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We study the first boundary value problem for a class of nonlinear degenerate parabolic

equations —ou/dt = div(A (Vu)) We first consider its regularized problem and establish
some estimates. Based on these estimates, we prove the existence and uniqueness of the
generalized solutions in BV space.

1. Introduction

Let O C R™ (m > 1) be a bounded set with smooth boundary 0Q). We are concerned with
the Dirichlet problem

—% = div(A(Vu)) (xt) € Qr=0Qx(0,T),
u(x,t)=0 (x,t) €9Qx(0,T), (1.1)
u(x,0) = uo(x),
where X(P) = (AY(p),...,A™(p)) € C'(R™,R™), ug(x) is appropriately smooth on Q and

certain compatibility conditions on the boundary of the lower base of Qr are fulfilled.
We suppose that

Al
G slf, <Al&|?, VEeRm (1.2)

mlplqu(p%p, IAplsuz(lplq’lﬂ), VpER™, (1.3)

where g > 2, A, y1, y» are positive numbers.
Under some conditions, Gregori [1] considered the elliptic problem

—div(A(Vw) =0 x€Q,

(1.4)
ulpa=0 x€0Q,

and proved the existence and the uniqueness of BV solutions. In this note, we generalize
the results of [1] to the parabolic case. The Dirichlet problem (1.1) arises from a variety
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of diffusion phenomena which appear widely in nature. The non-Newtonian filtration
equation

Ju

5 = div (|Vul??vu), p#2 (1.5)

is a special case of problem (1.1). Problem (1.1) has been widely investigated, for example,
see [2, 4, 5, 6] and references therein. For the one-dimensional case, Wu et al. [5] con-
sidered the Dirichlet problem —u; = (9/0x)(A((9/0x)B(u))) + 0 f (u)/0x, and proved the
existence and uniqueness of the generalized solutions in BV space under some constrains.
Our interest here is to treat the problem for a multi-dimensional case without absorption.
Generally speaking, solutions of problem (1.1) are not continuous. The sense of satisfy-
ing the boundary value conditions for solutions is also special (see [3]). In present paper,
we take some ideas from [6] and investigate the solvability in BV (Qr), where BV is the
class of all integrable functions on Qr, whose generalized derivatives are measures with
bounded variation. The existence of solutions will be proved by means of the method of
parabolic regularization.

2. Main results

Definition 2.1. A function u € BV(Qr)(L*(Qr) is said to be a generalized solution of
problem (1.1), if the following conditions are fulfilled:

(1) uy € L=(0, T;L2(Q)), uy, € L1(Qr),i=1,2,...,m

(2) For almost all x € Q, yu(x,0) = uy(x), where yu is the trace of u.

(3) For almost all t € (0,T), yu(x,t) = 0 a.e. on 0.

(4) u satisfies

J] sgn(u—k { (u— k)3§01 (Vu) . Vgol}dxdt
(2.1)
+H sgnk{u% —AYVu) - V(pz}dxdt >0
Qr ot 7

where ¢1,9, € C'(Qr), 1,92 = 0, 1 = ¢, on 9Q X (0,T), supp ¢1,supp @, C QX (0,T)
and k € R.

Remark 2.2. If u € BV(Qr)(L®(Qr) satisfies conditions (1) and (4) in Definition 2.1,
then
(4") u satisfies

ﬂ ngn u— k){ (u-— k)a(Pl AYVu) . Vgol}dxdtz 0, (2.2)

for Vo € C'(Qr), ¢ > 0and k € R.
Our main results are the following.

THEOREM 2.3. Assume that (1.2) and (1.3) hold. Then problem (1.1) admits at least one
solution u € BV (Qr) N L®(Qr).
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THEOREM 2.4. Suppose that uy, u, are solutions of problem (1.1) satisfying

Uy =up; on 0Q X (0, T), Ugr < Ugy oOn ﬁ, ltm(} [lu; — u(),'”Ll(Q) =0, i=1,2.

(2.3)
Then uy < uy in Qr.

Remark 2.5. Theorem 2.4 implies the uniqueness of solutions of problem (1.1).

