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This study focuses on anisotropic Sobolev type spaces associated with Banach spaces E0,
E. Several conditions are found that ensure the continuity and compactness of embedding
operators that are optimal regular in these spaces in terms of interpolations of E0 and E.
In particular, the most regular class of interpolation spaces Eα between E0, E, depending
of α and order of spaces are found that mixed derivatives Dα belong with values; the
boundedness and compactness of differential operators Dα from this space to Eα-valued
Lp spaces are proved. These results are applied to partial differential-operator equations
with parameters to obtain conditions that guarantee the maximal Lp regularity uniformly
with respect to these parameters.

1. Introduction

Embedding theorems in function spaces have been elaborated in detail by [5, 28]. A
comprehensive introduction to the theory of embedding of function spaces and histor-
ical references may be also found in [28]. In abstract function spaces embedding the-
orems have been studied by [3, 18, 22, 23, 24, 25, 26]. Lions-Peetre [18] showed that,
if u ∈ L2(0,T ;H0), u(m) ∈ L2(0,T ;H) then u(i) ∈ L2(0,T ; [H ,H0]i/m), i = 1,2, . . . ,m− 1,
where H0, H are Hilbert spaces, H0 is continuously and densely embedded in H and
[H0,H]θ are interpolation spaces between H0, H for 0≤ θ ≤ 1. In [22, 23, 24, 25, 26] the
similar questions were investigated for anisotropic Sobolev spaces Wl

p(Ω;H0,H), Ω⊂ Rn.
Moreover, boundary value problems for differential-operator equations have been stud-
ied in detail by [16, 27, 30, 32]. The solvability and the spectrum of boundary value prob-
lems for elliptic differential-operator equations have also been refined by [1, 2, 4, 8, 10, 11,
13, 22, 23, 24, 25, 26]. A comprehensive introduction to the differential-operator equa-
tions and historical references may be found in [16, 32]. In these works Hilbert-valued
function spaces essentially have been considered. In the present paper, are to be intro-
duced a Banach-valued function spaces Wl

p(Ω;E0,E), where l = (l1, l2, . . . ,ln) and E0, E are
Banach spaces such that E0 is continuously and densely embedded in E. The properties
of continuity and compactness of embedding operators in these spaces are obtained. We
prove that the generalized derivative operatorDα is continuous from these Banach-valued

Copyright © 2005 Hindawi Publishing Corporation
Journal of Inequalities and Applications 2005:4 (2005) 329–345
DOI: 10.1155/JIA.2005.329

http://dx.doi.org/10.1155/S1025583404412326


330 Embedding operators and maximal regular equations

Sobolev spaces to Eα-valued Lp spaces, where Eα are interpolation spaces between E0 and
E depending on the order of differentiations Dα. By applying these results, the maximal
Lp-regularity of certain class of anisotropic partial differential-operator equations are de-
rived.

Let α1,α2, . . . ,αn be nonnegative integer numbers and

Dα =Dα1
1 D

α2
2 ···Dαn

n =
∂α

∂xα1
1 ∂x

α2
2 ···∂xαnn

. (1.1)

Under certain assumptions to be stated later, we prove that the operators u→Dαu are
bounded from space Wl

p(Ω;E(A),E) to space Lq(Ω;E(A1−κ)), that is, embedding

DαWl
p

(
Ω;E(A),E

)⊂ Lq(Ω;E
(
A1−κ

))
(1.2)

is continuous. More precisely for 0 < µ≤ 1−κ we prove the estimate

∥∥Dαu
∥∥
Lp(Ω;E(A1−κ)) ≤ Cµ

(
hµ‖u‖Wl

p(Ω;E(A)E) +h−(1−µ)‖u‖Lp(Ω;E)

)
(1.3)

for all u∈Wl
p(Ω;E(A),E) and 0≤ h≤ h0 <∞. The constant Cµ in the above equation is

independent of u ∈Wl
p(Ω;E(A),E) and of the choice of h. Further, we prove compact-

ness of this embedding operator. Furthermore, we consider certain applications of these
theorems. This kind of embedding theorems arise in the investigation of boundary value
problems for anisotropic partial differential-operator equations

n∑
k=1

aktkD
lk
k u+Au

∑
|α:l|<1

n∏
k=1

tαk/lkk Aα(x)Dαu= f , (1.4)

depend on parameters t = (t1, t2, . . . , tn), where A is a positive operator on the Banach
space E, Aα(x) is an operator such that Aα(x)A−(1−|α:l|) is bounded on E, where α =
(α1,α2, . . . ,αn), l = (l1, l2, . . . , ln), |α : l| =∑n

k=1(αk/lk). In general, this equations possess
different derivatives and different parameters with respect to the various variables. Taking
l1 = l2= ··· =ln = 2l in the above equations we obtain elliptic equation with parameters

n∑
k=1

aktkD
2l
k u+Au+

∑
|α|<2l

n∏
k=1

tαk/2lk Aα(x)Dαu= f (x). (1.5)

We prove the maximal regularity of this differential-operator equations in Lp(Rn;E)
uniformly with respect to parameter t. In this direction we should mention the works
[10, 22, 23, 24, 25, 26, 31].

2. Notations and definitions

Let R be the set of real numbers, C be the set of complex numbers. Let E and E0 be Banach
spaces and L(E0,E) denotes the spaces of bounded linear operators acting from E0 to E.
For E0 = E we denote L(E,E) by L(E), I denotes the identity operator in the Banach space
E. Let A be a linear operator in E. We will sometimes use A+ ξ or Aξ instead of A+ ξI
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for a scalar ξ and (A− ξI)−1 denotes the inverse of the operator A− ξI or the resolvent of
operator A.

