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Using the notion of inferior mean due to M. Heins, we establish two inequalities for such
a mean relative to a positive harmonic function defined on the open unit ball or half-
space in Rn+1.

1. Introduction

In connection with EP spaces, M. Heins proved the following PL-Lemma (unpublished).

Lemma 1.1 (PL-Lemma). If u is a positive function on the annulus {R < |z| < 1} with a
subharmonic logarithm, and γ are rectifiable Jordan curves in {r < |z| < 1} separating 0
from∞, then

lim
r→1

inf
γ

∫
γ
u(z)|dz| = lim

r→1

∫
|z|=r

u(z)|dz|. (1.1)

Wu showed in [4] that for a positive harmonic function in the unit disc, one has in
most cases inequality, while equality occurs for functions whose boundary measures are
absolutely continuous. She also showed that there exists a nonzero lower bound of the
lim inf for this class of functions in the disc. The bound is achieved for functions whose
boundary measures, for example, are purely singular. We generalize these results to higher
dimensions.

Let Ω be the open unit ball or upper half-space in Rn+1 and let S denote its boundary.
Let u be a positive harmonic function on Ω, which, by Riesz’s theorem, is given by a Borel
measure µ with the total measure ‖µ‖ on S.

Definition 1.2. Let Γ be a piecewise C1-smooth hypersurface in Aδ = {q ∈Ω : d(q,S) < δ}
separating the two boundaries of Aδ. The inferior mean of u is defined by

IM(u)= lim
δ→0

inf
Γ⊂Aδ

∫
Γ
u(q)dΓ. (1.2)

Let ωn be the volume of the unit sphere in Rn+1, and let Mn = ωn+1/πωn. In this paper,
we establish the following theorem.
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Theorem 1.3. For any positive harmonic function u on Ω with boundary measure µ, there
exists the following inequality:

IM(u)≤ ‖µ‖. (1.3)

Equality occurs for those u whose boundary measures µ are absolutely continuous, when the
inferior mean is attained along boundaries of Aδ not equal to S as δ→ 0.

Theorem 1.4. For any positive harmonic function u on Ω, with boundary measure µ, there
exists the following inequality:

IM(u)≥Mn‖µ‖. (1.4)

Equality occurs for u with point-mass boundary measures µ concentrated at p0, when IM(u)
is attained along the boundary of the set

Ω̃= {q ∈Ω : d(q,S) < σ2} \ {q ∈Ω :
∣∣q− p0

∣∣ < σ
}

as σ → 0. (1.5)

The proofs rely on Sard’s theorem (see [3]), and inequality (2.5) obtained below.

2. A surface measure lemma

Given spherical angles φi ∈ [0,π], i < n, φn ∈ [0,2π], we include φ0 = π/2 and φn+1 =
0. For a point q ∈ Rn+1, the relation between its Cartesian (x1, . . . ,xn+1) and spherical
(r,φ1, . . . ,φn) coordinates is given by

xj = Xj cosφj , Xj = r
j−1∏
i=0

sinφi, r = |q|. (2.1)

From [2, Section 676], we know that on a sphere r = const, the Jacobian of this relation
satisfies

In = D
(
x1, . . . ,xn+1

)
D
(
r,φ1, . . . ,φn

) = XnIn−1 = ··· =
n∏

k=1

Xk. (2.2)

If Sn is the unit sphere in Rn+1 and dSn is its volume element, then the volume element
on r = const equals

rndSn = Indφ1 ···dφn. (2.3)

We take r = 1 in (2.2) and (2.3) to compute the constant

Mn =
∫
Sn∩{0<φ1<π/2}

2cosφ1

ωn
dSn = 2ωn−1

nωn
= ωn+1

πωn
. (2.4)

When a hypersurface Γ is given by r = r(φ1, . . . ,φn), then its volume element satisfies

dΓ≥ rndSn. (2.5)

A nongeometric proof of (2.5) follows from the following lemma.
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Lemma 2.1. If Γ is locally given by r = r(φ1, . . . ,φn), then

dΓ=
√√√√√1 +

n∑
k=1

r2
φk

X2
k

rndSn. (2.6)