3. Proof of Theorems 2.3 and 2.4

To prove the existence of solutions of problem (1.1), we consider the following regularized
problem:

_% =div(A(Vu) +€Au  (x,t) € Qr = Qx(0,T),
u(x,t) =0 (x,t)€0Qx(0,T), (3.1)
u(x,0) = uo(x).

Under the assumptions of Theorem 2.3, by the classical parabolic theory, problem
(3.1) has a unique solution u¢ € C*(Qr) (N C*(Qr) and

sup |uc(x,t)| <M, (3.2)
te(0,T)

where M is a positive constant independent of €.

LemMa 3.1. Under the assumptions of Theorem 2.3, the following estimates for the solution
ue hold.

2

sup e | gx < C, (3.3)
te(0,1) 7 Q
ﬂ | Vue | dxdt < C, (3.4)
Qr
I A(Vue) -Vuedxdt+€ﬂ |Vu€|2dxdtsC. (3.5)
Qr Qr

Proof. Differentiate (3.1) with respect to ¢, multiply the resulting relation by duc/dt and
integrate over Q; = Q) X (0,1), we derive that

o5

0A (Vue) 0*ue 0*ue
H . op, otaw atax, 4!

3.6
—ezﬂ 23 e
SMa otox;

1
dxdt+ J Lel ' ax
which, together with (1.2) yields the desired estimate (3.3).

t=0
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Multiplying (3.1) by u¢ and integrating over Qr, we get

J A(Vue) - Vuedxdt+e H | Ve |2dxdt _! J ue(x, T)dx dt + 1 J ud(x) dx.
Qr Qr 2 Q 2 Q
(3.7)
This, together with (1.3) implies estimates (3.4) and (3.5). The proof of Lemma 3.1 is
complete. O

Proof of Theorem 2.3. By (3.2) and Lemma 3.1, there exists a subsequence of {uc}, still
denoted by u and a function u € BV(Qr) (N L®(Qr) with u, € L*(0, T;L*(Q)), |Vul €
L1(Qr) such that

uc — u a.e.on Qr,
|Vue| — | Vu| weakly in L1(Qr),
X(Vue) —w=(w,ws,...,w,) weaklyin LY171(Qr,R™), (3.8)

ouc  du e 2
5 o weakly in L (0, T;L*(Q)).

We now prove w = A(Vu). Multiplying (3.1) by ue — u and integrating by parts over
Qr, we get

Y _ e _ Ou
J:[ TA(Vue)(VuE — Vu)dxdt = _HQT ug< o 8t>dxdt

(3.9)
_EJ Vue(Vue — Vu)dxdt.
Qr
On the other hand,
hmﬂ T (%— —)d dt =0
hme‘J Vue(Vue — Vu) dxdt’ <hm€J:[ |Vu€| dxdt (3.10)
Qr T
, 12 12
+1ime(ﬂ | Vi | dxdt) (ﬂ |Vu|2dxdt) —o.
€=0 Qr Qr
Thus
J A(Vue) (Vue — Vu)dxdt = 0. (3.11)
Qr
Note that

hmIQ AV) (Ve — Vu)dxdt =0, (3.12)



Pigong Han 399

By (3.11), we infer that

Liggﬂ A(Vie) — A(Vu) (Vi — Vu)dxdt = 0. (3.13)
Set al = fo (p)/pj)dA, p =AVuc + (1 —1)Vu, then (3.13) can be rewritten as
0
; 117 = (y — =
IGII%JI o )axj (e —u)dxdt = 0. (3.14)

By Holder inequality and (3.14), for V¢ = (¢1,92,...,9,) € C5(Qr,R™), we obtain
‘ H (A(Vite) — A(Vw) - q?dxdt‘

L

RPN
(H af(p(pjdxdt) 0 ase—o.