Let

Sϕ =
{
ξ, ξ ∈ C, |argξ −π| ≤ π−ϕ}∪{0}, 0 < ϕ≤ π. (2.1)

A linear operator A is said to be positive in a Banach space E, ifD(A) is dense on E and

∥∥(A− ξI)−1
∥∥
L(E) ≤M

(
1 + |ξ|)−1

(2.2)

with ξ ∈ Sϕ, where M is a positive constant [28].

E
(
Aθ
)= {u, u∈D(Aθ), ‖u‖E(Aθ) =

∥∥Aθu∥∥E +‖u‖ <∞, −∞ < θ <∞
}
. (2.3)

We denote by Lp(Ω;E) the space of strongly measurable E-valued functions on Ω⊂ Rn
with the norm

‖u‖Lp = ‖u‖Lp(Ω;E) =
(∫

Ω

∥∥u(x)
∥∥p
E dx

)1/p

, 1≤ p <∞. (2.4)

Let l = (l1, l2, . . . , ln), where li, i = 1,2, . . . ,n positive integers and Dlk
k = ∂lk /∂xlkk , k =

1,2, . . . ,n.
We introduce a E0-valued anisotropic function spaceWl

p(Ω;E0,E) that consist of func-

tions u ∈ Lp(Ω;E0) such that have the generalized derivatives Dlk
k u ∈ Lp(Ω;E) with the

norm

‖u‖Wl
p(Ω;E0,E) = ‖u‖Lp(Ω;E0) +

n∑
k=1

∥∥Dlk
k u
∥∥
Lp(Ω;E) <∞, 1≤ p <∞. (2.5)

Let be t = (t1, t2, . . . , tn), where tk, k = 1,2, . . . ,n are nonnegative parameters. Let us
define in the space Wl

p(Ω;E0,E) parameterized norm

‖u‖Wl
p,t(Ω;E0,E) = ‖u‖Lp(Ω;E0) +

n∑
k=1

∥∥tkDlk
k u
∥∥
Lp(Ω;E). (2.6)

The Banach space E is said to be ξ-convex [7] if there exists on E× E a symmetric
function ξ(u,v) which is convex with respect to every one of the variables and satisfies
the condition

ξ(0,0) > 0, ξ(u,ν)≤ ‖u+ v‖ for ‖u‖E = ‖v‖E = 1. (2.7)

It is shown in [7] that a Hilbert operator

(H f )(x)= lim
ε→0

∫
|x−y|>ε

f (y)
x− y

dy (2.8)

is bounded in the space Lp(R;E), p ∈ (1,∞), for those and only those Banach spaces
E which possess the property of ξ-convexity. The ξ-convex Banach spaces is often called
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UMD spaces. UMD spaces contains Lp, lp spaces and the Lorentz spaces Lpq, p,q ∈ (1,∞)
for instance.
C(l)(Ω;E) denotes the space of E-valued continuously differentiable functions of lth

order. Let E1 and E2 be Banach spaces. A function Ψ∈ C(l)(Rn;L(E1,E2)) is called a mul-
tiplier from Lp(Rn;E1) to Lq(Rn;E2) if there exists a constant M > 0 such that

∥∥F−1Ψ(ξ)Fu
∥∥
Lq(Rn;E2) ≤ C‖u‖Lp(Rn;E1) (2.9)

for all u∈ Lp(Rn;E1), where F and F−1 are Fourier and inverse Fourier transformations,
respectively.

We denote the set of all multipliers from Lp(Rn;E1) to Lq(Rn;E2) by M
q
p(E1,E2). For

E1 = E2 = E we denote M
q
p(E1,E2) by M

q
p(E). Let

Hk =
{
Ψh ∈Mq

p
(
E1,E2

)
, h= (h1,h2, . . . ,hL

)∈Q} (2.10)

be a collection of multipliers in M
q,γ
p,γ(E1,E2). We say that Ψh = Ψh(ξ) is a uniformly

bounded multipliers with respect to h if there exists a constant C > 0, independent of
h∈ B(h), such that

∥∥F−1ΨhFu
∥∥
Lq(Rn,E2) ≤ C‖u‖Lp(Rn,E1) (2.11)

for all h∈ K and u∈ Lp(Rn;E1).
The exposition of the theory of Lp-multipliers of the Fourier transformation, and

some related references, can be found in [28, Sections 2.2.1, 2.2.2, 2.2.3, and 2.2.4]. On
the other hand, in vector-valued function spaces, Fourier multipliers have been studied,
for example, by [3, 6, 12, 15, 20, 21, 29].

A set K ⊂ B(E1,E2) is called R-bounded [6, 29] if there is a constant C such that for all
T1,T2, . . . ,Tm ∈ K and u1,u2, . . . ,um ∈ E1, m∈N .

∫ 1

0

∥∥∥∥∥
m∑
j=1

r j(y)Tjuj

∥∥∥∥∥
E2

dy ≤ C
∫ 1

0

∥∥∥∥∥
m∑
j=1

r j(y)uj

∥∥∥∥∥
E1

dy, (2.12)

where {r j} is a sequence of independent symmetric [−1,1]-valued random variables on
[0,1].

A set K(h) ⊂ B(E1,E2) depending on parameters h = (h1,h2, . . . ,hL) ∈ B(h) ∈ RL is
called uniformly R-bounded with respect to h if there is a constant C such that for all
T1(h),T2(h), . . . ,Tm(h)∈ K and u1,u2, . . . ,um ∈ E1, m∈N .