Proof. Assume that Γ is also given by xn+1 = f (x1, . . . ,xn). We know that dΓ ≥ dRn, be-
cause in this case,

dΓ=
√

1 + |grad f |2dx1 ···dxn. (2.7)

We differentiate xn+1 = f with respect to φ1, . . . ,φn, solve the system by Cramer’s rule for
∂ f /∂xi, and substitute the result into (2.7), thus obtaining

dΓ=

√√√√√n+1∑
i=1

J2
i (n+ 1)dφ1 ···dφn with Ji(n+ 1)= D

(
x1, . . . ,xi−1,xi+1, . . . ,xn+1

)
D
(
φ1, . . . ,φn

) . (2.8)

Next, we show by induction on m that

m∑
i=1

J2
i (m)= I2

m−1

(
1 +

m−1∑
k=1

r2
φk

X2
k

)
, m= 1,2, . . . , (2.9)

which is known to be true for m= 1,2,3. Assume that it is also true for m= 4, . . . ,n. For
Jacobians Ji, i < n, we obtain a recurrence relation using the product rule

Ji(n+ 1)= D
(
. . . , cosφnXn, sinφnXn

)
D
(
φ1, . . . ,φn

)
= 0 + 0 +Xn cos2φnJi(n) +Xn sin2φnJi(n)= XnJi(n).

(2.10)

In order to obtain a recurrence relation for J2
n + J2

n+1, we use likewise the product rule in
Jn, Jn+1. We also apply the chain rule to

D
(
x1, . . . ,xn−1,Xn

)
D
(
φ1, . . . ,φn

) = D
(
x1, . . . ,xn−1,Xn

)
D
(
r,φ1, . . . ,φn−1

) D
(
r,φ1, . . . ,φn−1

)
D
(
φ1, . . . ,φn

) , (2.11)

noting that this Jacobian depends on φn only implicitly through the equation for r. Then

J2
n(n+ 1) + J2

n+1(n+ 1)= X2
nJ

2
n(n) + I2

n−1r
2
φn . (2.12)

Applying (2.2) and the induction assumption to the sum with m= n, we obtain

n+1∑
i=1

J2
i (n+ 1)= X2

n

n∑
i=1

J2
i (n) + I2

n−1r
2
φn = I2

n

(
1 +

n−1∑
k=1

r2
φk

X2
k

)
+
I2
nr

2
φn

X2
n
. (2.13)

The asserted equality for dΓ is an immediate consequence of this and (2.3). �
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3. Poisson kernel

We recall that a positive harmonic function u on Ω has a representation via the Poisson-
Stieltjes integral u(q)= ∫S P(q, p)dµ(p). We write the kernel in the usual half-space coor-
dinates q = (y,s), with s ∈ S so that y = dist(q,S) = dist(q,s). We have (cf. [1, pages 12,
127])

P(q, p)= 2y− κy2

ωn|q− p|n+1
= 2y− κy2

ωn
[
y2 + |s− p|2(1− κy)

](n+1)/2 , κ=

0 for half-space,

1 for ball.
(3.1)

By direct integration of P over Γδ = ∂Aδ 	= S in the half-space for all positive δ, or by the
mean value property of P in the unit ball as a harmonic function of q for δ < 1, we obtain

∫
Γδ
P(q, p)dΓδ = (1− κδ)n. (3.2)

4. Proof of Theorem 1.3

The upper bound of IM follows from (3.2) right away:

IM(u)≤ lim
δ→0

∫
Γδ
udΓδ = lim

δ→0

∫
S

∫
Γδ
P(q, p)dΓδ dµ(p)= ‖µ‖. (4.1)

To prove equality, let u have absolutely continuous boundary measure µ. Sard’s theorem
and (2.5) allow us to use, just as in [4], the existence of nonzero u∗ to show that IM ≥ ‖µ‖.

