 3.1(d), we obtain (3.67) for u ∈ C. A combi-
nation of (3.67) and (3.86) yields (3.68). Following a similar argument as in the proof of
Theorem 3.8, we get α(Su) > w3 for all u∈ P(γ,α,w3,w5) with Θ(Su) > w4.
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Finally, we will prove that condition (d) of Theorem 2.5 is fulfilled. As in (3.86), by
(3.18) and Lemma 3.1(e), we see that for u∈ C,

β(Su)= max
1≤i≤n

max
1≤k≤r−1

max
t∈[τ1,k ,τ4,k]

(−1)δkθi
(
Sui
)
(t)≤

∫ 1

0

∥∥G(·,s)∥∥b(s) f
(
u(s)

)
ds. (3.87)

On the other hand, it follows from (3.18), (C3) and Lemma 3.1(d) that for u∈ C,

ψ(Su)= min
1≤i≤n

min
1≤k≤r−1

min
t∈[τ1,k ,τ4,k]

(−1)δkθi
(
Sui
)
(t)

≥ min
1≤i≤n

min
1≤k≤r−1

min
t∈[τ1,k ,τ4,k]

∫ 1

0
(−1)δkG(t,s)ai(s) f

(
u(s)

)
ds

≥ min
1≤i≤n

min
1≤k≤r−1

min
t∈Ik

∫ 1

0
(−1)δkG(t,s)ρib(s) f

(
u(s)

)
ds

≥ min
1≤i≤n

min
1≤k≤r−1

Lkρi

∫ 1

0

∥∥G(·,s)∥∥b(s) f
(
u(s)

)
ds.

(3.88)

A combination of (3.87) and (3.88) gives

ψ(Su)≥ min
1≤i≤n

min
1≤k≤r−1

Lkρiβ(Su), u∈ C. (3.89)

Let u∈Q(γ,β,w2,w5) with ψ(Su) < w1. Then, (3.89) leads to

β(Su)≤ 1
min1≤i≤nmin1≤k≤r−1Lkρi

ψ(Su) <
1

min1≤i≤nmin1≤k≤r−1Lkρi
w1

<
1

min1≤i≤nmin1≤k≤r−1Lkρi
w2 · min

1≤i≤n
min

1≤k≤r−1
Lkρi =w2.

(3.90)

Thus, β(Su) < w2 for all u∈Q(γ,β,w2,w5) with ψ(Su) < w1.
It now follows from Theorem 2.5 that the system (H) has (at least) three fixed-sign so-

lutions u1,u2,u3 ∈ P(γ,w5)= C(w5) satisfying (2.5). Furthermore, (2.5) reduces to (3.76)
immediately. �
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