∫ 1

0

∥∥∥∥∥
m∑
j=1

r j(y)Tj(h)uj

∥∥∥∥∥
E2

dy ≤ C
∫ 1

0

∥∥∥∥∥
m∑
j=1

r j(y)uj

∥∥∥∥∥
E1

dy, (2.13)

where a positive constant C is independent of parameters h.
Let

Un =
{
β = (β1,β2, . . . ,βn

)
, βi ∈ (0,1), i= 1,2, . . . ,n

}
,

Vn =
{
ξ = (ξ1,ξ2, . . . ,ξn

)∈ Rn, ξi �= 0, i= 1,2, . . . ,n
}

,

α= (α1,α2, . . . ,αn
)
, ξα = ξα1

1 ξ
α2
2 ···ξαnn , |ξ|α = |ξ|α1|ξ|α2 ···|ξ|αn .

(2.14)
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Definition 2.1. The Banach space E is said to be a space satisfying a multiplier condition
with respect to p,q ∈ (1,∞), p ≤ q when for Ψ∈ C(n)(Rn;B(E)) if the set

Ψ(ξ) :
{
ξβ+1/p−1/qD

β
ξΨ(ξ) : ξ ∈Vn, β ∈Un

}
(2.15)

are R-bounded, then Ψ∈Mq
p(E).

A Banach space E has a property (α), (see, e.g., [12]) if there exists a constant α such
that

∥∥∥∥∥
N∑

i, j=1

αi jεiε
�

jxi j

∥∥∥∥∥
L2(Ω×Ω�;E)

dy ≤ α
∥∥∥∥∥

N∑
i, j=1

εiε
�

jxi j

∥∥∥∥∥
L2(Ω×Ω�;E)

(2.16)

for all N ∈N, xi, j ∈ E, αi j ∈ {0,1}, i, j = 1,2, . . . ,N , and all choices of independent, sym-
metric, {−1,1}-valued random variables ε1,ε2, . . . ,εN , ε�1,ε�2, . . . ,ε�N on probability spaces
Ω, Ω�. For example, the spaces Lp(Ω), 1≤ p <∞ has the property (α).

Remark 2.2. If E is UMD space with property (α) then these spaces are satisfy the multi-
plier condition with respect to p ∈ (1,∞) (see [12]).

Definition 2.3. The ϕ-positive operator A is said to be a R-positive in the Banach space E
if there exists ϕ∈ (0,π] such that the set

LA =
{(

1 + |ξ|)(A− ξI)−1 : ξ ∈ Sϕ
}

(2.17)

is R-bounded.

Note that in the Hilbert spaces every norm bounded set is R-bounded. Therefore,
in the Hilbert spaces all positive operators are R-positive. If A is a generator of a con-
traction semigroup on Lq, 1 ≤ q ≤∞ [17], A has the bounded imaginary powers with
‖(−Ait)‖B(E) ≤ Ceν|t|, ν < π/2 in E ∈UMD [8, 9] then those operators are R-positive.

It is well known (see, e.g., [19]) that any Hilbert space satisfies the multiplier condition.
By virtue of [21] Mikhlin conditions are not sufficient for operator-valued multiplier
theorem. There are however, Banach spaces which are not Hilbert spaces but satisfy the
multiplier condition, for example, UMD spaces (see, e.g., [29]).

By σ∞(E) will be denoted a space of compact operators acting in E.

Example 2.4. If γ ∈ Ap, δ ∈ C∞(R) with δ(y) ≥ 0 for all y ≥ 0, δ(y) = 0 for |y| ≤ 1/2

and δ(−y) = −δ(y) for all y, then δ ∈M
p,γ
p,γ (R). Really it clear to see that δ(y) satisfies

multiplier conditions [28, Section 2.3.3].

3. Embedding theorems

Lemma 3.1. Let A be a positive operator on a Banach space E and r = (r1,r2, . . . ,rn) where
rk ∈ {0,b}. Let t = (t1, t2, . . . , tn), where tk, k = 1,2, . . . ,n are nonnegative parameters, 0 <
tk ≤ t0 <∞, α = (α1,α2, . . . ,αn) and l = (l1, l2, . . . , ln), lk > 0 such that κ = |(α+ r) : l| ≤ 1.
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Let δ be a multiplier of the form described in Example 2.4. Then for 0 ≤ h ≤ h0 <∞ and
0≤ µ≤ 1−κ the operator-function

Ψt(ξ)=Ψt,r,h,µ(ξ)

=
n∏
k=1

t(αk+r)/lk
k ξr(iξ)αA1−κ−µh−µ

[
A+

n∑
k=1

tk
(
δ
(
ξk
))lk +h−1

]−1
(3.1)

is bounded operator in E uniformly with respect to ξ ∈ Rn, h and t, that is, there is a constant
Cµ such that

∥∥Ψt,h,µ(ξ)
∥∥
L(E) ≤ Cµ (3.2)

for all ξ, t and h.

Proof. Since−[
∑n

k=1 tk(δ(ξ)ξk)lk +h−1]∈ S(ϕ) for all ϕ∈ [0,π) then by virtue of the pos-
itiveness of A, operator B(ξ)= A+

∑n
k=1 tk(δ(ξk)ξk)lk +h−1 is invertible in the space E. Let

u= h−µB−1(ξ) f . Then

∥∥Ψt(ξ) f
∥∥
E =

n∏
k=1

t(αk+r)/lk
k |ξ|r+α∥∥A1−κ−µu

∥∥
E

= ∥∥(hA)1−κ−µu
∥∥
Eh
−(1−µ)

∣∣∣(ht1)1/l1ξ1

∣∣∣α1+r1 ···
∣∣∣(htn)1/ln ξn

∣∣∣αn+rn
.

(3.3)

Using the moment inequality for powers of a positive operators, we get a constant Cµ
depending only on µ such that

∥∥Ψt(ξ)
∥∥
E ≤ Cµh(1−µ)‖hAu‖1−κ−µ‖u‖κ+µ

∣∣∣(ht1)1/l1ξ1

∣∣∣α1+r1 ···
∣∣∣(htn)1/ln ξn

∣∣∣αn+rn
.