Thus
ﬂ (w=A(Yw) - gdxdt =0, (3.16)

which implies that w = AYVu) a.e.on Qr.
Now let ¢; € C'(Qr), ¢1 = 0, suppp; C Q x (0, T). Multiplying (3.1) by ¢, sgn,, (ue —
k), k € R and integrating by parts over Qr, we obtain

H aq)] dxdt—J] (Vue) - Vo - sgn, (ue —k)dxdt
Qr Qr

—J A(Vue) - Vue -sgn,, (ue — k) g1 dxdt
Qr
-€ J | Ve |? sgn, (uc — k) g1 dxdt (3.17)

- GH Vue - Vo - sgn, (ue —k)dxdt

Ue
+Z<[ Jao( (Vie) + axl)sgn( —k)ginidodt = 0,

where

ifltl<n,  ILs) = J sgn, 7d7, 1 >0. (3.18)
0
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Note that the third term and the fourth term are nonnegative, let # — 0 in (3.17), we
get

HQT sgn,, (ue —k){( k) a(Pl {(Vue) - Vo — €V - V(pl}dxdt

_sgnkZJ LQ < (Vue) + %;)wn,’dodt:O.

Take @2 € CY(Qr), @2 = 0, suppgs C QX (0,T), ¢1 = ¢, on 9Q X (0,T), and from
(3.1), we get

(3.19)

ﬂ { - % ~A(Vue) - Vo — €V - wz}dxdt
! (3.20)
+ZJ Jan( (Vue) + F™ )(plnidadt=0.
Combining (3.19) with (3.20), we get
8g01
J(ue,k, @1, 92) = sgnn (ue — k)3 (ue — k)= o —A(Vue) - Vo, tdxdt
J] sgnk{ )ag)z A(Vue) - V(pz}dxdt
r (3.21)
- EH sgn «Vue - Vo dxdt

- eﬂ sgnk - Vue - Voo dxdt = 0.
Qr

By (3.4), the last two terms in (3.21) tend to zero as € — 0. Let € — 0in (3.21), we easily
get (2.1). By (3.2) and (3.3), we derive that

yu(x,0) = up(x) a.e.on Q. (3.22)

We now prove u(x,t)|aq = 0 a.e. on (0,T).
Since uy, € L1(Qr), i = 1,2,...,m, we have for V¢ € C'(Qr)

H Q- uxdxdt—hmﬂ (ue) dxdt—hmj Qx, - Ucdxdt
Qr QT Qr

—H (px[-udxdtz—J (p-yu-n,-dadt+ﬂ Q- uydxdt, i=12,...,m.
Qr 0 JoQ Qr
(3.23)

Thus
T PR
J J ¢-yu-nidodt=0 VeeC'(Qr),i=12,...,m, (3.24)
0 JoQ

which implies yu = 0 a.e. on dQ X (0, T'). The proof of Theorem 2.3 is complete. O
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Proof of Theorem 2.4. Take k > |u|;~ and k < —|u|~ in (2.1)" respectively, we get

HQT (”?Tf ~A(Va)- VS")"Itha Ve Cy(Qr). (3.25)

By approximating, we may take ¢ = ((u; — u2)+)/((uy — uz)+ +€) in (3.25) to get

J J ul—uz e(ul—uz)tdxdt

“1_”2

V(u —Uu ) (326)
+€J [ (v - A(wu) - ) g
((u1 —u2), +€)
where (4] — u); means measure, 0 < s; <s; < T.
Since
$ (u1 —u2)+
Ll JQ (1, _u2)++€(u1 — ), dxdt
:J (u1(x,52) —uz(x,5)) , dx — Jﬂ(ul(x,sl) —uy(x,51)) , dx
(3.27)
ul _uz
_EJ J ul_uz +€) ( l_uz)thdt,
hmeJ J =), 5 (i —w),dxdt =0
((u1 —u2) +e)

Note that the second term of the left side of (3.26) is nonnegative. Thus, let € — 0 in
(3.26), we obtain

J (1 (%,82) — 2 (x,52)) , dx < J (1 (2,81) — u2(%,51)) , dx. (3.28)
Q o

Hence, let s; — 0, we get

J;) (u1(x,52) — U2 (%,52)) . dx < L) (01 () — ug2(x)) , dx. (3.29)
The proof of Theorem 2.4 is complete. O
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