Let Γ j be a C1-smooth hypersurface separating boundaries of A1/ j , j = 3,4, . . . . Con-
sider

Γ′j =
{
q ∈ Γ j : y = yj(s) is defined in some neighborhood of q

}
. (4.2)

By Sard’s theorem, the image S′j of Γ′j under the map q→ s has full measure in S. For each
point s, we choose a preimage on Γ′j nearest to S, and denote this subset of Γ′j by Γ′′j . It has
the same image in S as Γ′j , moreover, Γ′′j and S′j are the coordinate charts related via the
map q = (y,s)→ s. From (2.5) and (2.7), we have dΓ j ≥ (1− κyj)ndS. Thus,

∫
Γ j

udΓ j ≥
∫
Γ′′j
u(q)dΓ j ≥

∫
S′j
u
(
yj ,s

)(
1− κyj

)n
dS=

∫
S
u
(
yj ,s

)(
1− κyj

)n
dS. (4.3)

Then Fatou’s lemma and the existence of the nontangential limit of u a.e. yield

lim
j→∞

∫
Γ j

udΓ j ≥
∫
S

liminf
j→∞

u
(
yj ,s

)(
1− κyj

)n
dS=

∫
S
u∗(s)dS= ‖µ‖. (4.4)
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5. Proof of Theorem 1.4

We use local spherical coordinates with the origins at p ∈ S and the x1-axis orthogonal to
S. Thus, 0≤ φ1 < π/2, and the Poisson kernel

P(q, p)= 2y− κy2

ωn|q− p|n+1
= 2cosφ1− κr

ωnrn
. (5.1)

For δ ∈ (0,1), let Γ be a C1-smooth hypersurface in Aδ separating boundaries of Aδ. We
may assume that every q ∈ Γ has a neighborhood in which r = r(φ1, . . . ,φn) is defined (see
the argument using Sard’s theorem in the proof of Theorem 1.3). Fubini’s theorem, (2.4),
(2.5), and plane geometry yield

∫
Γ
udΓ=

∫
S

∫
Γ

2cosφ1− κr

ωnrn
dΓdµ(p)

>
∫
S

∫
{r<√2δ−δ2<cosφ1}

2cosφ1− κr

ωn rn
rn dSn dµ(p)

= ‖µ‖Mn

[
(1− δ)n− κ

√
2δ− δ2

Mn

]
.

(5.2)

We obtain the lower bound for IM when δ→ 0.
To prove equality, assume that u has the boundary measure µ that is concentrated at

point p0 ∈ S. Then,

u(q)= P
(
q, p0

)
µ
(
p0
)
, µ

(
p0
)= ‖µ‖. (5.3)

Let σ ∈ (0,δ). Note that the boundary of Ω̃= {d(q,S) < σ2} \ {|q− p0| < σ} is formed by
two hypersurfaces: Γ1 consisting of points q on a sphere |q− p0| = σ with the distance y
to S larger than σ2; and Γ2 consisting of points q = (y,s) on a level hypersurface y = σ2

with |q− p0| ≥ σ.
On Γ1, we use spherical coordinates with the origin at p0. We see from (5.1) and (5.3)

that

u(q)= 2cosφ1− κσ

ωnσn
‖µ‖, (5.4)

and from (2.3) that dΓ1 = σndSn. We use these two facts and (2.4) to estimate the integral
of u over Γ1 as follows:

∫
Γ1

udΓ1 < ‖µ‖
∫
Sn∩{0<φ1<π/2}

2cosφ1

ωnσn
σn dSn =Mn‖µ‖. (5.5)

Once we show that ∫
Γ2

udΓ2 =O(σ), (5.6)

and allow δ→ 0, the proof will be complete, since σ ∈ (0,δ).
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Let α be the distance from p0 to s along a geodesic in S. Then

α≥ ∣∣s− p0
∣∣≥ 2

π
α, (5.7)

and on Γ2, |s− p0| ≥ σ ′ = √σ2− σ4, where our coordinates are (y,s)= (σ2,s). Also equal-
ity (2.3) implies that dΓ2 = (1− κσ2)ndS. Hence, it follows that

∫
Γ2

udΓ2 = ‖µ‖
ωn

∫
|s−p0|≥σ ′

2σ2− κσ4[
σ4 +

∣∣s− p0
∣∣2(

1− κσ2
)](n+1)/2

(
1− κσ2)ndS

<
‖µ‖
ωn

∫
|s−p0|≥σ ′

2σ2

|s− p0|n+1
dS

<
‖µ‖
ωn

2σ2ωn−1

∫∞
σ ′

αn−1dα(
(2/π)α

)n+1 =O(σ).

(5.8)
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