(3.4)
Now, we apply the Young inequality, which states that g1g2 ≤ gk1

1 /k1 + gk2
2 /k2 for any posi-

tive real numbers g1, g2 and k1, k2 with 1/k1 + 1/k2 = 1, to the product

‖hAu‖1−κ−µ
[
‖u‖κ+µ

∣∣∣(ht1)1/l1ξ1

∣∣∣α1+r1 ···
∣∣∣(htn)1/ln ξn

∣∣∣αn+rn]
(3.5)

with k1 = 1/(1−κ−µ), k2 = 1/(κ +µ) to get

∥∥Ψt(ξ) f
∥∥
E ≤ Cµh−(1−µ)(1−κ−µ)‖hAu‖

+ (κ +µ)
(
ht1
∣∣ξ1

∣∣)(α1+r1)/(κ+µ) ···(htn∣∣ξn∣∣)(αn+rn)/(κ+µ)
.

(3.6)

Since

n∑
i=1

αi + ri
(κ +µ)

= 1
κ +µ

n∑
i=1

αi + ri
li

= κ

κ +µ
≤ 1 (3.7)

there exists a positive constant M0 independent of ξ, such that

∣∣ξ1
∣∣(α1+r1)/(κ+µ) ···∣∣ξn∣∣(αn+rn)/(κ+µ) ≤M0

(
1 +

n∑
k=1

∣∣ξk∣∣lk
)

(3.8)
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for all ξ ∈ Rn. It is clear that |y|l ≤ (δ(y)y)l for all |y| > 1/2. Therefore

∣∣ξ1
∣∣(α1+r1)/(κ+µ) ···∣∣ξn∣∣(αn+rn)/(κ+µ) ≤M1

[
1 +

n∑
k=1

(
δ
(
ξk
)
ξk
)lk] (3.9)

for a suitable M1 > 0 and all ξ ∈ Rn. Substituting this on the inequality (3.6) and absorb-
ing the constant coefficients in Cµ, we obtain

∥∥ψt(ξ) f
∥∥≤ Cµhµ

[
‖Au‖+

( n∑
k=1

tk
(
δ
(
ξk
)
ξk
)lk +h−1

)
‖u‖

]
. (3.10)

Substituting the value of u, we get

∥∥ψt(ξ) f
∥∥≤ Cµ∥∥AB−1(ξ) f

∥∥+

[ n∑
k=1

tk
(
δ
(
ξk
)
ξk
)lk +h−1

]∥∥B−1(ξ) f
∥∥. (3.11)

Since A is positive operator in the space E, we have

∥∥∥∥∥∥
[
A+

n∑
k=1

tk
(
δ
(
ξk
)
ξk
)lk +h−1

]−1

f

∥∥∥∥∥∥≤M
[

1 +
n∑

k=1k

tk
(
δ
(
ξk
)
ξk
)lk +h−1

]−1

‖ f ‖ (3.12)

for all f ∈ E. Combining those with the inequality (3.11) we obtain

∥∥Ψt(ξ) f
∥∥
E ≤ Cµ‖ f ‖E (3.13)

for all f ∈ E, h and t. The inequality (3.13) implies the estimate (3.2). �

Theorem 3.2. Suppose the following conditions hold:
(1) E is a Banach space satisfying the multiplier condition with respect to p and q, where

1 < p ≤ q <∞;
(2) t = (t1, t2, . . . , tn), where tk, k = 1,2, . . . ,n are nonnegative parameters 0 < tk ≤ t0 <∞

and 0≤ h≤ h0 <∞;
(3) α= (α1,α2, . . . ,αn), l = (l1, l2, . . . , ln), where lk are positive and αk are nonnegative real

numbers such that κ = |(α+ 1/p− 1/q) : l| ≤ 1, and let 0≤ µ≤ 1−κ;
(4) A is a R-positive operator on E.
Then an embedding

DαWl
p

(
Rn;E(A),E

)⊂ Lq(Rn;E
(
A1−κ−µ)) (3.14)

is continuous and there exists a constant Cµ > 0, depending only on µ, such that

n∏
k=1

t
(αk+1/p−1/q)/lk
k

∥∥Dαu
∥∥
Lp(Rn;E(A1−κ−µ)) ≤ Cµ

[
hµ‖u‖Wl

p,t(Rn;E(A),E) +h−(1−µ)‖u‖Lp(Rn;E)

]
(3.15)

for all u∈Wl
p(Rn;E(A),E), t and h.
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Proof. We have

∥∥Dαu
∥∥
Lq(Rn;E(A1−κ−µ)) =

(∫
Rn

∥∥Dαu
∥∥q
E(A1−κ−µ)dx

)1/q

�
(∫

Rn

∥∥A1−κ−µDαu
∥∥q
E dx

)1/q

�
∥∥A1−κ−µDαu

∥∥
Lq(Rn;E)

(3.16)

for all u such that

∥∥Dαu
∥∥
Lq(Rn;E(A1−κ−µ)) <∞. (3.17)

On the other hand we have

A1−α−µDαu= F−�FA1−κ−µDαu= F−�A1−κ−µFDαu

= F−�A1−κ−µ(iξ)αFu= F−�(iξ)αA1−κ−µFu.
(3.18)

Hence denoting Fu by û, we get from relations (3.16) and (3.18)

∥∥Dαu
∥∥
Lq(Rn;E(A1−κ−µ)) �

∥∥F−�(iξ)αA1−κ−µû
∥∥
Lq(Rn;E). (3.19)

Moreover, we have

‖u‖Wl
p,t(Rn;E(A),E) = ‖u‖Lp(Rn;E(A)) +

n∑
k=1

∥∥tkDlk
k u
∥∥
Lp(Rn;E)

= ∥∥F−�û
∥∥
Lp(Rn;E(A)) +

n∑
k=1

∥∥∥tkF−�

[(
iξk
)lk û]∥∥∥

Lp(Rn;E)

�
∥∥F−1Aû

∥∥
Lp(Rn;E) +

n∑
k=1

∥∥∥tkF−�

[(
iξk
)lk û]∥∥∥

Lp(Rn;E)

(3.20)

for all u ∈Wl
p(Rn;E(A),E). Thus proving the inequality (3.15) for some constants Cµ is

equivalent to proving

n∏
k=1

t
(αk+1/p−1/q)/lk
k

∥∥F−�(iξ)αA1−κ−µû
∥∥
Lq(Rn,E)

≤ Cµ
(
hµ
∥∥F−�Aû

∥∥
Lp(Rn,E) +

n∑
k=1

∥∥∥tkF−�

[(
iξk
)lk û]∥∥∥

Lp(Rn,E)
+h−(1−µ)

∥∥F−�û
∥∥
Lp(Rn,E)

)

(3.21)

for a suitable Cµ. Now if δ is a multiplier of the form described as in Example 2.4, by
virtue of multiplier there is constants Ck > 0 for each k = 1,2, . . . ,n such that

∥∥∥∥F−�
1
i
δ
(
ξk
)(
iξk
)lk û

∥∥∥∥
Lp(Rn;E)

≤ Ck
∥∥∥F−�

(
iξk
)lk û∥∥∥

Lp(Rn;E)
(3.22)
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for all ξ ∈ Rn. Thus the inequality (3.15) will follow if we prove the following inequality

n∏
k=1

t
(αk+1/p−1/q)/lk
k

∥∥F−�
[
(iξ)αA1−κ−µû

]∥∥
Lp(Rn;E)

≤ Cµ
∥∥∥∥∥F−�

[
hµ
(
A+

n∑
k=1

tk
(
δ
(
ξk
)
ξk
)lk)+h−(1−µ)

]
û

∥∥∥∥∥
Lp(Rn;E)

(3.23)

for a suitable Cµ > 0, and for all u∈Wl
p(Rn;E(A),E).

Let us express the left-hand side of (3.23) as follows

n∏
k=1

t
(αk+1/p−1/q)/lk
k

∥∥F−�
[
(iξ)αA1−κ−µû

]∥∥
Lq(Rn;E)

=
n∏
k=1

t
(αk+1/p−1/q)/lk
k

∥∥F−�(iξ)αA1−κ−µQ−1(ξ)Q(ξ)
∥∥
Lq(Rn;E),

(3.24)

where

Q(ξ)= hµ
(
A+

n∑
k=1

tk
(
δ
(
ξk
)
ξk
)lk)+h−(1−µ). (3.25)

(Since A is the positive operator in E so it is possible.) By virtue of definition of mul-
tiplier it is clear that the inequality (3.23) will follow immediately if we can prove that
the operator-function Ψt,h,µ = (iξ)αA1−κ−µQ−1(ξ) is a multiplier in Lp(Rn;E), which is
uniform with respect to parameters t and h.

Firstly by using Lemma 3.1 we obtain that the operator function Ψt,h,µ(ξ) is bounded
uniformly with respect to h and t. That is,

∥∥Ψt,h,µ(ξ)
∥∥
B(E) ≤ C. (3.26)

By virtue of the R-positivity of operatorA and by virtue of the homogenous properties
of R-bounds with respect to product by scalar and the triangle inequality (see, e.g., [8,
Proposition 3.4]) by using (3.26) for 0 < tk ≤ T , 0 < h≤ h0 and ξ ∈ (−∞,∞) we obtain

R
({
Ψt,h,µ(ξ) : ξ ∈Vn

})≤M,

R
({
ξβ+1/p−1/qD

β
ξΨt,h,µ(ξ) : β ∈Un : ξ ∈Vn

})
≤Mβ.

(3.27)

By virtue of (3.27) we obtain that the operator-valued functions Ψt,h,µ(ξ) are uniformly
R-bounded multipliers with respect to t, h and R-bounds are independent of t and h.
Then in view of Definition 2.1 it follows that the operator-valued function Ψt,h,µ(ξ) are
uniformly bounded Fourier multipliers from Lp(Rn;E) to Lq(Rn;E). This completes the
proof of Theorem 3.2. �

It is possible to state Theorem 3.2 in a more general setting. For this, we use the concept
of extension operator.
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Condition 3.3. Let be the region Ω⊂ Rn such that there exists a bounded linear extension
operator P acting from Lq(Ω;E) to Lq(Rn;E) also fromWl

p(Ω;E(A),E) toWl
p(Rn;E(A),E),

for 1 < p ≤ q <∞.

Remark 3.4. If Ω ⊂ Rn is a region satisfying the strong l-horn condition (see [5, page
117]) and l = (l1, . . . , ln), li, i = 1,2, . . . ,n are nonnegative integers numbers, E = R, A =
I , then there exists a bounded linear extension operator from Wl

p(Ω) =Wl
p(Ω;R,R) to

Wl
p(Rn)=Wl

p(Rn;R,R).

Theorem 3.5. Suppose all conditions of Theorem 3.2 and Condition 3.3 are hold. Then an
embedding

DαWl
p

(
Ω;E(A),E

)⊂ Lq(Ω;E
(
A1−κ−µ)) (3.28)

is continuous and there exists a constant Cµ depending only on µ such that

n∏
k=1

t
(αk+1/p−1/q)/lk
k

∥∥Dαu
∥∥
Lp(Ω;E(A1−κ−µ)) ≤ Cµ

[
hµ‖u‖Wl

p,t(Ω;E(A),E) +h−(1−µ)‖u‖Lp(Ω;E)

]
(3.29)

for all u∈Wl
p(Ω;E(A),E), t and h.

Proof. It is suffices to prove the estimate (3.29). Let P is a bounded linear extension oper-
ator from Lp(Ω;E) to Lp(Rn;E) and from Wl

p(Ω;E(A),E) to Wl
p(Rn;E(A),E), and let PΩ

be the restriction operator from Rn to Ω. Then for any u∈Wl
p(Ω;E(A),E) we have

n∏
k=1

t
(αk+1/p−1/q)/lk
k

∥∥Dαu
∥∥
Lq(Ω;E(A1−κ−µ))

=
n∏
k=1

t
(αk+1/p−1/q)/lk
k

∥∥DαPΩPu
∥∥
Lq(Ω;E(A1−κ−µ))

≤ C
n∏
k=1

t
(αk+1/p−1/q)/lk
k

∥∥DαPu
∥∥
Lq(Rn;E(A1−κ−µ))

≤ Cµ
[
hµ‖Pu‖Wl

p,t(Rn;E(A),E) +h−(1−µ)‖Pu‖Lp(Rn;E)

]

≤ Cµ
[
hµ‖u‖Wl

p,t(Ω;E(A),E) +h−(1−µ)‖u‖Lp(Ω;E)

]
.

(3.30)

�

Result 3.6. Let all conditions of Theorem 3.5 holds. Then for all u ∈Wl
p(Ω;E(A),E) we

have multiplicative estimate

∥∥Dαu
∥∥
Lq(Ω;E(A1−κ−µ)) ≤ Cµ‖u‖

1−µ
Wl

p(Ω;E(A),E)
‖u‖µLp(Ω;E). (3.31)

Indeed setting h= ‖u‖Lp(Ω;E) · ‖u‖−1
Wl

p(Ω;E(A),E)
in estimate (3.29) we obtain (3.31).

Theorem 3.7. Assume that all conditions of Theorem 3.5 are satisfied. Let Ω be a bounded
region on Rn and A−1 be compact operator in the space E. Then for 0 < µ < 1−κ an embed-
ding DαWl

p(Ω;E(A),E)⊂ Lq(Ω;E) is compact.
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Proof. By virtue of [22, Theorem 1] an embeddingWl
p(Ω;E(A),E)⊂ Lq(Ω;E) is compact.

Then by the estimate (3.31) we obtain the assertion of Theorem 3.7. �

Theorem 3.8. Suppose all conditions of theorem A2 are satisfied.
Then for 0 < µ < 1−κ an embedding

DαWl
p

(
Ω;E(A),E

)⊂ Lp(Ω;
(
E(A),E

)
κ

)
(3.32)

is continuous and there exists a positive constant Cµ such that

n∏
k=1

t
(αk+1/p−1/q)/lk
k

∥∥Dαu
∥∥
Lp(Ω;(E(A),E)κ+µ,p)

≤ Cµ
[
hµ
(
‖Au‖Lp(Ω;E) +

n∑
k=1

∥∥tkDlk
k u
∥∥
Lp(Ω;E)

)
+h−(1−µ)‖u‖Lp(Ω;E)

] (3.33)

for all u∈Wl
p(Ω;E(A),E) and 0 < h≤ h0 <∞.

Proof. Let at first to show the theorem for the case Ω= Rn. Then it is sufficient to prove
the estimate

n∏
k=1

t
(αk+1/p−1/q)/lk
k

∥∥Dαu
∥∥
Lq(Rn;(E(A),E)κ+µ,p) ≤ Cµ

[
hµ‖u‖Wl

p(Rn;E(A),E) +h−(1−µ)‖u‖Lp(Rn;E)

]
(3.34)

for all u∈Wl
p(Rn;E(A),E), t and h. By the definition of interpolation spaces (E(A),E)κ+µ

(see [28, Section 1.14.5]) the estimate (3.34) is equivalent to the inequality

n∏
k=1

t
(αk+1/p−1/q)/lk
k

∥∥F−1y1−κ−µ−1/p[Aχ+µ(A+ y)−1]ξαû∥∥Lq(Rn;Lp(R÷;E))

≤ Cµ
∥∥∥∥∥F−�

[
hµ
(
A+

n∑
k=1

tk
(
δ
(
ξk
)
ξk
)lk)+h−(1−µ)

]
û

∥∥∥∥∥
Lp(Rn;E)

.

(3.35)

By virtue of the definition of the multiplier it is clear that the inequality (3.34) will
follow immediately from (3.35) if we can prove that the operator-function

Ψt,h,µ = (iξ)α
n∏
k=1

t
(αk+1/p−1/q)/lk
k y1−κ−µ−1/p[Aχ+µ(A+ y)−1]

×
[
hµ
(
A+

n∑
k=1

tk
(
δ
(
ξk
)
ξk
)lk)+h−(1−µ)

]−1 (3.36)

is the multiplier from Lp(Rn;E) to Lq(Rn;Lp(R+;E)). This fact is proved by the same man-
ner as in Theorem 3.2.

Therefore, we get the estimate (3.35). Then by using the extension operator we obtain
(3.33). �
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Result 3.9. Let all conditions of Theorem 3.5 holds. Then for all

u∈Wl
p

(
Ω;E(A),E

)
(3.37)

we have a multiplicative estimate

∥∥Dαu
∥∥
Lq(Ω;(E(A),E)κ+µ,p) ≤ Cµ‖u‖

1−µ
Wl

p(Ω;E(A),E)
‖u‖µLp(Ω;E). (3.38)

Indeed setting

h= ‖u‖Lp(Ω;E) · ‖u‖−1
Wl

p(Ω;E(A),E)
(3.39)

in the estimate (3.33) we obtain (3.38).

Theorem 3.10. Assume that all the conditions of Theorem 3.8 are satisfied. Let Ω be a
bounded region in Rn and A−1 is a compact operator in the space E. Then for 0 < µ < 1−κ,
1 < p <∞ an embedding

DαWl
p

(
Ω;E(A),E

)⊂ Lq(Ω;
(
E(A),E

)
κ+µ,p

)
(3.40)

is compact.

Proof. By virtue of [22] an embedding

Wl
p

(
Ω;E(A),E

)⊂ Lp(Ω;E) (3.41)

is compact. Then by the estimate (3.38) we obtain the assertion of Theorem 3.10. �

Result 3.11. If l1 = l2 = ··· = ln = l then we obtain continuity of embedding operators in
isotropic class

Wl
p

(
Ω,E(A)E

)
. (3.42)

Remark 3.12. If E =H and p = q = 2, Ω= (0,T), l1 = l2 = ··· = ln = l, A=A× ≥ cI then
we obtain the result of Lions-Peetre [18] and even in the one dimensional case the result
of Lions-Peetre are improving for in general, non self adjoint positive operators A.

If E = R, A= I then we obtain embedding theorems

DαWl
p(Ω)⊂ Lq(Ω) (3.43)

proved in [5] for numerical Sobolev spaces Wl
p(Ω).

4. Applications

4.1. Embedding in vector-valued spaces. Let s∈ R, s > 0. Let us consider the space [28,
Section 1.18.2]

lsσ =

u; u= {ui}, i= 1,2, . . . ,∞, ui ∈ C,

( ∞∑
i=1

2ips
∣∣ui∣∣σ

)1/σ

<∞

 , (4.1)
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with the norm

‖u‖lsσ =
( ∞∑
i=1

2ips
∣∣ui∣∣σ

)1/σ

<∞, 1 < σ <∞. (4.2)

Note that l0σ = lσ . Let A is infinite matrix defined in the space lσ such that D(A) = lsσ ,
A = [δi j2si], where δi j = 0, when i �= j, δi j = 1, when i = j, i, j = 1,2, . . . ,∞. It is clear to
see that, this operator A is positive in lp. Then by Theorem 3.5 we obtain that for 0≤ µ≤
1−κ, κ =∑n

k=1(αk + 1/p− 1/q)/lk the embedding DαWl
p(Ω, lsσ , lσ) ⊂ Lq(Ω, l

s(1−κ−µ)
σ ) is

continuous and also an estimate of type (3.29) is satisfied.
It should be noted that the above embedding has not been obtained with classical

method until now.

4.2. Maximal regular differential-operator equations. Let us consider differential-
operator equations

Lu=
n∑
k=1

(−1)lk tkD
2lk
k u+Aλu+

∑
|α:2l|<1

n∏
k=1

tαk/2lkk Aα(x)Dαu= f (4.3)

in the space Lp(Rn;E), where, Aλ =A− λI , A and Aα(x) are in general, unbounded oper-
ators in Banach space E, tk, k = 1,2, . . . ,n parameters, l = (l1, l2, . . . , ln), li-positive integers.

Theorem 4.1. Suppose the following conditions hold:
(1) 0 < tk ≤ t0 <∞, k = 1,2, . . . ,n, 0 < ϕ≤ π;
(2) E is a Banach space satisfying multiplier condition with respect to p, 1 < p <∞;
(3) A is a R-positive operator in E and

Aα(x)A−(1−|α:2l|−µ) ∈ L∞
(
Rn,L(E)

)
, 0 < µ < 1−|α : 2l|. (4.4)

Then for all f ∈ Lp(Rn;E) and for sufficiently large |λ| > 0, λ∈ S(ϕ) (4.3) has a unique
solution u(x) that belongs to space W2l

p (Rn;E(A),E) and the estimate hold

n∑
k=1

tk
∥∥D2lk

k u
∥∥
Lp(Rn;E) +‖Au‖Lp(Rn;E) ≤ C‖ f ‖Lp(Rn;E). (4.5)

Proof. At first we will consider principal part of (4.3), that is, differential-operator equa-
tion

L0u=
n∑
k=1

(−1)lk tkD
2lk
k u+Aλu= f . (4.6)

Then we apply Fourier transform to (4.6) with respect to x = (x1, . . . ,xn) and obtain

n∑
k=1

tkξ
2lk
k û(ξ) +Aλû(ξ)= f̂ (ξ). (4.7)
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In view of (1) condition,
∑n

k=1 tkξ
2lk
k ≥ 0 for all ξ = (ξ1, . . . ,ξn) ∈ Rn. Therefore, λ −∑n

k=1 tkξ
2lk
k ∈ S(π) for all ξ ∈ Rn. That is, an operator A− [λ−∑n

k=1 tkξ
2lk
k ]I is invertible

in E. Hence from (4.7) we obtain that the solution of (4.6) can be represented in the form

u(x)= F−1

[
A−

(
λ−

n∑
k=1

tkξ
2lk
k

)
I

]−1

f ˆ. (4.8)

It is clear to see that operator-function ϕλ,t(ξ) = [A− (λ−∑n
k=1 tkξ

2lk
k )I]−1 is multiplier

in Lp(Rn;E) uniformly to λ and t. Actually, by virtue of ϕ-positiveness of operator A for
all ξ ∈ Rn and λ∈ S(ϕ) we get

∥∥ϕλ(ξ)
∥∥
L(E) ≤M

(
1 +

∣∣∣∣∣λ−
n∑
k=1

tkξ
2lk
k

∣∣∣∣∣
)−1

≤M0. (4.9)

Moreover, since Dkϕλ,t(ξ)= [A− (λ−∑n
k=1 tkξ

2lk
k )]−22lktkξ

2lk−1
k then

∥∥ξkDkϕλ,t
∥∥
L(E) ≤ 2lktkξ

2lk
k

∥∥∥∥∥∥
[
A−

(
λ−

n∑
k=1

tkξ
2lk
k

)]−2
∥∥∥∥∥∥

≤ 2lktkξ
2lk
k

(
1 +

∣∣∣∣∣λ−
n∑
k=1

tkξ
2lk
k

∣∣∣∣∣
)−2

≤M.
(4.10)

Using the estimate (4.10) and the R-positiveness of operator A for operator-functions
ϕkλ,t(ξ)= ξ2lk

k ϕλ,t, k = 1,2, . . . ,n and ϕ0λ,t = Aϕλ,t we have

R
(
ξβϕk,λ,t(ξ), β ∈Un : ξ ∈Vn

)≤ Cβ,

R
(
ξβϕ0,λ,t(ξ), β ∈Un : ξ ∈Vn

)≤Mβ.
(4.11)

Then by virtue of condition (2) and estimates (4.11) we obtain that operator-functions
ϕλ,t, ϕkλ,t, ϕ0λ,t are multiplier in the space Lp(Rn;E). By using the representation of (4.8)
we have ∥∥D2lk

k u
∥∥
Lp
=
∥∥∥F−1(iξk)2lkϕλ,t(ξ) f ˆ

∥∥∥
Lp

,

‖Au‖Lp =
∥∥F−1Aû

∥∥
Lp
= ∥∥F−1Aϕλ,t(ξ) f ˆ

∥∥
Lp
.

(4.12)

By the definition of multiplier we obtain that for all f ∈ Lp(Rn;E) there is unique solution
of (4.6) in the form (4.8) and holds estimate

n∑
k=1

tk
∥∥D2lk

k u
∥∥
Lp

+‖Au‖Lp ≤ C‖ f ‖Lp . (4.13)

In the space Lp(Rn;E), we consider the differential operator L0 − λ that is generated by
the problem (4.6), that is

D
(
L0− λ

)=W2l
p

(
Rn,E(A),E

)
,

(
L0− λ

)
u=

n∑
k=1

(−1)lk tkD
2lk
k u+Aλu. (4.14)
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The estimate (4.13) implies that the operator L0 − λ has a bounded inverse acting from
Lp(Rn;E) into W2l

p (Rn;E(A),E). We denote by L− λ the differential operator in Lp(Rn;E)
that is generated by the problem (4.3). Namely,

D(L− λ)=W2l
p

(
Rn,E(A),E

)
, (L− λ)u= (L0− λ

)
u+L1u, (4.15)

where

L1u=
∑

|α:2l|<1

n∏
k=1

tαk/2lkk Aα(x)Dαu. (4.16)

In view of condition (3) and by virtue of Theorem 3.5 for u ∈W2l
p (Rn;E(A),E) we

have

∥∥L1u
∥∥
Lp
≤

∑
|α:2l|<1

n∏
k=1

tαk/2lkk

∥∥Aα(x)Dαu
∥∥
Lp

≤
∑

|α:2l|<1

n∏
k=1

tαk/2lkk

∥∥A1−|α:2l|−µDαu
∥∥
Lp

≤ C
[
hµ
( n∑
k=1

tk
∥∥D2lk

k u
∥∥
Lp

+‖Au‖Lp
)

+h−(1−µ)‖u‖Lp
]
.

(4.17)

Then from estimates (4.13) and (4.17) for u∈W2l
p (Rn;E(A),E) we obtain

∥∥L1u
∥∥
Lp
≤ C

[
hµ
∥∥(L0− λ

)
u
∥∥
Lp

+h−(1−µ)‖u‖Lp
]
. (4.18)

Since ‖u‖Lp = (1/λ)‖(L0− λ)u+L0u‖Lp for u∈W2l
p (Rn;E(A),E) we get

‖u‖Lp ≤
1
|λ|
∥∥(L0− λ

)
u
∥∥
Lp

+
∥∥L0u

∥∥
Lp

≤ 1
|λ|
∥∥(L0− λ

)
u
∥∥
Lp

+
1
|λ|

[ n∑
k=1

tk
∥∥D2lk

k u
∥∥
Lp

+‖Au‖Lp
]
.

(4.19)

From estimates (4.13) and (4.17), (4.18), and (4.19) for u∈W2l
p (Rn;E(A),E) obtain

∥∥L1u
∥∥
Lp
≤ Chµ∥∥(L0− λ

)
u
∥∥+C1|λ|−1h−(1−µ)

∥∥(L0− λ
)
u
∥∥. (4.20)

Then choosing h and λ such that Chµ < 1, C1|λ|−1h−(1−µ) < 1 from (4.20) obtain

∥∥∥L1
(
L0− λ

)−1
∥∥∥
L(E)

< 1. (4.21)

Using relation (4.15), estimates (4.13) and (4.21) and perturbation theory of linear op-
erators [14], we establish that the differential operator L− λ is invertible from Lp(Rn;E)
into W2l

p (Rn;E(A),E). This implies the estimate (4.5). �
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Remark 4.2. There are a lot of positive operators in the different concrete Banach spaces.
Therefore, putting instead of E, concrete Banach spaces and instead of operator A, con-
crete R-positive differential, pseudo differential operators, or finite, infinite matrices on
the differential-operator equations (4.3), by virtue of Theorem 4.1 we can obtain the dif-
ferent class of maximal regular partial differential equations or system of equations.
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